Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,149 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
(* ---------------------------------------------------------------------- *)
(*  Simplification                                                        *)
(* ---------------------------------------------------------------------- *)

(*
let psimplify1 fm =
  match fm with
    Not False -> True
  | Not True -> False
  | And(False,q) -> False
  | And(p,False) -> False
  | And(True,q) -> q
  | And(p,True) -> p
  | Or(False,q) -> q
  | Or(p,False) -> p
  | Or(True,q) -> True
  | Or(p,True) -> True
  | Imp(False,q) -> True
  | Imp(True,q) -> q
  | Imp(p,True) -> True
  | Imp(p,False) -> Not p
  | Iff(True,q) -> q
  | Iff(p,True) -> p
  | Iff(False,q) -> Not q
  | Iff(p,False) -> Not p
  | _ -> fm;;
*)


let PSIMPLIFY1_CONV =
  let nt = `~T`
  and t = `T`
  and f = `F`
  and nf = `~F` in
  fun fm ->
  try
    let fm' =
      if fm = nt then f
      else if fm = nf then t
      else if is_conj fm then
        let l,r = dest_conj fm in
          if l = f || r = f then f
          else if l = t then r
          else if r = t then l
          else fm
      else if is_disj fm then
        let l,r = dest_disj fm in
          if l = t || r = t then t
          else if l = f then r
          else if r = f then l
          else fm
      else if is_imp fm then
        let l,r = dest_imp fm in
          if l = f then t
          else if r = t then t
          else if l = t then r
          else if r = f then mk_neg l
          else fm
      else if is_iff fm then
        let l,r = dest_beq fm in
          if l = f then mk_neg r
          else if l = t then r
          else if r = t then l
          else if r = f then mk_neg l
            else fm
      else failwith "PSIMPLIFY: 0" in
    let fm'' = mk_eq(fm,fm') in
      prove(fm'',REWRITE_TAC[])
  with _ -> REFL fm;;

(*
let fm = `T /\ T`
PSIMPLIFY1_CONV `T /\ A`

let simplify1 fm =
  match fm with
    Forall(x,p) -> if mem x (fv p) then fm else p
  | Exists(x,p) -> if mem x (fv p) then fm else p
  | _ -> psimplify1 fm;;
*)

let SIMPLIFY1_CONV fm =
  if is_forall fm || is_exists fm then
    let x,p = dest_forall fm in
      if mem x (frees p) then REFL fm
      else  prove(mk_eq(fm,p),REWRITE_TAC[])
  else PSIMPLIFY1_CONV fm;;

(*
let rec simplify fm =
  match fm with
    Not p -> simplify1 (Not(simplify p))
  | And(p,q) -> simplify1 (And(simplify p,simplify q))
  | Or(p,q) -> simplify1 (Or(simplify p,simplify q))
  | Imp(p,q) -> simplify1 (Imp(simplify p,simplify q))
  | Iff(p,q) -> simplify1 (Iff(simplify p,simplify q))
  | Forall(x,p) -> simplify1(Forall(x,simplify p))
  | Exists(x,p) -> simplify1(Exists(x,simplify p))
  | _ -> fm;;
*)

let rec SIMPLIFY_CONV =
  let not_tm = `(~)`
  and ex_tm = `(?)` in
  fun fm ->
  if is_neg fm then
    let thm1 = SIMPLIFY_CONV (dest_neg fm) in
    let thm2 = AP_TERM not_tm thm1 in
    let l,r = dest_eq (concl thm2) in
    let thm3 = SIMPLIFY1_CONV r in
      TRANS thm2 thm3
  else if is_conj fm || is_disj fm || is_imp fm || is_iff fm then
    let op,l,r = get_binop fm in
    let l_thm = SIMPLIFY_CONV l in
    let r_thm = SIMPLIFY_CONV r in
    let a_thm = (curry MK_COMB) (AP_TERM op l_thm) r_thm in
    let al,ar = dest_eq (concl a_thm) in
    let thm = SIMPLIFY1_CONV ar in
      TRANS a_thm thm
  else if is_forall fm || is_exists fm then
    let x,bod = dest_quant fm in
    let bod_thm = SIMPLIFY_CONV bod in
    let lam_thm = ABS x bod_thm in
    let q_thm = AP_TERM ex_tm lam_thm in
    let l,r = dest_eq (concl q_thm) in
    let thm = SIMPLIFY1_CONV r in
      TRANS q_thm thm
  else REFL fm;;



(*

SIMPLIFY_CONV `T /\ T \/ F`

let operations =
  ["=",(=/); "<",(</); ">",(>/); "<=",(<=/); ">=",(>=/);
   "divides",(fun x y -> mod_num y x =/ Int 0)];;

let evalc_atom at =
  match at with
    R(p,[s;t]) ->
        (try if assoc p operations (dest_numeral s) (dest_numeral t)
             then True else False
         with Failure _ -> Atom at)
  | _ -> Atom at;;

let evalc = onatoms evalc_atom;;
*)

let REAL_LEAF_CONV fm =
  let op,l,r = get_binop fm in
    if op = rlt then
      REAL_RAT_LT_CONV fm
    else if op = rgt then
      REAL_RAT_GT_CONV fm
    else if op = rle then
      REAL_RAT_LE_CONV fm
    else if op = rge then
      REAL_RAT_GE_CONV fm
    else if op = req then
      REAL_RAT_EQ_CONV fm
    else failwith "REAL_LEAF_CONV";;

let EVALC_CONV = DEPTH_CONV REAL_LEAF_CONV;;





(*
EVALC_CONV `x < &0 /\ &1 < &2`
(EVALC_CONV THENC SIMPLIFY_CONV) `(&0 + a * &1 = &0) /\
     ((&0 + b * &1 = &0) /\
      ((&0 + c * &1 = &0) /\ T \/
       &0 + c * &1 < &0 /\ F \/
       &0 + c * &1 > &0 /\ F) \/
      &0 + b * &1 < &0 /\ T \/
      &0 + b * &1 > &0 /\ T) \/
     &0 + a * &1 < &0 /\
     ((&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) = &0) /\ T \/
      &0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) < &0 /\ F \/
      &0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) > &0 /\ T) \/
     &0 + a * &1 > &0 /\
     ((&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) = &0) /\ T \/
      &0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) < &0 /\ T \/
      &0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) > &0 /\ &1 < &2)`

*)