Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,134 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import data.set.basic data.set.lattice data.nat.parity
import tactic.linarith

open set nat function

open_locale classical

variables {α : Type*} {β : Type*} {γ : Type*} {I : Type*}

/-!
## Set exercises

These are collected from *Mathematics in Lean*.

We will go over the examples together, and then let you
work on the exercises.

There is more material here than can fit in the sessions,
but we will pick and choose as we go.
-/

section set_variables

variable  x : α
variables s t u : set α

/-!
### Notation
-/

#check st        -- \sub
#check xs        -- \in or \mem
#check xs        -- \notin
#check st        -- \i or \cap
#check st        -- \un or \cup
#check (: set α)  -- \empty

/-!
### Examples
-/

-- Three proofs of the same fact.
-- The first two expand definitions explicitly,
-- while the third forces Lean to do the unfolding.

example (h : st) : sutu :=
begin
  rw [subset_def, inter_def, inter_def],
  rw subset_def at h,
  dsimp,
  rintros xxs, xu,
  exact ⟨h _ xs, xu,
end

example (h : st) : sutu :=
begin
  simp only [subset_def, mem_inter_eq] at *,
  rintros xxs, xu,
  exact ⟨h _ xs, xu,
end

example (h : st) : sutu :=
begin
  intros x xsu,
  exact ⟨h xsu.1, xsu.2⟩
end

-- Use `cases` or `rcases` or `rintros` with union.
-- Two proofs of the same fact, one longer and one shorter.

example : s(tu)(st)(su) :=
begin
  intros x hx,
  have xs : xs := hx.1,
  have xtu : xtu := hx.2,
  cases xtu with xt xu,
  { left,
    show xst,
    exact ⟨xs, xt},
  right,
  show xsu,
  exact ⟨xs, xu⟩
end

example : s(tu)(st)(su) :=
begin
  rintros xxs, xt | xu,
  { left, exact ⟨xs, xt},
  right, exact ⟨xs, xu⟩
end

-- Two examples with set difference.
-- Type it as ``\\``.
-- ``x ∈ s \ t`` expands to ``xsxt``.

example : s \ t \ us \ (tu) :=
begin
  intros x xstu,
  have xs : xs := xstu.1.1,
  have xnt : xt := xstu.1.2,
  have xnu : xu := xstu.2,
  split,
  { exact xs }, dsimp,
  intro xtu, -- xtxu
  cases xtu with xt xu,
  { show false, from xnt xt },
  show false, from xnu xu
end

example : s \ t \ us \ (tu) :=
begin
  rintros x ⟨⟨xs, xnt, xnu,
  use xs,
  rintros (xt | xu); contradiction
end

/-!
### Exercises
-/

example : (s ∩ t) ∪ (s ∩ u) ⊆ s ∩ (t ∪ u):=
sorry

example : s \ (t ∪ u) ⊆ s \ t \ u :=
sorry

/-!
### Proving two sets are equal
-/

-- the ext tactic

example : s ∩ t = t ∩ s :=
begin
  ext x,
  -- simp only [mem_inter_eq],  -- optional.
  split,
  { rintros ⟨xs, xt⟩, exact ⟨xt, xs⟩ },
  rintros ⟨xt, xs⟩, exact ⟨xs, xt⟩
end

example : s ∩ t = t ∩ s :=
by ext x; simp [and.comm]

/-!
### Exercises
-/

example : s ∩ (s ∪ t) = s :=
sorry

example : s ∪ (s ∩ t) = s :=
sorry

example : (s \ t) ∪ t = s ∪ t :=
sorry

example : (s \ t) ∪ (t \ s) = (s ∪ t) \ (s ∩ t) :=
sorry

/-!
### Set-builder notation
-/

def evens : set ℕ := {n | even n}
def odds :  set ℕ := {n | ¬ even n}

example : evens ∪ odds = univ :=
begin
  rw [evens, odds],
  ext n,
  simp,
  apply classical.em
end

example : s ∩ t = {x | x ∈ s ∧ x ∈ t} := rfl
example : s ∪ t = {x | x ∈ s ∨ x ∈ t} := rfl
example : (∅ : set α) = {x | false} := rfl
example : (univ : set α) = {x | true} := rfl

example (x : ℕ) (h : x ∈ (∅ : set ℕ)) : false :=
h

example (x : ℕ) : x ∈ (univ : set ℕ) :=
trivial

/-!
### Exercise
-/

-- Use `intro n` to unfold the definition of subset,
-- and use the simplifier to reduce the
-- set-theoretic constructions to logic.
-- We also recommend using the theorems
-- ``prime.eq_two_or_odd`` and ``even_iff``.

example : { n | nat.prime n } ∩ { n | n > 2} ⊆ { n | ¬ even n } :=
sorry

/-!
Indexed unions
-/

-- See *Mathematics in Lean* for a discussion of
-- bounded quantifiers, which we will skip here.

section

-- We can use any index type in place of ℕ
variables A B : ℕ → set α

example : s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s) :=
begin
  ext x,
  simp only [mem_inter_eq, mem_Union],
  split,
  { rintros ⟨xs, ⟨i, xAi⟩⟩,
    exact ⟨i, xAi, xs⟩ },
  rintros ⟨i, xAi, xs⟩,
  exact ⟨xs, ⟨i, xAi⟩⟩
end

example : (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ (⋂ i, B i) :=
begin
  ext x,
  simp only [mem_inter_eq, mem_Inter],
  split,
  { intro h,
    split,
    { intro i,
      exact (h i).1 },
    intro i,
    exact (h i).2 },
  rintros ⟨h1, h2⟩ i,
  split,
  { exact h1 i },
  exact h2 i
end

end

/-!
### Exercise
-/

-- One direction requires classical logic!
-- We recommend using ``by_cases xs : x ∈ s``
-- at an appropriate point in the proof.

section

variables A B : ℕ → set α

example : s ∪ (⋂ i, A i) = ⋂ i, (A i ∪ s) :=
sorry

end

/-
Mathlib also has bounded unions and intersections,
`⋃ x ∈ s, f x` and `⋂ xs, f x`,
and set unions and intersections, `⋃₀ s` and `⋂₀ s`,
where `s : set α`.

See *Mathematics in Lean* for details.
-/

end set_variables

/-!
### Functions
-/

section function_variables

variable  f : α → β
variables s t : set α
variables u v : set β
variable  A : I → set α
variable  B : I → set β

#check f '' s
#check image f s
#check f ⁻¹' u    -- type as \inv' and then hit space or tab
#check preimage f u

example : f '' s = {y | ∃ x, x ∈ s ∧ f x = y} := rfl
example : f ⁻¹' u = {x | f x ∈ u } := rfl

example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v :=
by { ext, refl }

example : f '' (s ∪ t) = f '' s ∪ f '' t :=
begin
  ext y, split,
  { rintros ⟨x, xs | xt, rfl⟩,
    { left, use [x, xs] },
    right, use [x, xt] },
  rintros (⟨x, xs, rfl⟩ | ⟨x, xt, rfl⟩),
  { use [x, or.inl xs] },
  use [x, or.inr xt]
end

example : s ⊆ f ⁻¹' (f '' s) :=
begin
  intros x xs,
  show f x ∈ f '' s,
  use [x, xs]
end

/-!
### Exercises
-/

example : f '' s ⊆ u ↔ s ⊆ f ⁻¹' u :=
sorry

example (h : injective f) : f ⁻¹' (f '' s) ⊆ s :=
sorry

example : f '' (f⁻¹' u) ⊆ u :=
sorry

example (h : surjective f) : u ⊆ f '' (f⁻¹' u) :=
sorry

example (h : s ⊆ t) : f '' s ⊆ f '' t :=
sorry

example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v :=
sorry

example : f ⁻¹' (u ∪ v) = f ⁻¹' u ∪ f ⁻¹' v :=
sorry

example : f '' (s ∩ t) ⊆ f '' s ∩ f '' t :=
sorry

example (h : injective f) : f '' s ∩ f '' t ⊆ f '' (s ∩ t) :=
sorry

example : f '' s \ f '' t ⊆ f '' (s \ t) :=
sorry

example : f ⁻¹' u \ f ⁻¹' v ⊆ f ⁻¹' (u \ v) :=
sorry

example : f '' s ∩ v = f '' (s ∩ f ⁻¹' v) :=
sorry

example : f '' (s ∩ f ⁻¹' u) ⊆ f '' s ∪ u :=
sorry

example : s ∩ f ⁻¹' u ⊆ f ⁻¹' (f '' s ∩ u) :=
sorry

example : s ∪ f ⁻¹' u ⊆ f ⁻¹' (f '' s ∪ u) :=
sorry

example : f '' (⋃ i, A i) = ⋃ i, f '' A i :=
sorry

example : f '' (⋂ i, A i) ⊆ ⋂ i, f '' A i :=
sorry

example (i : I) (injf : injective f) : (⋂ i, f '' A i) ⊆ f '' (⋂ i, A i) :=
sorry

example : f ⁻¹' (⋃ i, B i) = ⋃ i, f ⁻¹' (B i) :=
sorry

example : f ⁻¹' (⋂ i, B i) = ⋂ i, f ⁻¹' (B i) :=
sorry

/-
There is a lot more in *Mathematics in Lean* that we will not have time for!
There is a discussion of injectivity, more exercises on images and ranges,
and a discussion of inverses.

But we will close with on last exercise. Remember that `surjective f`
says `∀ y, ∃ x, f x = y`.

See if you can understand the proof of Cantor's famous theorem that there is no
surjective function from its set to its powerset, and
fill in the two lines that are missing.
-/

theorem Cantor :f : α → set α, ¬ surjective f :=
begin
  intros f surjf,
  let S := { i | if i},
  rcases surjf S withj, h,
  have h: jf j,
  { intro h',
    have : j ∉ f j,
      { by rwa h at h' },
    contradiction },
  have h: jS,
sorry
    ,
  have h: jS,
sorry
    ,
  contradiction
end

end function_variables