Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,887 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
(* ---------------------------------------------------------------------- *)
(*  Reals                                                                 *)
(* ---------------------------------------------------------------------- *)
let real_ty = `:real`;;
let rx = `x:real`;;
let ry = `y:real`;;
let rz = `z:real`;;
let rzero = `&0`;;
let req = `(=):real->real->bool`;;
let rneq = `(<>):real->real->bool`;;
let rlt = `(<):real->real->bool`;;
let rgt = `(>):real->real->bool`;;
let rle = `(<=):real->real->bool`;;
let rge = `(>=):real->real->bool`;;
let rm = `( * ):real->real->real`;;
let rs = `(-):real->real->real`;;
let rn = `(--):real->real`;;
let rd = `(/):real->real->real`;;
let rp = `(+):real->real->real`;;
let rzero = `&0`;;
let rone = `&1`;;
let rlast = `LAST:(real) list -> real`;;
let rappend = `APPEND:(real) list -> real list -> real list`;;
let mk_rlist l = mk_list (l,real_ty);;

let diffl_tm = `(diffl)`;;
let dest_diffl tm =
  try
    let l,var = dest_comb tm in
    let dp,p' = dest_comb l in
    let d,p = dest_comb dp in
    if not (d = diffl_tm) then failwith "dest_diffl: not a diffl" else
    let _,bod = dest_abs p in
      bod,p'
  with _ -> failwith "dest_diffl";;

let dest_mult =
  try
    dest_binop rm
  with _ -> failwith "dest_mult";;

let mk_mult = mk_binop rm;;

let pow_tm = `(pow)`;;
let dest_pow =
  try
    dest_binop pow_tm
  with _ -> failwith "dest_pow";;

let mk_plus = mk_binop rp;;
let mk_negative = curry mk_comb rn;;

let dest_plus =
  try
    dest_binop rp
  with _ -> failwith "dest_plus";;

let REAL_DENSE = prove(
  `!x y. x < y ==> ?z. x < z /\ z < y`,
(* {{{ Proof *)
  REPEAT STRIP_TAC THEN
  CLAIM `&0 < y - x` THENL
  [REWRITE_TAC[REAL_LT_SUB_LADD;REAL_ADD_LID] THEN
     POP_ASSUM MATCH_ACCEPT_TAC;
   DISCH_THEN (ASSUME_TAC o (MATCH_MP REAL_DOWN)) THEN
     POP_ASSUM MP_TAC THEN STRIP_TAC THEN
     EXISTS_TAC `e + x` THEN
     STRIP_TAC THENL
     [ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
      CONV_TAC (LAND_CONV (ONCE_REWRITE_CONV[GSYM REAL_ADD_RID])) THEN
      MATCH_MP_TAC REAL_LET_ADD2 THEN
      STRIP_TAC THENL
      [MATCH_ACCEPT_TAC REAL_LE_REFL;
       FIRST_ASSUM MATCH_ACCEPT_TAC];
      MATCH_EQ_MP_TAC ((GEN `y:real` (GEN `z:real` (ISPECL [`y:real`;`z:real`;`-- x`] REAL_LT_RADD)))) THEN
      REWRITE_TAC[GSYM REAL_ADD_ASSOC;REAL_ADD_RINV;REAL_ADD_RID] THEN
      REWRITE_TAC[GSYM real_sub] THEN
      FIRST_ASSUM MATCH_ACCEPT_TAC]]);;
(* }}} *)

let REAL_LT_EXISTS = prove(
  `!x. ?y. x < y`,
(* {{{ Proof *)
  GEN_TAC THEN
  EXISTS_TAC `x + &1` THEN
  REAL_ARITH_TAC);;
(* }}} *)

let REAL_GT_EXISTS = prove(
  `!x. ?y. y < x`,
(* {{{ Proof *)
  GEN_TAC THEN
  EXISTS_TAC `x - &1` THEN
  REAL_ARITH_TAC);;
(* }}} *)

let REAL_DIV_DISTRIB_L = prove_by_refinement(
  `!x y z. x / (y * z) = (x / y) * (&1 / z)`,
(* {{{ Proof *)
[
  REWRITE_TAC[real_div;REAL_INV_MUL];
  REAL_ARITH_TAC;
]);;
(* }}} *)

let REAL_DIV_DISTRIB_R = prove_by_refinement(
  `!x y z. x / (y * z) = (&1 / y) * (x / z)`,
(* {{{ Proof *)
[
  REWRITE_TAC[real_div;REAL_INV_MUL];
  REAL_ARITH_TAC;
]);;
(* }}} *)

let REAL_DIV_DISTRIB_2 = prove_by_refinement(
  `!x y z. (x * w) / (y * z) = (x / y) * (w / z)`,
(* {{{ Proof *)
[
  REWRITE_TAC[real_div;REAL_INV_MUL];
  REAL_ARITH_TAC;
]);;
(* }}} *)

let REAL_DIV_ADD_DISTRIB = prove_by_refinement(
  `!x y z. (x + y) / z = (x / z) + (y / z)`,
(* {{{ Proof *)
[
  REWRITE_TAC[real_div;REAL_INV_MUL];
  REAL_ARITH_TAC;
]);;
(* }}} *)

let DIV_ID = prove_by_refinement(
 `!x. ~(x = &0) ==> (x / x = &1)`,
(* {{{ Proof *)

[
  REPEAT STRIP_TAC;
  REWRITE_TAC[real_div];
  ASM_MESON_TAC[REAL_MUL_LINV;REAL_MUL_SYM];
]);;

(* }}} *)

let POS_POW = prove_by_refinement(
 `!c x. &0 < c /\ &0 < x ==> &0 < c * x pow k`,
(* {{{ Proof *)

[
  MESON_TAC[REAL_POW_LT;REAL_LT_MUL]
]);;

(* }}} *)

let POS_NAT_POW = prove_by_refinement(
 `!c n. 0 < n /\ &0 < c ==> &0 < c * &n pow k`,
(* {{{ Proof *)

[
  MESON_TAC[REAL_POW_LT;REAL_LT_MUL;REAL_LT;]
]);;

(* }}} *)

let REAL_NUM_LE_0 = prove_by_refinement(
  `!n. &0 <= (&n)`,
(* {{{ Proof *)
[
  INDUCT_TAC;
  REAL_ARITH_TAC;
  REWRITE_TAC[REAL];
  REAL_ARITH_TAC;
]);;
(* }}} *)

let REAL_ARCH_SIMPLE_LT = prove_by_refinement(
  `!x. ?n. x < &n`,
(* {{{ Proof *)
[
  STRIP_TAC;
  CHOOSE_THEN ASSUME_TAC (ISPEC `x:real` REAL_ARCH_SIMPLE);
  EXISTS_TAC `SUC n`;
  REWRITE_TAC[REAL];
  POP_ASSUM MP_TAC THEN REAL_ARITH_TAC;
]);;
(* }}} *)

let BINOMIAL_LEMMA_LT = prove_by_refinement(
   `!x y. &0 < x /\ &0 < y
           ==> !n. 0 < n ==> x pow n + y pow n <= (x + y) pow n`,
(* {{{ Proof *)

[
  REPEAT GEN_TAC;
  STRIP_TAC;
  INDUCT_TAC;
  ARITH_TAC;
  REWRITE_TAC[real_pow];
  STRIP_TAC;
  CASES_ON `n = 0`;
  ASM_REWRITE_TAC[real_pow;REAL_MUL_RID;REAL_LE_REFL];
  CLAIM `0 < n`;
  POP_ASSUM MP_TAC THEN ARITH_TAC;
  DISCH_THEN (fun x -> FIRST_ASSUM (fun y -> ASSUME_TAC (MATCH_MP y x)));
  MATCH_MP_TAC REAL_LE_TRANS;
  EXISTS_TAC `(x + y) * (x pow n + y pow n)`;
  STRIP_TAC;
  REWRITE_TAC[REAL_ADD_RDISTRIB];
  MATCH_MP_TAC REAL_LE_ADD2;
  CONJ_TAC;
  MATCH_MP_TAC REAL_LE_LMUL;
  STRIP_TAC;
  FIRST_ASSUM (fun x -> MP_TAC x THEN ARITH_TAC);
  MATCH_MP_TAC (REAL_ARITH `&0 <= y ==> x <= x + y`);
  MATCH_MP_TAC REAL_POW_LE;
  FIRST_ASSUM (fun x -> MP_TAC x THEN ARITH_TAC);
  REWRITE_TAC[REAL_ADD_LDISTRIB];
  MATCH_MP_TAC (REAL_ARITH `&0 <= y ==> x <= y + x`);
  MATCH_MP_TAC REAL_LE_MUL;
  CONJ_TAC;
  FIRST_ASSUM (fun x -> MP_TAC x THEN REAL_ARITH_TAC);
  MATCH_MP_TAC (REAL_ARITH `x < y ==> x <= y`);
  MATCH_MP_TAC REAL_POW_LT;
  FIRST_ASSUM MATCH_ACCEPT_TAC;
  MATCH_MP_TAC REAL_LE_LMUL;
  CONJ_TAC;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  FIRST_ASSUM MATCH_ACCEPT_TAC;
]);;

(* }}} *)

let BINOMIAL_LEMMA = prove_by_refinement(
   `!x y. &0 <= x /\ &0 <= y
           ==> !n. 0 < n ==> x pow n + y pow n <= (x + y) pow n`,
(* {{{ Proof *)

[
  REPEAT GEN_TAC;
  STRIP_TAC;
  CASES_ON `(x = &0) \/ (y = &0)`;
  POP_ASSUM DISJ_CASES_TAC;
  ASM_REWRITE_TAC[real_pow;REAL_ADD_LID;POW_0];
  REPEAT STRIP_TAC;
  CLAIM `n = SUC (PRE n)`;
  POP_ASSUM MP_TAC THEN ARITH_TAC;
  STRIP_TAC;
  ONCE_ASM_REWRITE_TAC[];
  ASM_REWRITE_TAC[POW_0;REAL_ADD_LID;real_pow;REAL_LE_REFL];
  REPEAT STRIP_TAC;
  CLAIM `n = SUC (PRE n)`;
  POP_ASSUM MP_TAC THEN ARITH_TAC;
  STRIP_TAC;
  ONCE_ASM_REWRITE_TAC[];
  ASM_REWRITE_TAC[POW_0;REAL_ADD_LID;REAL_ADD_RID;real_pow;REAL_LE_REFL];
  POP_ASSUM MP_TAC THEN REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC;
  MATCH_MP_TAC BINOMIAL_LEMMA_LT;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
]);;

(* }}} *)

let NEG_ABS = prove_by_refinement(
  `!x. -- (abs x) <= &0`,
(* {{{ Proof *)
[
  REAL_ARITH_TAC;
]);;
(* }}} *)

let REAL_MUL_LT = prove_by_refinement(
  `!x y. x * y < &0 <=> (x < &0 /\ &0 < y) \/ (&0 < x /\ y < &0)`,
(* {{{ Proof *)
[
  REPEAT STRIP_TAC;
  EQ_TAC;
  REPEAT STRIP_TAC;
  CCONTR_TAC;
  REWRITE_ASSUMS ([REAL_NOT_LT;DE_MORGAN_THM;] @ !REAL_REWRITES);
  POP_ASSUM MP_TAC THEN STRIP_TAC;
  CLAIM `x = &0`;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  DISCH_THEN (REWRITE_ASSUMS o list);
  REWRITE_ASSUMS !REAL_REWRITES;
  ASM_MESON_TAC !REAL_REWRITES;
  CLAIM `&0 * &0 <= x * y`;
  MATCH_MP_TAC REAL_LE_MUL2;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  REAL_SIMP_TAC;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  CLAIM `&0 * &0 <= --x * --y`;
  MATCH_MP_TAC REAL_LE_MUL2;
  REAL_SIMP_TAC;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  REAL_SIMP_TAC;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  CLAIM `y = &0`;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  DISCH_THEN (REWRITE_ASSUMS o list);
  REWRITE_ASSUMS !REAL_REWRITES;
  ASM_REWRITE_TAC[];
  EVERY_ASSUM MP_TAC THEN ARITH_TAC;
  (* save *)
  REPEAT STRIP_TAC;
  CLAIM `&0 < --x`;
  EVERY_ASSUM MP_TAC THEN ARITH_TAC;
  STRIP_TAC;
  CLAIM `&0 * &0 < --x * y`;
  MATCH_MP_TAC REAL_LT_MUL2;
  REAL_SIMP_TAC;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  REAL_SIMP_TAC;
  REWRITE_TAC[REAL_ARITH `--y * x = --(y * x)`];
  REAL_ARITH_TAC;
  CLAIM `&0 < --y`;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  STRIP_TAC;
  CLAIM `&0 * &0 < x * --y`;
  MATCH_MP_TAC REAL_LT_MUL2;
  REAL_SIMP_TAC;
  ASM_REWRITE_TAC[];
  REAL_SIMP_TAC;
  REWRITE_TAC[REAL_ARITH `x * --y = --(x * y)`];
  REAL_ARITH_TAC;
]);;
(* }}} *)

let REAL_MUL_GT = prove_by_refinement(
  `!x y. &0 < x * y <=> (x < &0 /\ y < &0) \/ (&0 < x /\ &0 < y)`,
(* {{{ Proof *)
[
  REPEAT STRIP_TAC;
  EQ_TAC;
  REPEAT STRIP_TAC;
  ONCE_REWRITE_ASSUMS[ARITH_RULE `x < y <=> -- y < -- x`];
  REWRITE_ASSUMS[GSYM REAL_MUL_RNEG];
  REWRITE_ASSUMS[REAL_ARITH `-- &0 = &0`; REAL_MUL_LT];
  POP_ASSUM MP_TAC THEN REPEAT STRIP_TAC;
  DISJ1_TAC;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  REPEAT STRIP_TAC;
  ONCE_REWRITE_TAC [ARITH_RULE `x * y = --x * --y`];
  ONCE_REWRITE_TAC [ARITH_RULE `&0 = &0 * &0`];
  MATCH_MP_TAC REAL_LT_MUL2;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  ONCE_REWRITE_TAC [ARITH_RULE `&0 = &0 * &0`];
  MATCH_MP_TAC REAL_LT_MUL2;
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
]);;
(* }}} *)

let REAL_DIV_INV = prove_by_refinement(
  `!y z. &0 < y /\ y < z ==> &1 / z < &1 / y`,
(* {{{ Proof *)
[
  REPEAT STRIP_TAC;
  REWRITE_TAC[real_div];
  REAL_SIMP_TAC;
  MATCH_MP_TAC REAL_LT_INV2;
  ASM_MESON_TAC[];
]);;
(* }}} *)

let REAL_DIV_DENOM_LT = prove_by_refinement(
  `!x y z. &0 < x /\ &0 < y /\ y < z ==> x / z < x / y`,
(* {{{ Proof *)
[
  REPEAT STRIP_TAC;
  MATCH_MP_TAC REAL_LT_LCANCEL_IMP;
  EXISTS_TAC `inv x`;
  REPEAT STRIP_TAC;
  REAL_SOLVE_TAC;
  REWRITE_TAC[real_div];
  ASM_SIMP_TAC[REAL_LT_IMP_NZ;REAL_MUL_ASSOC;REAL_MUL_LINV;];
  REAL_SIMP_TAC;
  MATCH_MP_TAC (REWRITE_RULE [REAL_MUL_LID;real_div] REAL_DIV_INV);
  ASM_MESON_TAC[];
]);;
(* }}} *)

let REAL_DIV_DENOM_LE = prove_by_refinement(
  `!x y z. &0 <= x /\ &0 < y /\ y <= z ==> x / z <= x / y`,
(* {{{ Proof *)
[
  REPEAT STRIP_TAC;
  CASES_ON `x = &0`;
  ASM_REWRITE_TAC[];
  REWRITE_TAC[real_div;REAL_MUL_LZERO;REAL_LE_REFL];
  MATCH_MP_TAC REAL_LE_LCANCEL_IMP;
  EXISTS_TAC `inv x`;
  REPEAT STRIP_TAC;
  MATCH_MP_TAC REAL_LT_INV;
  ASM_MESON_TAC[REAL_LT_LE];
  REWRITE_TAC[real_div];
  ASM_SIMP_TAC[REAL_LT_IMP_NZ;REAL_MUL_ASSOC;REAL_MUL_LINV;];
  REAL_SIMP_TAC;
  MATCH_MP_TAC REAL_LE_INV2;
  ASM_REWRITE_TAC[];
]);;
(* }}} *)

let REAL_NEG_DIV = prove_by_refinement(
  `!x y. -- x / -- y = x / y`,
(* {{{ Proof *)
[
  REWRITE_TAC[real_div];
  REWRITE_TAC[REAL_INV_NEG];
  REAL_ARITH_TAC;
]);;
(* }}} *)

let REAL_GT_IMP_NZ = prove(
  `!x. x < &0 ==> ~(x = &0)`,
(* {{{ Proof *)
 REAL_ARITH_TAC);;
(* }}} *)

let REAL_NEG_NZ = prove(
  `!x. x < &0 ==> ~(x = &0)`,
(* {{{ Proof *)
  REAL_ARITH_TAC);;
(* }}} *)

let PARITY_POW_LT = prove_by_refinement(
  `!a n. a < &0 ==> (EVEN n ==> a pow n > &0) /\ (ODD n ==> a pow n < &0)`,
(* {{{ Proof *)

[
  STRIP_TAC;
  INDUCT_TAC;
  REWRITE_TAC[EVEN;ODD;real_pow];
  REAL_ARITH_TAC;
  DISCH_THEN (fun x -> REWRITE_ASSUMS[x] THEN ASSUME_TAC x);
  REWRITE_TAC[EVEN;ODD;real_pow;NOT_EVEN;NOT_ODD];
  DISJ_CASES_TAC (ISPEC `n:num` EVEN_OR_ODD);
  ASM_REWRITE_TAC[];
  REPEAT STRIP_TAC;
  ASM_REWRITE_TAC[real_gt;REAL_MUL_GT];
  ASM_MESON_TAC[EVEN_AND_ODD];
  ASM_REWRITE_TAC[real_gt;REAL_MUL_LT];
  ASM_MESON_TAC[real_gt];
  ASM_REWRITE_TAC[];
  ASM_REWRITE_TAC[real_gt;REAL_MUL_LT;REAL_MUL_GT];
  REPEAT STRIP_TAC;
  ASM_MESON_TAC[];
  ASM_MESON_TAC[EVEN_AND_ODD];
]);;

(* }}} *)

let EVEN_ODD_POW = prove_by_refinement(
  `!a n.  a <> &0 ==>
          (EVEN n ==> a pow n > &0) /\
          (ODD n ==> a < &0 ==> a pow n < &0) /\
          (ODD n ==> a > &0 ==> a pow n > &0)`,
(* {{{ Proof *)
[
  REWRITE_TAC[NEQ];
  REPEAT_N 2 STRIP_TAC;
  CLAIM `a < &0 \/ a > &0 \/ (a = &0)`;
  REAL_ARITH_TAC;
  ASM_REWRITE_TAC[];
  STRIP_TAC;
  REPEAT STRIP_TAC;
  ASM_MESON_TAC[PARITY_POW_LT];
  ASM_MESON_TAC[PARITY_POW_LT];
  ASM_MESON_TAC[REAL_POW_LT;real_gt];
  REPEAT STRIP_TAC;
  ASM_MESON_TAC[REAL_POW_LT;real_gt];
  EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC;
  ASM_MESON_TAC[REAL_POW_LT;real_gt];
  ASM_REWRITE_TAC[];
]);;
(* }}} *)