Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 4,375 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import analysis.analytic.composition
import analysis.inner_product_space.basic
import analysis.normed_space.pi_Lp
import analysis.calculus.iterated_deriv
import analysis.calculus.mean_value
import analysis.calculus.implicit
import measure_theory.integral.bochner
import measure_theory.measure.lebesgue
import linear_algebra.matrix.trace
namespace lftcm
noncomputable theory
open real
open_locale topological_space filter classical real
/-!
# Derivatives
Lean can automatically compute some simple derivatives using `simp` tactic.
-/
example : deriv (λ x : ℝ, x^5) 6 = 5 * 6^4 := sorry
example (x₀ : ℝ) (h₀ : x₀ ≠ 0) : deriv (λ x:ℝ, 1 / x) x₀ = -1 / x₀^2 := sorry
example : deriv sin π = -1 := sorry
-- Sometimes you need `ring` and/or `field_simp` after `simp`
example (x₀ : ℝ) (h : x₀ ≠ 0) :
deriv (λ x : ℝ, exp(x^2) / x^5) x₀ = (2 * x₀^2 - 5) * exp (x₀^2) / x₀^6 :=
begin
have : x₀^5 ≠ 0, { sorry },
simp [this],
sorry
end
example (a b x₀ : ℝ) (h : x₀ ≠ 1) :
deriv (λ x, (a * x + b) / (x - 1)) x₀ = -(a + b) / (x₀ - 1)^2 :=
begin
sorry
end
-- Currently `simp` is unable to solve the next example.
-- A PR that will make this example provable `by simp` would be very welcome!
example : iterated_deriv 7 (λ x, sin (tan x) - tan (sin x)) 0 = -168 := sorry
variables (m n : Type) [fintype m] [fintype n]
-- Generalizations of the next two instances should go to `analysis/normed_space/basic`
instance : normed_add_comm_group (matrix m n ℝ) := pi.normed_add_comm_group
instance : normed_space ℝ (matrix m n ℝ) := pi.normed_space
/-- Trace of a matrix as a continuous linear map. -/
def matrix.trace_clm : matrix n n ℝ →L[ℝ] ℝ :=
(matrix.trace_linear_map n ℝ ℝ).mk_continuous (fintype.card n)
begin
sorry
end
-- Another hard exercise that would make a very good PR
example :
has_fderiv_at (λ m : matrix n n ℝ, m.det) (matrix.trace_clm n) 1 :=
begin
sorry
end
end lftcm
#check deriv
#check has_fderiv_at
example (y : ℝ) : has_deriv_at (λ x : ℝ, 2 * x + 5) 2 y :=
begin
have := ((has_deriv_at_id y).const_mul 2).add_const 5,
rwa [mul_one] at this,
end
example (y : ℝ) : deriv (λ x : ℝ, 2 * x + 5) y = 2 := by simp
#check exists_has_deriv_at_eq_slope
#check exists_deriv_eq_slope
open set topological_space
namespace measure_theory
variables {α E : Type*} [measurable_space α] [normed_add_comm_group E] [normed_space ℝ E]
[measurable_space E] [borel_space E] [complete_space E] [second_countable_topology E]
{μ : measure α} {f : α → E}
#check integral
#check ∫ x : ℝ, x ^ 2
#check ∫ x in Icc (0:ℝ) 1, x^2
#check ∫ x, f x ∂μ
#check integral_add
#check integral_add_measure
#check integral_union
lemma integral_sdiff (f : α → E) (hfm : measurable f) {s t : set α}
(hs : measurable_set s) (ht : measurable_set t) (hst : s ⊆ t)
(hfi : integrable f $ μ.restrict t) :
∫ x in t \ s, f x ∂μ = ∫ x in t, f x ∂μ - ∫ x in s, f x ∂μ :=
begin
-- hint: apply `integral_union` to `s` and `t \ s`
sorry
end
lemma integral_Icc_sub_Icc_of_le [linear_order α] [topological_space α] [order_topology α]
[borel_space α] {x y z : α} (hxy : x ≤ y) (hyz : y ≤ z)
{f : α → ℝ} (hfm : measurable f) (hfi : integrable f (μ.restrict $ Icc x z)) :
∫ a in Icc x z, f a ∂μ - ∫ a in Icc x y, f a ∂μ = ∫ a in Ioc y z, f a ∂μ :=
begin
rw [sub_eq_iff_eq_add', ← integral_union, Icc_union_Ioc_eq_Icc];
sorry
end
#check set_integral_const
end measure_theory
open measure_theory
theorem FTC {f : ℝ → ℝ} {x y : ℝ} (hy : continuous_at f y) (h : x < y)
(hfm : measurable f)
(hfi : integrable f (volume.restrict $ Icc x y)) :
has_deriv_at (λ z, ∫ a in Icc x z, f a) (f y) y :=
begin
have A : has_deriv_within_at (λ z, ∫ a in Icc x z, f a) (f y) (Ici y) y,
{ rw [has_deriv_within_at_iff_tendsto, metric.tendsto_nhds_within_nhds],
intros ε ε0,
rw [metric.continuous_at_iff] at hy,
rcases hy ε ε0 with ⟨δ, δ0, hδ⟩,
use [δ, δ0],
intros z hyz hzδ,
rw [integral_Icc_sub_Icc_of_le, dist_zero_right, real.norm_eq_abs, abs_mul, abs_of_nonneg, abs_of_nonneg],
all_goals {sorry } },
have B : has_deriv_within_at (λ z, ∫ a in Icc x z, f a) (f y) (Iic y) y,
{ sorry },
have := B.union A,
simpa using this
end
|