Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,505 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
(* ------------------------------------------------------------------------- *)
(* Find sign of polynomial, using modulo-constant lookup and computation.    *)
(* ------------------------------------------------------------------------- *)

let xterm_lt t1 t2 =
  try
    let n1,_ = dest_var t1 in
    let n2,_ = dest_var t2 in
    let i1 = String.sub n1 2 (String.length n1 - 2) in
    let i2 = String.sub n2 2 (String.length n2 - 2) in
    let x1 = int_of_string i1 in
    let x2 = int_of_string i2 in
      x1 < x2
  with _ -> failwith "xterm_lt: not an xvar?";;

(*
String.sub n1 2 (String.length n1 - 2)
substring
let t1,t2 = `x_99:real`,`x_100:real`
xterm_sort t1 t2
t1 < t2
*)


let FINDSIGN =
  let p_tm = `p:real`
  and c_tm = `c:real`
  and fth = prove
   (`r (a * b * p) (&0) ==> (a * b = &1) ==> r p (&0)`,
    DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
    ASM_REWRITE_TAC[REAL_MUL_ASSOC; REAL_MUL_LID]) in
  let rec FINDSIGN vars sgns p =
  try
    try SIGN_CONST p with Failure _ ->
    let mth = MONIC_CONV vars p in
    let p' = rand(concl mth) in
    let pth = find (fun th -> lhand(concl th) = p') sgns in
    let c = lhand(lhand(concl mth)) in
    let c' = term_of_rat(Int 1 // rat_of_term c) in
    let sth = SIGN_CONST c' in
    let rel_c = funpow 2 rator (concl sth) in
    let rel_p = funpow 2 rator (concl pth) in
    let th1 =
      if rel_p = req then if rel_c = rgt then pth_0g else pth_0l
      else if rel_p = rgt then if rel_c = rgt then pth_gg else pth_gl
      else if rel_p = rlt then if rel_c = rgt then pth_lg else pth_ll
      else if rel_p = rneq then if rel_c = rgt then pth_nzg else pth_nzl
      else failwith "FINDSIGN" in
    let th2 = MP (MP (INST [p',p_tm; c',c_tm] th1) pth) sth in
    let th3 = EQ_MP (LAND_CONV(RAND_CONV(K(SYM mth))) (concl th2)) th2 in
    let th4 = MATCH_MP fth th3 in
      MP th4 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th4))))
  with Failure _ -> failwith "FINDSIGN" in
    FINDSIGN;;

(*

let vars = [`x:real`;`y:real`]
let p =   `&7 + x * (&11 + x * (&10 + y * &7))`

let sgns = [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) < &0`]
let sgns = [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) = &0`]
let sgns = [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) > &0`]
let sgns = [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) <> &0`]

FINDSIGN vars sgns p
FINDSIGN vars sgns `-- &1`

*)



(*
ASSERTSIGN [x,y] [] (|- &7 + x * (&11 + x * (&10 + y * -- &7)) < &0

-->

[-- &1 + x * (-- &11 / &7 + x * (-- &10 / &7 + y * &1)) > &0]


ASSERTSIGN [x,y] [] (|- &7 + x * (&11 + x * (&10 + y * &7)) < &0

-->

[&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) < &0]

*)


let ASSERTSIGN vars sgns sgn_thm =
  let op,l,r = get_binop (concl sgn_thm) in
  let p_thm = MONIC_CONV vars l in
  let _,pl,pr = get_binop (concl p_thm) in
  let c,_ = dest_binop rm pl in
  let c_thm = SIGN_CONST c in
  let c_op,_,_ = get_binop (concl c_thm) in
  let sgn_thm' =
    if c_op = rlt && op = rlt then
      MATCH_MPL[signs_lem01;c_thm;sgn_thm;p_thm]
    else if c_op = rgt && op = rlt then
      MATCH_MPL[signs_lem02;c_thm;sgn_thm;p_thm]
    else if c_op = rlt && op = rgt then
      MATCH_MPL[signs_lem03;c_thm;sgn_thm;p_thm]
    else if c_op = rgt && op = rgt then
      MATCH_MPL[signs_lem04;c_thm;sgn_thm;p_thm]
    else if c_op = rlt && op = req then
      MATCH_MPL[signs_lem05;c_thm;sgn_thm;p_thm]
    else if c_op = rgt && op = req then
      MATCH_MPL[signs_lem06;c_thm;sgn_thm;p_thm]
    else if c_op = rlt && op = rneq then
      MATCH_MPL[signs_lem07;c_thm;sgn_thm;p_thm]
    else if c_op = rgt && op = rneq then
      MATCH_MPL[signs_lem08;c_thm;sgn_thm;p_thm]
    else failwith "ASSERTSIGN : 0" in
  try
    let sgn_thm'' = find (fun th -> lhand(concl th) = pr) sgns in
    let op1,l1,r1 = get_binop (concl sgn_thm') in
    let op2,l2,r2 = get_binop (concl sgn_thm'') in
      if (concl sgn_thm') = (concl sgn_thm'') then sgns
      else if op2 = rneq && (op1 = rlt || op1 = rgt) then sgn_thm'::snd (remove ((=) sgn_thm'') sgns)
      else failwith "ASSERTSIGN : 1"
  with Failure "find" -> sgn_thm'::sgns;;



(*
let k0 = `&7 + x * (&11 + x * (&10 + y * -- &7))`
MONIC_CONV vars k0
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * -- &7)) < &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) < &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) = &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) <> &0`
let sgn_thm = k1

ASSERTSIGN vars [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) <> &0`] k1

*)

(* ---------------------------------------------------------------------- *)
(*  Case splitting                                                        *)
(* ---------------------------------------------------------------------- *)



let SPLIT_ZERO vars sgns p cont_z cont_n ex_thms =
  try
    let sgn_thm = FINDSIGN vars sgns p in
    let op,l,r = get_binop (concl sgn_thm) in
      (if op = req then cont_z else cont_n) sgns ex_thms
  with Failure "FINDSIGN" ->
    let eq_tm = mk_eq(p,rzero) in
    let neq_tm = mk_neq(p,rzero) in
    let or_thm = ISPEC p signs_lem002 in
    (* zero *)
    let z_thm = cont_z (ASSERTSIGN vars sgns (ASSUME eq_tm)) ex_thms in
    let z_thm' = DISCH eq_tm z_thm in
    (* nonzero *)
    let nz_thm = cont_n (ASSERTSIGN vars sgns (ASSUME neq_tm)) ex_thms in
    let nz_thm' = DISCH neq_tm nz_thm in
    (* combine *)
    let ret = MATCH_MPL[signs_lem003;or_thm;z_thm';nz_thm'] in
    (* matching problem... must continue by hand *)
    let ldj,rdj = dest_disj (concl ret) in
    let lcj,rcj = dest_conj ldj in
    let a,_ = dest_binop req lcj in
    let p,p1 = dest_beq rcj in
    let _,rcj = dest_conj rdj in
    let p2 = rhs rcj in
    let pull_thm = ISPECL[a;p;p1;p2] PULL_CASES_THM in
    let ret' = MATCH_EQ_MP pull_thm ret in
      ret';;

(*

let ret = MATCH_MPL[lem3;or_thm]
MATCH_MP ret z_thm'

;nz_thm'] in

let vars,sgns,p,cont_z,cont_n,ex_thms = !sz_vars, !sz_sgns, !sz_p,!sz_cont_z, !sz_cont_n ,!sz_ex_thms



    let ret = MATCH_MPL[lem3;or_thm;]
let mp_thm = MATCH_MPL[lem3;or_thm;] in
let vars, sgns, p,cont_z,  cont_n =  !sz_vars,!sz_sgns,!sz_p,!sz_cont_z,!sz_cont_n

let mp_thm = k1


let t1 = ISPECL[`(?y. &0 + y * (&0 + x * &1) = &0)`;`T`;`T`;`&0 + x * &1`;`T`] t0
MATCH_EQ_MP t1 k1



EQ_MP t1 k1

MATCH_EQ_MP PULL_CASES_THM k1

concl k1 = lhs (concl t1)

MATCH_EQ_MP PULL_CASES_THM k0
let k0 = ASSUME `(&0 + x * &1 = &0) /\ ((?y. &0 + y * (&0 + x * &1) = &0) <=> T) \/
     &0 + x * &1 <> &0 /\
     (&0 + x * &1 > &0 /\ ((?x_1089. &0 + x_1089 * (&0 + x * &1) = &0) <=> T) \/
      &0 + x * &1 < &0 /\ ((?x_1084. &0 + x_1084 * (&0 + x * &1) = &0) <=> T))`;;
let k1 = ASSUME `(&0 + x * &1 = &0) /\ ((?y. &0 + y * (&0 + x * &1) = &0) <=> T) \/
     &0 + x * &1 <> &0 /\
     (&0 + x * &1 > &0 /\ ((?y. &0 + y * (&0 + x * &1) = &0) <=> T) \/
      &0 + x * &1 < &0 /\ ((?y. &0 + y * (&0 + x * &1) = &0) <=> T))`;;

MATCH_MPL[PULL_CASES_THM;!sz_z_thm;!sz_nz_thm] in

let thm1 = ASSUME `(?x_32. (&0 + c * &1) + x_32 * ((&0 + b * &1) + x_32 * (&0 + a * &1)) = &0) <=> T`
let thm2 =
ASSUME `(&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) < &0 ==>
          ((?x. (&0 + c * &1) + x * ((&0 + b * &1) + x * (&0 + a * &1)) = &0) <=> F)) /\
        (&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) > &0 ==>
          ((?x_26. (&0 + c * &1) + x_26 * ((&0 + b * &1) + x_26 * (&0 + a * &1)) = &0) <=> T)) `


MATCH_MPL

(* let PULL_CASES_THM = prove_by_refinement( *)
(*   `((a = &0) ==> (p <=> p0)) ==> ((a <> &0) ==> (a < &0 ==> (p <=> p1)) /\ (a > &0 ==> (p <=> p2)))  *)
(*     ==> (p <=> ((a = &0) /\ p0) \/ ((a < &0) /\ p1) \/ (a > &0 /\ p2))`, *)
(* (\* {{{ Proof *\)
[
  REWRITE_TAC[NEQ] THEN
  MAP_EVERY BOOL_CASES_TAC [`p:bool`; `p0:bool`; `p1:bool`; `p2:bool`] THEN
  ASM_REWRITE_TAC[NEQ] THEN TRY REAL_ARITH_TAC
]);;
(\* }}} *\) *)

let PULL_CASES_THM = prove
 (`!a p p0 p1 p2.
((a = &0) /\ (p <=> p0) \/
   (a <> &0) /\ (a > &0 /\ (p <=> p1) \/ a < &0 /\ (p <=> p2))) <=>
   ((p <=> (a = &0) /\ p0 \/ a > &0 /\ p1 \/ a < &0 /\ p2))`,
(* {{{ Proof *)
   REPEAT STRIP_TAC THEN  REWRITE_TAC[NEQ] THEN MAP_EVERY BOOL_CASES_TAC [`p:bool`; `p0:bool`; `p1:bool`; `p2:bool`] THEN
  ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
(* }}} *)


let vars, sgns, p, cont_z, cont_n =
[`x:real`;`y:real`],
 empty_sgns,
`&0 + y * &1`,
(fun x -> (ASSUME `abc > def`,[])),
(fun x -> (ASSUME `sean > steph`,[]))


SPLIT_ZERO vars sgns p cont_z cont_n

ASSERTSIGN vars empty_sgns (ASSUME `&0 + y * &1 = &0`) ,

let vars = [`x:real`;`y:real`]
let sgns = ASSERTSIGN vars [] (ASSUME `&7 + x * (&11 + x * (&10 + y * -- &7)) <> &0`)
let p = `&7 + x * (&11 + x * (&10 + y * -- &7))`
let cont_z = hd
let cont_n = hd
SPLIT_ZERO vars sgns p cont_z cont_n


let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) < &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) = &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) <> &0`
let sgn_thm = k1
ASSERTSIGN vars [] k1

*)

let SPLIT_SIGN vars sgns p cont_p cont_n ex_thms =
  let sgn_thm = try FINDSIGN vars sgns p
                with Failure "FINDSIGN" ->
                failwith "SPLIT_SIGN: no sign -- should have sign assumption by now" in
  let gt_tm = mk_binop rgt p rzero in
  let lt_tm = mk_binop rlt p rzero in
  let op,_,_ = get_binop (concl sgn_thm) in
  if op = rgt then cont_p sgns ex_thms
  else if op = rlt then cont_n sgns ex_thms
  else if op = req then failwith "SPLIT_SIGN: lead coef is 0"
  else if op = rneq then
    let or_thm = MATCH_MP signs_lem0002 sgn_thm in
    (* < *)
    let lt_sgns = ASSERTSIGN vars sgns (ASSUME lt_tm) in
    let lt_thm = cont_n lt_sgns ex_thms in
    let lt_thm' = DISCH lt_tm lt_thm in
     (* > *)
    let gt_sgns = ASSERTSIGN vars sgns (ASSUME gt_tm) in
    let gt_thm = cont_p gt_sgns ex_thms in
    let gt_thm' = DISCH gt_tm gt_thm in
    (* combine *)
    let ret = MATCH_MPL[signs_lem0003;or_thm;gt_thm';lt_thm'] in
    (* matching problem... must continue by hand *)
    let ldj,rdj = dest_disj (concl ret) in
    let lcj,rcj = dest_conj ldj in
    let a,_ = dest_binop rgt lcj in
    let p,p1 = dest_beq rcj in
    let _,rcj = dest_conj rdj in
    let p2 = rhs rcj in
    let pull_thm = ISPECL[a;p;p1;p2] PULL_CASES_THM_NZ in
    let ret' = MATCH_EQ_MP (MATCH_MP pull_thm sgn_thm) ret in
      ret'
  else failwith "SPLIT_SIGN: unknown op";;


(*
let vars, sgns, p,cont_p,  cont_n =  !ss_vars,!ss_sgns,!ss_p,!ss_cont_p,!ss_cont_n
[`x`],
[ASSUME `&0 + x * &1 <> &0`; ARITH_RULE ` &1 > &0`],
`&0 + x * &1`

let ss_vars, ss_sgns, ss_p,ss_cont_p, ss_cont_n =  ref [],ref [],ref `T`,ref (fun x -> TRUTH,[]),ref(fun x -> TRUTH,[]);;
  ss_vars := vars;
  ss_sgns := sgns;
  ss_p := p;
  ss_cont_p := cont_p;
  ss_cont_n := cont_n;



let vars, sgns, p, cont_p, cont_n =
[`x:real`;`y:real`],
ASSERTSIGN vars empty_sgns (ASSUME `&0 + y * &1 <> &0`) ,
`&0 + y * &1`,
(fun x -> (ASSUME `P > def`,[])),
(fun x -> (ASSUME `sean > steph`,[]))

SPLIT_SIGN vars sgns p cont_z cont_n


let vars = [`x:real`;`y:real`]
let sgns = ASSERTSIGN vars [] (ASSUME `&7 + x * (&11 + x * (&10 + y * -- &7)) <> &0`)
let p = `&7 + x * (&11 + x * (&10 + y * -- &7))`
let cont_p = hd
let cont_n = hd
SPLIT_SIGN vars sgns p cont_p cont_n

let sgns = ASSERTSIGN vars [] (ASSUME `&7 + x * (&11 + x * (&10 + y * -- &7)) <> &0`)

let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) < &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) = &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) <> &0`
let sgn_thm = k1
ASSERTSIGN vars [] k1




*)