Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,505 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
(* ------------------------------------------------------------------------- *)
(* Find sign of polynomial, using modulo-constant lookup and computation. *)
(* ------------------------------------------------------------------------- *)
let xterm_lt t1 t2 =
try
let n1,_ = dest_var t1 in
let n2,_ = dest_var t2 in
let i1 = String.sub n1 2 (String.length n1 - 2) in
let i2 = String.sub n2 2 (String.length n2 - 2) in
let x1 = int_of_string i1 in
let x2 = int_of_string i2 in
x1 < x2
with _ -> failwith "xterm_lt: not an xvar?";;
(*
String.sub n1 2 (String.length n1 - 2)
substring
let t1,t2 = `x_99:real`,`x_100:real`
xterm_sort t1 t2
t1 < t2
*)
let FINDSIGN =
let p_tm = `p:real`
and c_tm = `c:real`
and fth = prove
(`r (a * b * p) (&0) ==> (a * b = &1) ==> r p (&0)`,
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[REAL_MUL_ASSOC; REAL_MUL_LID]) in
let rec FINDSIGN vars sgns p =
try
try SIGN_CONST p with Failure _ ->
let mth = MONIC_CONV vars p in
let p' = rand(concl mth) in
let pth = find (fun th -> lhand(concl th) = p') sgns in
let c = lhand(lhand(concl mth)) in
let c' = term_of_rat(Int 1 // rat_of_term c) in
let sth = SIGN_CONST c' in
let rel_c = funpow 2 rator (concl sth) in
let rel_p = funpow 2 rator (concl pth) in
let th1 =
if rel_p = req then if rel_c = rgt then pth_0g else pth_0l
else if rel_p = rgt then if rel_c = rgt then pth_gg else pth_gl
else if rel_p = rlt then if rel_c = rgt then pth_lg else pth_ll
else if rel_p = rneq then if rel_c = rgt then pth_nzg else pth_nzl
else failwith "FINDSIGN" in
let th2 = MP (MP (INST [p',p_tm; c',c_tm] th1) pth) sth in
let th3 = EQ_MP (LAND_CONV(RAND_CONV(K(SYM mth))) (concl th2)) th2 in
let th4 = MATCH_MP fth th3 in
MP th4 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th4))))
with Failure _ -> failwith "FINDSIGN" in
FINDSIGN;;
(*
let vars = [`x:real`;`y:real`]
let p = `&7 + x * (&11 + x * (&10 + y * &7))`
let sgns = [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) < &0`]
let sgns = [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) = &0`]
let sgns = [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) > &0`]
let sgns = [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) <> &0`]
FINDSIGN vars sgns p
FINDSIGN vars sgns `-- &1`
*)
(*
ASSERTSIGN [x,y] [] (|- &7 + x * (&11 + x * (&10 + y * -- &7)) < &0
-->
[-- &1 + x * (-- &11 / &7 + x * (-- &10 / &7 + y * &1)) > &0]
ASSERTSIGN [x,y] [] (|- &7 + x * (&11 + x * (&10 + y * &7)) < &0
-->
[&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) < &0]
*)
let ASSERTSIGN vars sgns sgn_thm =
let op,l,r = get_binop (concl sgn_thm) in
let p_thm = MONIC_CONV vars l in
let _,pl,pr = get_binop (concl p_thm) in
let c,_ = dest_binop rm pl in
let c_thm = SIGN_CONST c in
let c_op,_,_ = get_binop (concl c_thm) in
let sgn_thm' =
if c_op = rlt && op = rlt then
MATCH_MPL[signs_lem01;c_thm;sgn_thm;p_thm]
else if c_op = rgt && op = rlt then
MATCH_MPL[signs_lem02;c_thm;sgn_thm;p_thm]
else if c_op = rlt && op = rgt then
MATCH_MPL[signs_lem03;c_thm;sgn_thm;p_thm]
else if c_op = rgt && op = rgt then
MATCH_MPL[signs_lem04;c_thm;sgn_thm;p_thm]
else if c_op = rlt && op = req then
MATCH_MPL[signs_lem05;c_thm;sgn_thm;p_thm]
else if c_op = rgt && op = req then
MATCH_MPL[signs_lem06;c_thm;sgn_thm;p_thm]
else if c_op = rlt && op = rneq then
MATCH_MPL[signs_lem07;c_thm;sgn_thm;p_thm]
else if c_op = rgt && op = rneq then
MATCH_MPL[signs_lem08;c_thm;sgn_thm;p_thm]
else failwith "ASSERTSIGN : 0" in
try
let sgn_thm'' = find (fun th -> lhand(concl th) = pr) sgns in
let op1,l1,r1 = get_binop (concl sgn_thm') in
let op2,l2,r2 = get_binop (concl sgn_thm'') in
if (concl sgn_thm') = (concl sgn_thm'') then sgns
else if op2 = rneq && (op1 = rlt || op1 = rgt) then sgn_thm'::snd (remove ((=) sgn_thm'') sgns)
else failwith "ASSERTSIGN : 1"
with Failure "find" -> sgn_thm'::sgns;;
(*
let k0 = `&7 + x * (&11 + x * (&10 + y * -- &7))`
MONIC_CONV vars k0
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * -- &7)) < &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) < &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) = &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) <> &0`
let sgn_thm = k1
ASSERTSIGN vars [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) <> &0`] k1
*)
(* ---------------------------------------------------------------------- *)
(* Case splitting *)
(* ---------------------------------------------------------------------- *)
let SPLIT_ZERO vars sgns p cont_z cont_n ex_thms =
try
let sgn_thm = FINDSIGN vars sgns p in
let op,l,r = get_binop (concl sgn_thm) in
(if op = req then cont_z else cont_n) sgns ex_thms
with Failure "FINDSIGN" ->
let eq_tm = mk_eq(p,rzero) in
let neq_tm = mk_neq(p,rzero) in
let or_thm = ISPEC p signs_lem002 in
(* zero *)
let z_thm = cont_z (ASSERTSIGN vars sgns (ASSUME eq_tm)) ex_thms in
let z_thm' = DISCH eq_tm z_thm in
(* nonzero *)
let nz_thm = cont_n (ASSERTSIGN vars sgns (ASSUME neq_tm)) ex_thms in
let nz_thm' = DISCH neq_tm nz_thm in
(* combine *)
let ret = MATCH_MPL[signs_lem003;or_thm;z_thm';nz_thm'] in
(* matching problem... must continue by hand *)
let ldj,rdj = dest_disj (concl ret) in
let lcj,rcj = dest_conj ldj in
let a,_ = dest_binop req lcj in
let p,p1 = dest_beq rcj in
let _,rcj = dest_conj rdj in
let p2 = rhs rcj in
let pull_thm = ISPECL[a;p;p1;p2] PULL_CASES_THM in
let ret' = MATCH_EQ_MP pull_thm ret in
ret';;
(*
let ret = MATCH_MPL[lem3;or_thm]
MATCH_MP ret z_thm'
;nz_thm'] in
let vars,sgns,p,cont_z,cont_n,ex_thms = !sz_vars, !sz_sgns, !sz_p,!sz_cont_z, !sz_cont_n ,!sz_ex_thms
let ret = MATCH_MPL[lem3;or_thm;]
let mp_thm = MATCH_MPL[lem3;or_thm;] in
let vars, sgns, p,cont_z, cont_n = !sz_vars,!sz_sgns,!sz_p,!sz_cont_z,!sz_cont_n
let mp_thm = k1
let t1 = ISPECL[`(?y. &0 + y * (&0 + x * &1) = &0)`;`T`;`T`;`&0 + x * &1`;`T`] t0
MATCH_EQ_MP t1 k1
EQ_MP t1 k1
MATCH_EQ_MP PULL_CASES_THM k1
concl k1 = lhs (concl t1)
MATCH_EQ_MP PULL_CASES_THM k0
let k0 = ASSUME `(&0 + x * &1 = &0) /\ ((?y. &0 + y * (&0 + x * &1) = &0) <=> T) \/
&0 + x * &1 <> &0 /\
(&0 + x * &1 > &0 /\ ((?x_1089. &0 + x_1089 * (&0 + x * &1) = &0) <=> T) \/
&0 + x * &1 < &0 /\ ((?x_1084. &0 + x_1084 * (&0 + x * &1) = &0) <=> T))`;;
let k1 = ASSUME `(&0 + x * &1 = &0) /\ ((?y. &0 + y * (&0 + x * &1) = &0) <=> T) \/
&0 + x * &1 <> &0 /\
(&0 + x * &1 > &0 /\ ((?y. &0 + y * (&0 + x * &1) = &0) <=> T) \/
&0 + x * &1 < &0 /\ ((?y. &0 + y * (&0 + x * &1) = &0) <=> T))`;;
MATCH_MPL[PULL_CASES_THM;!sz_z_thm;!sz_nz_thm] in
let thm1 = ASSUME `(?x_32. (&0 + c * &1) + x_32 * ((&0 + b * &1) + x_32 * (&0 + a * &1)) = &0) <=> T`
let thm2 =
ASSUME `(&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) < &0 ==>
((?x. (&0 + c * &1) + x * ((&0 + b * &1) + x * (&0 + a * &1)) = &0) <=> F)) /\
(&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) > &0 ==>
((?x_26. (&0 + c * &1) + x_26 * ((&0 + b * &1) + x_26 * (&0 + a * &1)) = &0) <=> T)) `
MATCH_MPL
(* let PULL_CASES_THM = prove_by_refinement( *)
(* `((a = &0) ==> (p <=> p0)) ==> ((a <> &0) ==> (a < &0 ==> (p <=> p1)) /\ (a > &0 ==> (p <=> p2))) *)
(* ==> (p <=> ((a = &0) /\ p0) \/ ((a < &0) /\ p1) \/ (a > &0 /\ p2))`, *)
(* (\* {{{ Proof *\)
[
REWRITE_TAC[NEQ] THEN
MAP_EVERY BOOL_CASES_TAC [`p:bool`; `p0:bool`; `p1:bool`; `p2:bool`] THEN
ASM_REWRITE_TAC[NEQ] THEN TRY REAL_ARITH_TAC
]);;
(\* }}} *\) *)
let PULL_CASES_THM = prove
(`!a p p0 p1 p2.
((a = &0) /\ (p <=> p0) \/
(a <> &0) /\ (a > &0 /\ (p <=> p1) \/ a < &0 /\ (p <=> p2))) <=>
((p <=> (a = &0) /\ p0 \/ a > &0 /\ p1 \/ a < &0 /\ p2))`,
(* {{{ Proof *)
REPEAT STRIP_TAC THEN REWRITE_TAC[NEQ] THEN MAP_EVERY BOOL_CASES_TAC [`p:bool`; `p0:bool`; `p1:bool`; `p2:bool`] THEN
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
(* }}} *)
let vars, sgns, p, cont_z, cont_n =
[`x:real`;`y:real`],
empty_sgns,
`&0 + y * &1`,
(fun x -> (ASSUME `abc > def`,[])),
(fun x -> (ASSUME `sean > steph`,[]))
SPLIT_ZERO vars sgns p cont_z cont_n
ASSERTSIGN vars empty_sgns (ASSUME `&0 + y * &1 = &0`) ,
let vars = [`x:real`;`y:real`]
let sgns = ASSERTSIGN vars [] (ASSUME `&7 + x * (&11 + x * (&10 + y * -- &7)) <> &0`)
let p = `&7 + x * (&11 + x * (&10 + y * -- &7))`
let cont_z = hd
let cont_n = hd
SPLIT_ZERO vars sgns p cont_z cont_n
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) < &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) = &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) <> &0`
let sgn_thm = k1
ASSERTSIGN vars [] k1
*)
let SPLIT_SIGN vars sgns p cont_p cont_n ex_thms =
let sgn_thm = try FINDSIGN vars sgns p
with Failure "FINDSIGN" ->
failwith "SPLIT_SIGN: no sign -- should have sign assumption by now" in
let gt_tm = mk_binop rgt p rzero in
let lt_tm = mk_binop rlt p rzero in
let op,_,_ = get_binop (concl sgn_thm) in
if op = rgt then cont_p sgns ex_thms
else if op = rlt then cont_n sgns ex_thms
else if op = req then failwith "SPLIT_SIGN: lead coef is 0"
else if op = rneq then
let or_thm = MATCH_MP signs_lem0002 sgn_thm in
(* < *)
let lt_sgns = ASSERTSIGN vars sgns (ASSUME lt_tm) in
let lt_thm = cont_n lt_sgns ex_thms in
let lt_thm' = DISCH lt_tm lt_thm in
(* > *)
let gt_sgns = ASSERTSIGN vars sgns (ASSUME gt_tm) in
let gt_thm = cont_p gt_sgns ex_thms in
let gt_thm' = DISCH gt_tm gt_thm in
(* combine *)
let ret = MATCH_MPL[signs_lem0003;or_thm;gt_thm';lt_thm'] in
(* matching problem... must continue by hand *)
let ldj,rdj = dest_disj (concl ret) in
let lcj,rcj = dest_conj ldj in
let a,_ = dest_binop rgt lcj in
let p,p1 = dest_beq rcj in
let _,rcj = dest_conj rdj in
let p2 = rhs rcj in
let pull_thm = ISPECL[a;p;p1;p2] PULL_CASES_THM_NZ in
let ret' = MATCH_EQ_MP (MATCH_MP pull_thm sgn_thm) ret in
ret'
else failwith "SPLIT_SIGN: unknown op";;
(*
let vars, sgns, p,cont_p, cont_n = !ss_vars,!ss_sgns,!ss_p,!ss_cont_p,!ss_cont_n
[`x`],
[ASSUME `&0 + x * &1 <> &0`; ARITH_RULE ` &1 > &0`],
`&0 + x * &1`
let ss_vars, ss_sgns, ss_p,ss_cont_p, ss_cont_n = ref [],ref [],ref `T`,ref (fun x -> TRUTH,[]),ref(fun x -> TRUTH,[]);;
ss_vars := vars;
ss_sgns := sgns;
ss_p := p;
ss_cont_p := cont_p;
ss_cont_n := cont_n;
let vars, sgns, p, cont_p, cont_n =
[`x:real`;`y:real`],
ASSERTSIGN vars empty_sgns (ASSUME `&0 + y * &1 <> &0`) ,
`&0 + y * &1`,
(fun x -> (ASSUME `P > def`,[])),
(fun x -> (ASSUME `sean > steph`,[]))
SPLIT_SIGN vars sgns p cont_z cont_n
let vars = [`x:real`;`y:real`]
let sgns = ASSERTSIGN vars [] (ASSUME `&7 + x * (&11 + x * (&10 + y * -- &7)) <> &0`)
let p = `&7 + x * (&11 + x * (&10 + y * -- &7))`
let cont_p = hd
let cont_n = hd
SPLIT_SIGN vars sgns p cont_p cont_n
let sgns = ASSERTSIGN vars [] (ASSUME `&7 + x * (&11 + x * (&10 + y * -- &7)) <> &0`)
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) < &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) = &0`
let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) <> &0`
let sgn_thm = k1
ASSERTSIGN vars [] k1
*)
|