Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 8,134 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import data.set.basic data.set.lattice data.nat.parity
import tactic.linarith
open set nat function
open_locale classical
variables {α : Type*} {β : Type*} {γ : Type*} {I : Type*}
/-!
## Set exercises
These are collected from *Mathematics in Lean*.
We will go over the examples together, and then let you
work on the exercises.
There is more material here than can fit in the sessions,
but we will pick and choose as we go.
-/
section set_variables
variable x : α
variables s t u : set α
/-!
### Notation
-/
#check s ⊆ t -- \sub
#check x ∈ s -- \in or \mem
#check x ∉ s -- \notin
#check s ∩ t -- \i or \cap
#check s ∪ t -- \un or \cup
#check (∅ : set α) -- \empty
/-!
### Examples
-/
-- Three proofs of the same fact.
-- The first two expand definitions explicitly,
-- while the third forces Lean to do the unfolding.
example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
begin
rw [subset_def, inter_def, inter_def],
rw subset_def at h,
dsimp,
rintros x ⟨xs, xu⟩,
exact ⟨h _ xs, xu⟩,
end
example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
begin
simp only [subset_def, mem_inter_eq] at *,
rintros x ⟨xs, xu⟩,
exact ⟨h _ xs, xu⟩,
end
example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
begin
intros x xsu,
exact ⟨h xsu.1, xsu.2⟩
end
-- Use `cases` or `rcases` or `rintros` with union.
-- Two proofs of the same fact, one longer and one shorter.
example : s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) :=
begin
intros x hx,
have xs : x ∈ s := hx.1,
have xtu : x ∈ t ∪ u := hx.2,
cases xtu with xt xu,
{ left,
show x ∈ s ∩ t,
exact ⟨xs, xt⟩ },
right,
show x ∈ s ∩ u,
exact ⟨xs, xu⟩
end
example : s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) :=
begin
rintros x ⟨xs, xt | xu⟩,
{ left, exact ⟨xs, xt⟩ },
right, exact ⟨xs, xu⟩
end
-- Two examples with set difference.
-- Type it as ``\\``.
-- ``x ∈ s \ t`` expands to ``x ∈ s ∧ x ∉ t``.
example : s \ t \ u ⊆ s \ (t ∪ u) :=
begin
intros x xstu,
have xs : x ∈ s := xstu.1.1,
have xnt : x ∉ t := xstu.1.2,
have xnu : x ∉ u := xstu.2,
split,
{ exact xs }, dsimp,
intro xtu, -- x ∈ t ∨ x ∈ u
cases xtu with xt xu,
{ show false, from xnt xt },
show false, from xnu xu
end
example : s \ t \ u ⊆ s \ (t ∪ u) :=
begin
rintros x ⟨⟨xs, xnt⟩, xnu⟩,
use xs,
rintros (xt | xu); contradiction
end
/-!
### Exercises
-/
example : (s ∩ t) ∪ (s ∩ u) ⊆ s ∩ (t ∪ u):=
sorry
example : s \ (t ∪ u) ⊆ s \ t \ u :=
sorry
/-!
### Proving two sets are equal
-/
-- the ext tactic
example : s ∩ t = t ∩ s :=
begin
ext x,
-- simp only [mem_inter_eq], -- optional.
split,
{ rintros ⟨xs, xt⟩, exact ⟨xt, xs⟩ },
rintros ⟨xt, xs⟩, exact ⟨xs, xt⟩
end
example : s ∩ t = t ∩ s :=
by ext x; simp [and.comm]
/-!
### Exercises
-/
example : s ∩ (s ∪ t) = s :=
sorry
example : s ∪ (s ∩ t) = s :=
sorry
example : (s \ t) ∪ t = s ∪ t :=
sorry
example : (s \ t) ∪ (t \ s) = (s ∪ t) \ (s ∩ t) :=
sorry
/-!
### Set-builder notation
-/
def evens : set ℕ := {n | even n}
def odds : set ℕ := {n | ¬ even n}
example : evens ∪ odds = univ :=
begin
rw [evens, odds],
ext n,
simp,
apply classical.em
end
example : s ∩ t = {x | x ∈ s ∧ x ∈ t} := rfl
example : s ∪ t = {x | x ∈ s ∨ x ∈ t} := rfl
example : (∅ : set α) = {x | false} := rfl
example : (univ : set α) = {x | true} := rfl
example (x : ℕ) (h : x ∈ (∅ : set ℕ)) : false :=
h
example (x : ℕ) : x ∈ (univ : set ℕ) :=
trivial
/-!
### Exercise
-/
-- Use `intro n` to unfold the definition of subset,
-- and use the simplifier to reduce the
-- set-theoretic constructions to logic.
-- We also recommend using the theorems
-- ``prime.eq_two_or_odd`` and ``even_iff``.
example : { n | nat.prime n } ∩ { n | n > 2} ⊆ { n | ¬ even n } :=
sorry
/-!
Indexed unions
-/
-- See *Mathematics in Lean* for a discussion of
-- bounded quantifiers, which we will skip here.
section
-- We can use any index type in place of ℕ
variables A B : ℕ → set α
example : s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s) :=
begin
ext x,
simp only [mem_inter_eq, mem_Union],
split,
{ rintros ⟨xs, ⟨i, xAi⟩⟩,
exact ⟨i, xAi, xs⟩ },
rintros ⟨i, xAi, xs⟩,
exact ⟨xs, ⟨i, xAi⟩⟩
end
example : (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ (⋂ i, B i) :=
begin
ext x,
simp only [mem_inter_eq, mem_Inter],
split,
{ intro h,
split,
{ intro i,
exact (h i).1 },
intro i,
exact (h i).2 },
rintros ⟨h1, h2⟩ i,
split,
{ exact h1 i },
exact h2 i
end
end
/-!
### Exercise
-/
-- One direction requires classical logic!
-- We recommend using ``by_cases xs : x ∈ s``
-- at an appropriate point in the proof.
section
variables A B : ℕ → set α
example : s ∪ (⋂ i, A i) = ⋂ i, (A i ∪ s) :=
sorry
end
/-
Mathlib also has bounded unions and intersections,
`⋃ x ∈ s, f x` and `⋂ x ∈ s, f x`,
and set unions and intersections, `⋃₀ s` and `⋂₀ s`,
where `s : set α`.
See *Mathematics in Lean* for details.
-/
end set_variables
/-!
### Functions
-/
section function_variables
variable f : α → β
variables s t : set α
variables u v : set β
variable A : I → set α
variable B : I → set β
#check f '' s
#check image f s
#check f ⁻¹' u -- type as \inv' and then hit space or tab
#check preimage f u
example : f '' s = {y | ∃ x, x ∈ s ∧ f x = y} := rfl
example : f ⁻¹' u = {x | f x ∈ u } := rfl
example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v :=
by { ext, refl }
example : f '' (s ∪ t) = f '' s ∪ f '' t :=
begin
ext y, split,
{ rintros ⟨x, xs | xt, rfl⟩,
{ left, use [x, xs] },
right, use [x, xt] },
rintros (⟨x, xs, rfl⟩ | ⟨x, xt, rfl⟩),
{ use [x, or.inl xs] },
use [x, or.inr xt]
end
example : s ⊆ f ⁻¹' (f '' s) :=
begin
intros x xs,
show f x ∈ f '' s,
use [x, xs]
end
/-!
### Exercises
-/
example : f '' s ⊆ u ↔ s ⊆ f ⁻¹' u :=
sorry
example (h : injective f) : f ⁻¹' (f '' s) ⊆ s :=
sorry
example : f '' (f⁻¹' u) ⊆ u :=
sorry
example (h : surjective f) : u ⊆ f '' (f⁻¹' u) :=
sorry
example (h : s ⊆ t) : f '' s ⊆ f '' t :=
sorry
example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v :=
sorry
example : f ⁻¹' (u ∪ v) = f ⁻¹' u ∪ f ⁻¹' v :=
sorry
example : f '' (s ∩ t) ⊆ f '' s ∩ f '' t :=
sorry
example (h : injective f) : f '' s ∩ f '' t ⊆ f '' (s ∩ t) :=
sorry
example : f '' s \ f '' t ⊆ f '' (s \ t) :=
sorry
example : f ⁻¹' u \ f ⁻¹' v ⊆ f ⁻¹' (u \ v) :=
sorry
example : f '' s ∩ v = f '' (s ∩ f ⁻¹' v) :=
sorry
example : f '' (s ∩ f ⁻¹' u) ⊆ f '' s ∪ u :=
sorry
example : s ∩ f ⁻¹' u ⊆ f ⁻¹' (f '' s ∩ u) :=
sorry
example : s ∪ f ⁻¹' u ⊆ f ⁻¹' (f '' s ∪ u) :=
sorry
example : f '' (⋃ i, A i) = ⋃ i, f '' A i :=
sorry
example : f '' (⋂ i, A i) ⊆ ⋂ i, f '' A i :=
sorry
example (i : I) (injf : injective f) : (⋂ i, f '' A i) ⊆ f '' (⋂ i, A i) :=
sorry
example : f ⁻¹' (⋃ i, B i) = ⋃ i, f ⁻¹' (B i) :=
sorry
example : f ⁻¹' (⋂ i, B i) = ⋂ i, f ⁻¹' (B i) :=
sorry
/-
There is a lot more in *Mathematics in Lean* that we will not have time for!
There is a discussion of injectivity, more exercises on images and ranges,
and a discussion of inverses.
But we will close with on last exercise. Remember that `surjective f`
says `∀ y, ∃ x, f x = y`.
See if you can understand the proof of Cantor's famous theorem that there is no
surjective function from its set to its powerset, and
fill in the two lines that are missing.
-/
theorem Cantor : ∀ f : α → set α, ¬ surjective f :=
begin
intros f surjf,
let S := { i | i ∉ f i},
rcases surjf S with ⟨j, h⟩,
have h₁ : j ∉ f j,
{ intro h',
have : j ∉ f j,
{ by rwa h at h' },
contradiction },
have h₂ : j ∈ S,
sorry
,
have h₃ : j ∉ S,
sorry
,
contradiction
end
end function_variables
|