Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 19,572 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import tactic
import data.set.finite
import data.real.basic -- for metrics

/-
# (Re)-Building topological spaces in Lean

Mathlib has a large library of results on topological spaces, including various
constructions, separation axioms, Tychonoff's theorem, sheaves, Stone-Čech
compactification, Heine-Cantor, to name but a few.
See https://leanprover-community.github.io/theories/topology.html which for a
(subset) of what's in library.

But today we will ignore all that, and build our own version of topological
spaces from scratch!
(On Friday morning Patrick Massot will lead a session exploring the existing
mathlib library in more detail)

To get this file run either `leanproject get lftcm2020`, if you didn't already or cd to
that folder and run `git pull; leanproject get-mathlib-cache`, this is
`src/exercise_sources/wednesday/topological_spaces.lean`.

The exercises are spread throughout, you needn't do them in order! They are marked as
short, medium and long, so I suggest you try some short ones first.

First a little setup, we will be making definitions involving the real numbers,
the theory of which is not computable, and we'll use sets.
-/
noncomputable theory
open set

/-!
## What is a topological space:

There are many definitions: one from Wikipedia:
  A topological space is an ordered pair (X, Ο„), where X is a set and Ο„ is a
  collection of subsets of X, satisfying the following axioms:
  - The empty set and X itself belong to Ο„.
  - Any arbitrary (finite or infinite) union of members of Ο„ still belongs to Ο„.
  - The intersection of any finite number of members of Ο„ still belongs to Ο„.

We can formalize this as follows: -/

class topological_space_wiki :=
  (X : Type)  -- the underlying Type that the topology will be on
  (Ο„ : set (set X))  -- the set of open subsets of X
  (empty_mem : βˆ… ∈ Ο„)  -- empty set is open
  (univ_mem : univ ∈ Ο„)  -- whole space is open
  (union : βˆ€ B βŠ† Ο„, ⋃₀ B ∈ Ο„)  -- arbitrary unions (sUnions) of members of Ο„ are open
  (inter : βˆ€ (B βŠ† Ο„) (h : set.finite B), β‹‚β‚€ B ∈ Ο„)  -- finite intersections of
                                                -- members of Ο„ are open

/-
Before we go on we should be sure we want to use this as our definition.
-/
-- omit
/- (Changing your definitions later can be less of a hassle in formalized
mathematics than pen and paper maths as the proof assistant will tell you
exactly which steps in which proofs you broke, it can also be more of a hassle
as you actually have to fix things, so its still best to get it right
the first time!) -/
-- omit

@[ext]
class topological_space (X : Type) :=
  (is_open : set X β†’ Prop) -- why set X β†’ Prop not set (set X)? former plays
                           -- nicer with typeclasses later
  (empty_mem : is_open βˆ…)
  (univ_mem : is_open univ)
  (union : βˆ€ (B : set (set X)) (h : βˆ€ b ∈ B, is_open b), is_open (⋃₀ B))
  (inter : βˆ€ (A B : set X) (hA : is_open A) (hB : is_open B), is_open (A ∩ B))

namespace topological_space

/- We can now work with topological spaces like this. -/
example (X : Type) [topological_space X] (U V W : set X) (hU : is_open U) (hV : is_open V)
  (hW : is_open W) : is_open (U ∩ V ∩ W) :=
begin
  apply inter _ _ _ hW,
  exact inter _ _ hU hV,
end

/- ## Exercise 0 [short]:
One of the axioms of a topological space we have here is unnecessary, it follows
from the others. If we remove it we'll have less work to do each time we want to
create a new topological space so:

1. Identify and remove the unneeded axiom, make sure to remove it throughout the file.
2. Add the axiom back as a lemma with the same name and prove it based on the
   others, so that the _interface_ is the same. -/
-- omit
lemma empty_mem' (X : Type) [topological_space X] : is_open (βˆ… : set X) :=
begin
  convert union (βˆ… : set (set X)) _; simp,
end
-- omit

/- Defining a basic topology now works like so: -/
def discrete (X : Type) : topological_space X :=
{ is_open := Ξ» U, true, -- everything is open
  empty_mem := trivial,
  univ_mem := trivial,
  union := begin intros B h, trivial, end,
  inter := begin intros A hA B hB, trivial, end }

/- ## Exercise 1 [medium]:
One way me might want to create topological spaces in practice is to take
the coarsest possible topological space containing a given set of is_open.
To define this we might say we want to define what `is_open` is given the set
of generators.
So we want to define the predicate `is_open` by declaring that each generator
will be open, the intersection of two opens will be open, and each union of a
set of opens will be open, and finally the empty and whole space (`univ`) must
be open. The cleanest way to do this is as an inductive definition.

The exercise is to make this definition of the topological space generated by a
given set in Lean.

### Hint:
As a hint for this exercise take a look at the following definition of a
constructible set of a topological space, defined by saying that an intersection
of an open and a closed set is constructible and that the union of any pair of
constructible sets is constructible.

(Bonus exercise: mathlib doesn't have any theory of constructible sets, make one and PR
it! [arbitrarily long!], or just prove that open and closed sets are constructible for now) -/

inductive is_constructible {X : Type} (T : topological_space X) : set X β†’ Prop
/- Given two open sets in `T`, the intersection of one with the complement of
   the other open is locally closed, hence constructible: -/
| locally_closed : βˆ€ (A B : set X), is_open A β†’ is_open B β†’ is_constructible (A ∩ Bᢜ)
-- Given two constructible sets their union is constructible:
| union : βˆ€ A B, is_constructible A β†’ is_constructible B β†’ is_constructible (A βˆͺ B)

-- For example we can now use this definition to prove the empty set is constructible
example {X : Type} (T : topological_space X) : is_constructible T βˆ… :=
begin
  -- The intersection of the whole space (open) with the empty set (closed) is
  -- locally closed, hence constructible
  have := is_constructible.locally_closed univ univ T.univ_mem T.univ_mem,
  -- but simp knows that's just the empty set (`simp` uses `this` automatically)
  simpa,
end

/-- The open sets of the least topology containing a collection of basic sets. -/
inductive generated_open (X : Type) (g : set (set X)) : set X β†’ Prop
-- The exercise: Add a definition here defining which sets are generated by `g` like the
-- `is_constructible` definition above.
-- omit
| basic  : βˆ€ s ∈ g, generated_open s
| univ   : generated_open univ
| inter  : βˆ€s t, generated_open s β†’ generated_open t β†’ generated_open (s ∩ t)
| sUnion : βˆ€k, (βˆ€ s ∈  k, generated_open s) β†’ generated_open (⋃₀ k)

lemma generated_open.empty (X : Type) (g : set (set X)) : generated_open X g βˆ… :=
begin
  have := generated_open.sUnion (βˆ… : set (set X)),
  simpa,
end
-- omit

/-- The smallest topological space containing the collection `g` of basic sets -/
def generate_from (X : Type) (g : set (set X)) : topological_space X :=
{ is_open   := generated_open X g,
  empty_mem := /- inline sorry -/generated_open.empty X g/- inline sorry -/,
  univ_mem  := /- inline sorry -/generated_open.univ/- inline sorry -/,
  inter     := /- inline sorry -/generated_open.inter/- inline sorry -/,
  union     := /- inline sorry -/generated_open.sUnion/- inline sorry -/ }

/- ## Exercise 2 [short]:
Define the indiscrete topology on any type using this.
(To do it without this it is surprisingly fiddly to prove that the set `{βˆ…, univ}`
actually forms a topology) -/
def indiscrete (X : Type) : topological_space X :=
  /- inline sorry -/ generate_from X βˆ… /- inline sorry -/

end topological_space

open topological_space
/- Now it is quite easy to give a topology on the product of a pair of
   topological spaces. -/
instance prod.topological_space (X Y : Type) [topological_space X]
  [topological_space Y] : topological_space (X Γ— Y) :=
topological_space.generate_from (X Γ— Y) {U | βˆƒ (Ux : set X) (Uy : set Y)
  (hx : is_open Ux) (hy : is_open Uy), U = Ux Γ—Λ’ Uy}

-- the proof of this is bit long so I've left it out for the purpose of this file!
lemma is_open_prod_iff (X Y : Type) [topological_space X] [topological_space Y]
  {s : set (X Γ— Y)} :
is_open s ↔ (βˆ€a b, (a, b) ∈ s β†’ βˆƒ (u : set X) (v : set Y), is_open u ∧ is_open v ∧
                                  a ∈ u ∧ b ∈ v ∧ u Γ—Λ’ v βŠ† s) := sorry

/- # Metric spaces -/

open_locale big_operators

class metric_space_basic (X : Type) :=
  (dist : X β†’ X β†’ ℝ)
  (dist_eq_zero_iff : βˆ€ x y, dist x y = 0 ↔ x = y)
  (dist_symm : βˆ€ x y, dist x y = dist y x)
  (triangle : βˆ€ x y z, dist x z ≀ dist x y + dist y z)

namespace metric_space_basic
open topological_space

/- ## Exercise 3 [short]:
We have defined a metric space with a metric landing in ℝ, and made no mention of
nonnegativity, (this is in line with the philosophy of using the easiest axioms for our
definitions as possible, to make it easier to define individual metrics). Show that we
really did define the usual notion of metric space. -/
lemma dist_nonneg {X : Type} [metric_space_basic X] (x y : X) : 0 ≀ dist x y :=
-- sorry
begin
  have := calc 0 = dist x x : by rw (dist_eq_zero_iff x x).mpr rfl
             ... ≀ dist x y + dist y x : triangle x y x
             ... = dist x y + dist x y : by rw dist_symm
             ... = 2 * dist x y : by rw two_mul (dist x y),
  linarith,
end
-- sorry

/- From a metric space we get an induced topological space structure like so: -/

instance {X : Type} [metric_space_basic X] : topological_space X :=
generate_from X { B | βˆƒ (x : X) r, B = {y | dist x y < r} }

end metric_space_basic

open metric_space_basic

/- So far so good, now lets define the product of two metric spaces:

## Exercise 4 [medium]:
Fill in the proofs here.
Hint: the computer can do boring casework you would never dream of in real life.
`max` is defined as `if x < y then y else x` and the `split_ifs` tactic will
break apart if statements. -/
instance prod.metric_space_basic (X Y : Type) [metric_space_basic X] [metric_space_basic Y] :
metric_space_basic (X Γ— Y) :=
{ dist := Ξ» u v, max (dist u.fst v.fst) (dist u.snd v.snd),
  dist_eq_zero_iff :=
  -- sorry
  begin intros u v,
    split; intro h,
    { have hf := dist_nonneg u.fst v.fst,
      have hs := dist_nonneg u.snd v.snd,
      have := max_le_iff.mp (le_of_eq h),
      ext; rw ← dist_eq_zero_iff; linarith, },
    { rw [h, (dist_eq_zero_iff _ _).mpr, (dist_eq_zero_iff _ _).mpr, max_self]; refl, },
  end
  -- sorry
  ,
  dist_symm := /- inline sorry -/ begin intros u v, simp [metric_space_basic.dist_symm], end /- inline sorry -/,
  triangle :=
  -- sorry
  begin
    intros x y z,
    have hf := triangle x.fst y.fst z.fst,
    have hs := triangle x.snd y.snd z.snd,
    simp only [max, max_default],
    split_ifs; linarith,
  end
  -- sorry
  }

/- ☑ Let's try to prove a simple lemma involving the product topology: ☑ -/
-- omit
set_option pp.all false
set_option trace.class_instances false
set_option trace.type_context.is_def_eq_detail false
-- omit
set_option trace.type_context.is_def_eq false
example (X : Type) [metric_space_basic X] : is_open {xy : X Γ— X | dist xy.fst xy.snd < 100 } :=
begin
  -- rw is_open_prod_iff X X,

  -- this fails, why? Because we have two subtly different topologies on the product
  -- they are equal but the proof that they are equal is nontrivial and the
  -- typeclass mechanism can't see that they automatically to apply. We need to change
  -- our set-up.
  sorry,
end

/- Note that lemma works fine when there is only one topology involved. -/
lemma diag_closed (X : Type) [topological_space X] : is_open {xy : X Γ— X | xy.fst β‰  xy.snd } :=
begin
  rw is_open_prod_iff X X,
  sorry, -- Don't try and fill this in: see below!
end

/- ## Exercise 5 [short]:
The previous lemma isn't true! It requires a separation axiom. Define a `class`
that posits that the topology on a type `X` satisfies this axiom. Mathlib uses
`T_i` naming scheme for these axioms. -/
class t2_space (X : Type) [topological_space X] :=
(t2 : /- inline sorry -/ βˆ€ (x y : X) (h : x β‰  y), βˆƒ (Ux Uy : set X) (hUx : is_open Ux) (hUy : is_open Uy) (hx : x ∈ Ux) (hy : y ∈ Uy), Ux ∩ Uy = βˆ… /- inline sorry -/)

/- (Bonus exercises [medium], the world is your oyster: prove the correct
version of the above lemma `diag_closed`, prove that the discrete topology is t2,
or that any metric topology is t2, ). -/
-- omit
example (X : Type) [topological_space X] [t2_space X] : is_open {xy : X Γ— X | xy.fst β‰  xy.snd } :=
begin
  rw is_open_prod_iff X X,
  intros x y h,
  obtain ⟨Ux, Uy, hUx, hUy, hx, hy, hxy⟩ := t2_space.t2 x y h,
  use [Ux, Uy, hUx, hUy, hx, hy],
  rintros ⟨tx, ty⟩ ⟨ht1, ht2⟩,
  dsimp,
  intro txy,
  rw txy at *,
  have : ty ∈ Ux ∩ Uy := ⟨ht1, ht2⟩,
  rw hxy at this,
  exact this, --  exact not_mem_empty ty this,
end

-- omit

/- Let's fix the broken example from earlier, by redefining the topology on a metric space.
We have unfortunately created two topologies on `X Γ— Y`, one via `prod.topology`
that we defined earlier as the product of the two topologies coming from the
respective metric space structures. And one coming from the metric on the product.

These are equal, i.e. the same topology (otherwise mathematically the product
would not be a good definition). However they are not definitionally equal, there
is as nontrivial proof to show they are the same. The typeclass system (which finds
the relevant topological space instance when we use lemmas involving topological
spaces) isn't able to check that topological space structures which are equal
for some nontrivial reason are equal on the fly so it gets stuck.

We can use `extends` to say that a metric space is an extra structure on top of
being a topological space so we are making a choice of topology for each metric space.
This may not be *definitionally* equal to the induced topology, but we should add the
axiom that the metric and the topology are equal to stop us from creating a metric
inducing a different topology to the topological structure we chose. -/
class metric_space (X : Type) extends topological_space X, metric_space_basic X :=
  (compatible : βˆ€ U, is_open U ↔ generated_open X { B | βˆƒ (x : X) r, B = {y | dist x y < r}} U)

namespace metric_space

open topological_space

/- This might seem a bit inconvenient to have to define a topological space each time
we want a metric space.

We would still like a way of making a `metric_space` just given a metric and some
properties it satisfies, i.e. a `metric_space_basic`, so we should setup a metric space
constructor from a `metric_space_basic` by setting the topology to be the induced one. -/

def of_basic {X : Type} (m : metric_space_basic X) : metric_space X :=
{ compatible := begin intros, refl, /- this should work when the above parts are complete -/ end,
  ..m,
  ..@metric_space_basic.topological_space X m }

/- Now lets define the product of two metric spaces properly -/
instance {X Y : Type} [metric_space X] [metric_space Y] : metric_space (X Γ— Y) :=
{ compatible :=
  begin
    -- Let's not fill this in for the demo, let me know if you do it!
    -- sorry
      rintros U,
      rw is_open_prod_iff,
      split; intro h,
      sorry,
      sorry,
    -- sorry
  end,
  ..prod.topological_space X Y,
  ..prod.metric_space_basic X Y, }

/- unregister the bad instance we defined earlier -/
local attribute [-instance] metric_space_basic.topological_space

/- Now this will work, there is only one topological space on the product, we can
rewrite like we tried to before a lemma about topologies our result on metric spaces,
as there is only one topology here.

## Exercise 6 [long?]:
Complete the proof of the example (you can generalise the 100 too if it makes it
feel less silly). -/

example (X : Type) [metric_space X] : is_open {xy : X Γ— X | dist xy.fst xy.snd < 100 } :=
begin
  rw is_open_prod_iff X X,
  -- sorry
  intros x y h,
  use [{t | dist x t < 50 - dist x y / 2}, {t | dist y t < 50 - dist x y / 2}],
  split,
  { rw compatible,
    apply generated_open.basic,
    use [x, 50 - dist x y / 2], },
  split,
  { rw compatible,
    apply generated_open.basic,
    use [y, 50 - dist x y / 2], },
  split,
  { dsimp,
    rw (metric_space_basic.dist_eq_zero_iff x x).mpr rfl,
    change dist x y < 100 at h,
    linarith, },
  split,
  { dsimp,
    rw (metric_space_basic.dist_eq_zero_iff y y).mpr rfl,
    change dist x y < 100 at h,
    linarith, },
  rintros ⟨tx, ty⟩ ⟨htx, hty⟩,
  dsimp at *,
  calc dist tx ty ≀ dist tx x + dist x ty            : triangle tx x ty
             ...  ≀ dist tx x + dist x y + dist y ty : by linarith [triangle x y ty]
             ...  = dist x tx + dist x y + dist y ty : by rw dist_symm
              ... < 100                              : by linarith,
  -- sorry
end

end metric_space


namespace topological_space
/- As mentioned, there are many definitions of a topological space, for instance
one can define them via specifying a set of closed sets satisfying various
axioms, this is equivalent and sometimes more convenient.

We _could_ create two distinct Types defined by different data and provide an
equivalence between theses types, e.g. `topological_space_via_open_sets` and
`topological_space_via_closed_sets`, but this would quickly get unwieldy.
What's better is to make an alternative _constructor_ for our original
topological space. This is a function takes a set of subsets satisfying the
axioms to be the closed sets of a topological space and creates the
topological space defined by the corresponding set of open sets.

## Exercise 7 [medium]:
Complete the following constructor of a topological space from a set of subsets
of a given type `X` satisfying the axioms for the closed sets of a topology.
Hint: there are many useful lemmas about complements in mathlib, with names
involving `compl`, like `compl_empty`, `compl_univ`, `compl_compl`, `compl_sUnion`,
`mem_compl_image`, `compl_inter`, `compl_compl'`, `you can #check them to see what they say. -/

def mk_closed_sets
  (X : Type)
  (Οƒ : set (set X))
  (empty_mem : βˆ… ∈ Οƒ)
  (univ_mem : univ ∈ Οƒ)
  (inter : βˆ€ B βŠ† Οƒ, β‹‚β‚€ B ∈ Οƒ)
  (union : βˆ€ (A ∈ Οƒ) (B ∈ Οƒ), A βˆͺ B ∈ Οƒ) :
topological_space X := {
  is_open := Ξ» U, U ∈ compl '' Οƒ, -- the corresponding `is_open`
  empty_mem :=
    -- sorry
    begin
      use univ,
      split,
      assumption,
      exact compl_univ,
    end
    -- sorry
  ,
  univ_mem :=
    -- sorry
    begin
      use βˆ…,
      split,
      assumption,
      exact compl_empty,
    end
    -- sorry
  ,
  union :=
    -- sorry
    begin
      intros B hB,
      use (⋃₀ B)ᢜ,
      split,
      { rw compl_sUnion,
        apply inter,
        intros b hb,
        have := hB bᢜ ((mem_compl_image b B).mp hb),
        rw mem_compl_image at this,
        simpa, },
      { exact compl_compl (⋃₀ B) }
    end
    -- sorry
  ,
  inter :=
    -- sorry
    begin
      rintros A B ⟨Ac, hA, rfl⟩ ⟨Bc, hB, rfl⟩,
      rw [mem_compl_image, compl_inter, compl_compl, compl_compl],
      exact union _ hA _ hB,
    end
    -- sorry
    }

/- Here are some more exercises:

## Exercise 8 [medium/long]:
Define the cofinite topology on any type (PR it to mathlib?).

## Exercise 9 [medium/long]:
Define a normed space?

## Exercise 10 [medium/long]:
Define more separation axioms?

-/

end topological_space