Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 23,161 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
let TRAPOUT cont mat_thm ex_thms fm =
try
cont mat_thm ex_thms
with Isign (false_thm,ex_thms) ->
let ftm = mk_eq(fm,f_tm) in
let fthm = CONTR ftm false_thm in
let ex_thms' = sort (fun x y -> xterm_lt (fst y) (fst x)) ex_thms in
let fthm' = rev_itlist CHOOSE ex_thms' fthm in
fthm';;
let get_repeats l =
let rec get_repeats l seen ind =
match l with
[] -> []
| h::t ->
if mem h seen then ind::get_repeats t seen (ind + 1)
else get_repeats t (h::seen) (ind + 1) in
get_repeats l [] 0;;
let subtract_index l =
let rec subtract_index l ind =
match l with
[] -> []
| h::t -> (h - ind):: (subtract_index t (ind + 1)) in
subtract_index l 0;;
(*
subtract_index (get_repeats [1; 2; 1; 2 ; 3])
*)
let remove_column n isigns_thm =
let thms = interpsigns_thms2 isigns_thm in
let l,r = chop_list n thms in
let thms' = l @ tl r in
mk_interpsigns thms';;
let REMOVE_COLUMN n mat_thm =
let rol_thm,all_thm = interpmat_thms mat_thm in
let ints,part,signs = dest_all2 (concl all_thm) in
let part_thm = PARTITION_LINE_CONV (snd (dest_comb part)) in
let isigns_thms = CONJUNCTS (REWRITE_RULE[ALL2;part_thm] all_thm) in
let isigns_thms' = map (remove_column n) isigns_thms in
let all_thm' = mk_all2_interpsigns part_thm isigns_thms' in
let all_thm'' = REWRITE_RULE[GSYM part_thm] all_thm' in
let mat_thm' = mk_interpmat_thm rol_thm all_thm'' in
mat_thm';;
let SETIFY_CONV mat_thm =
let _,pols,_ = dest_interpmat(concl mat_thm) in
let pols' = dest_list pols in
let sols = setify (dest_list pols) in
let indices = map (fun p -> try index p sols with _ -> failwith "SETIFY: no index") pols' in
let subtract_cols = subtract_index (get_repeats indices) in
rev_itlist REMOVE_COLUMN subtract_cols mat_thm;;
(*
SETIFY_CONV
(ASSUME `interpmat [] [(\x. x + &1); (\x. x + &1); (\x. x + &2); (\x. x + &3); (\x. x + &1); (\x. x + &2)][[Pos; Pos; Pos; Pos; Neg; Zero]]`)
*)
(*
let duplicate_column i j isigns_thm =
let thms = interpsigns_thms2 isigns_thm in
let col = ith i thms in
let l,r = chop_list j thms in
let thms' = l @ (col :: r) in
mk_interpsigns thms';;
let DUPLICATE_COLUMN i j mat_thm =
let rol_thm,all_thm = interpmat_thms mat_thm in
let ints,part,signs = dest_all2 (concl all_thm) in
let part_thm = PARTITION_LINE_CONV (snd (dest_comb part)) in
let isigns_thms = CONJUNCTS (REWRITE_RULE[ALL2;part_thm] all_thm) in
let isigns_thms' = map (duplicate_column i j) isigns_thms in
let all_thm' = mk_all2_interpsigns part_thm isigns_thms' in
let all_thm'' = REWRITE_RULE[GSYM part_thm] all_thm' in
let mat_thm' = mk_interpmat_thm rol_thm all_thm'' in
mat_thm';;
*)
let duplicate_columns new_cols isigns_thm =
let thms = interpsigns_thms2 isigns_thm in
let thms' = map (fun i -> el i thms) new_cols in
mk_interpsigns thms';;
let DUPLICATE_COLUMNS mat_thm ls =
if ls = [] then if mat_thm = empty_mat then empty_mat else failwith "empty duplication list" else
let rol_thm,all_thm = interpmat_thms mat_thm in
let ints,part,signs = dest_all2 (concl all_thm) in
let part_thm = PARTITION_LINE_CONV (snd (dest_comb part)) in
let isigns_thms = CONJUNCTS (REWRITE_RULE[ALL2;part_thm] all_thm) in
let isigns_thms' = map (duplicate_columns ls) isigns_thms in
let all_thm' = mk_all2_interpsigns part_thm isigns_thms' in
let all_thm'' = REWRITE_RULE[GSYM part_thm] all_thm' in
let mat_thm' = mk_interpmat_thm rol_thm all_thm'' in
mat_thm';;
let DUPLICATE_COLUMNS mat_thm ls =
let start_time = Sys.time() in
let res = DUPLICATE_COLUMNS mat_thm ls in
duplicate_columns_timer +.= (Sys.time() -. start_time);
res;;
let UNMONICIZE_ISIGN vars monic_thm isign_thm =
let _,_,sign = dest_interpsign isign_thm in
let const = (fst o dest_mult o lhs o concl) monic_thm in
let const_thm = SIGN_CONST const in
let op,_,_ = get_binop (concl const_thm) in
let mp_thm =
if op = rgt then
if sign = spos_tm then gtpos
else if sign = sneg_tm then gtneg
else if sign = szero_tm then gtzero
else failwith "bad sign"
else if op = rlt then
if sign = spos_tm then ltpos
else if sign = sneg_tm then ltneg
else if sign = szero_tm then ltzero
else failwith "bad sign"
else (failwith "bad op") in
let monic_thm' = GEN (hd vars) monic_thm in
MATCH_MPL[mp_thm;monic_thm';const_thm;isign_thm];;
let UNMONICIZE_ISIGNS vars monic_thms isigns_thm =
let isign_thms = interpsigns_thms2 isigns_thm in
let isign_thms' = map2 (UNMONICIZE_ISIGN vars) monic_thms isign_thms in
mk_interpsigns isign_thms';;
let UNMONICIZE_MAT vars monic_thms mat_thm =
if monic_thms = [] then mat_thm else
let rol_thm,all_thm = interpmat_thms mat_thm in
let ints,part,signs = dest_all2 (concl all_thm) in
let part_thm = PARTITION_LINE_CONV (snd (dest_comb part)) in
let consts = map (fst o dest_mult o lhs o concl) monic_thms in
let isigns_thms = CONJUNCTS (REWRITE_RULE[ALL2;part_thm] all_thm) in
let isigns_thms' = map (UNMONICIZE_ISIGNS vars monic_thms) isigns_thms in
let all_thm' = mk_all2_interpsigns part_thm isigns_thms' in
let all_thm'' = REWRITE_RULE[GSYM part_thm] all_thm' in
let mat_thm' = mk_interpmat_thm rol_thm all_thm'' in
mat_thm';;
let UNMONICIZE_MAT vars monic_thms mat_thm =
let start_time = Sys.time() in
let res = UNMONICIZE_MAT vars monic_thms mat_thm in
unmonicize_mat_timer +.= (Sys.time() -. start_time);
res;;
(* {{{ Examples *)
(*
let vars,monic_thms,mat_thm =
[], [], empty_mat
let monic_thm = hd monic_thms
length isigns_thms
MONIC_CONV [rx] `&1 + x * (&1 + x * (&1 + x * &7))`
let isign_thm = hd isign_thms
let isigns_thm = hd isigns_thms
mk_interpsigns [TRUTH];;
let ls = [0;1;2;0;1;2]
let mat_thm,ls = empty_mat,[]
1,3,
DUPLICATE_COLUMNS
(ASSUME `interpmat [] [(\x. x + &1); (\x. x + &1); (\x. x + &2); (\x. x + &3); (\x. x + &1); (\x. x + &2)][[Pos; Pos; Pos; Pos; Neg; Zero]]`)
[5]
duplicate_columns [] (ASSUME `interpsigns [] (\x. T) []`)
let new_cols, isigns_thm = [],(ASSUME `interpsigns [] (\x. T) []`)
let isigns_thm = hd isigns_thms
*)
(* }}} *)
let SWAP_HEAD_COL_ROW i isigns_thm =
let s_thms = interpsigns_thms2 isigns_thm in
let s_thms' = insertat i (hd s_thms) (tl s_thms) in
mk_interpsigns s_thms';;
let SWAP_HEAD_COL i mat_thm =
let rol_thm,all_thm = interpmat_thms mat_thm in
let ints,part,signs = dest_all2 (concl all_thm) in
let part_thm = PARTITION_LINE_CONV (snd (dest_comb part)) in
let isigns_thms = CONJUNCTS (REWRITE_RULE[ALL2;part_thm] all_thm) in
let isigns_thms' = map (SWAP_HEAD_COL_ROW i) isigns_thms in
let all_thm' = mk_all2_interpsigns part_thm isigns_thms' in
mk_interpmat_thm rol_thm all_thm';;
let SWAP_HEAD_COL i mat_thm =
let start_time = Sys.time() in
let res = SWAP_HEAD_COL i mat_thm in
swap_head_col_timer +.= (Sys.time() -. start_time);
res;;
let LENGTH_CONV =
let alength_tm = `LENGTH:(A list) -> num` in
fun tm ->
try
let ty = type_of tm in
let lty,[cty] = dest_type ty in
if lty <> "list" then failwith "LENGTH_CONV: not a list" else
let ltm = mk_comb(inst[cty,aty] alength_tm,tm) in
let lthm = REWRITE_CONV[LENGTH] ltm in
MATCH_MP main_lem000 lthm
with _ -> failwith "LENGTH_CONV";;
let LAST_NZ_CONV =
let alast_tm = `LAST:(A list) -> A` in
fun nz_thm tm ->
try
let ty = type_of tm in
let lty,[cty] = dest_type ty in
if lty <> "list" then failwith "LAST_NZ_CONV: not a list" else
let ltm = mk_comb(inst[cty,aty] alast_tm,tm) in
let lthm = REWRITE_CONV[LAST;NOT_CONS_NIL] ltm in
MATCH_MPL[main_lem001;nz_thm;lthm]
with _ -> failwith "LAST_NZ_CONV";;
let rec first f l =
match l with
[] -> failwith "first"
| h::t -> if can f h then f h else first f t;;
let NEQ_RULE thm =
let thms = CONJUNCTS main_lem002 in
first (C MATCH_MP thm) thms;;
(*
NEQ_CONV (ARITH_RULE `~(&11 <= &2)`)
*)
let NORMAL_LIST_CONV nz_thm tm =
let nz_thm' = NEQ_RULE nz_thm in
let len_thm = LENGTH_CONV tm in
let last_thm = LAST_NZ_CONV nz_thm' tm in
let cthm = CONJ len_thm last_thm in
MATCH_EQ_MP (GSYM (REWRITE_RULE[GSYM NEQ] NORMAL_ID)) cthm;;
(*
|- poly_diff [&0; &0; &0 + a * &1] = [&0; &0 + a * &2]
let tm = `poly_diff [&0; &0 + a * &1]`
*)
let pdiff_tm = `poly_diff`;;
let GEN_POLY_DIFF_CONV vars tm =
let thm1 = POLY_ENLIST_CONV vars tm in
let l,x = dest_poly (rhs (concl thm1)) in
let thm2 = CANON_POLY_DIFF_CONV (mk_comb(pdiff_tm,l)) in
let thm3 = CONV_RULE (RAND_CONV (LIST_CONV (POLYNATE_CONV vars))) thm2 in
thm3;;
(*
if \x. p = \x. q, where \x. p is the leading polynomial
replace p by q in mat_thm,
*)
(*
let peq,mat_thm = !rppeq,!rpmat
*)
let rppeq,rpmat = ref TRUTH,ref TRUTH;;
let REPLACE_POL =
let imat_tm = `interpmat` in
fun peq mat_thm ->
rppeq := peq;
rpmat := mat_thm;
let pts,pols,sgnll = dest_interpmat (concl mat_thm) in
let rep_p = lhs(concl peq) in
let i = try index rep_p (dest_list pols) with _ -> failwith "REPLACE_POL: index" in
let thm1 = EL_CONV (fun x -> GEN_REWRITE_CONV I [peq] x) i pols in
end_itlist (C (curry MK_COMB)) (rev [REFL imat_tm;REFL pts;thm1;REFL sgnll]);;
let REPLACE_POL peq mat_thm =
let start_time = Sys.time() in
let res = REPLACE_POL peq mat_thm in
replace_pol_timer +.= (Sys.time() -. start_time);
res;;
(* {{{ Examples *)
(*
let peq,mat_thm =
ASSUME `(\x. &0) =
(\x. &0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)))`,
ASSUME `interpmat [x_44] [\x. (&0 + b * &1) + x * (&0 + a * &2); \x. &0]
[[Pos; Zero]; [Zero; Zero]; [Neg; Zero]]`
let peq = ASSUME `(\x. &1 + x * (&1 + x * (&1 + x * &1))) = (\x. &1 + x)`
REPLACE_POL peq mat_thm
is_constant [`y:real`] `&1 + x * -- &1`
let vars,pols,cont,sgns,ex_thms =
[`c:real`; `b:real`; `a:real`],
[`&0 + c * &1`],
(fun x y -> x),
[ASSUME `&0 + b * (&0 + b * -- &1) = &0`;
ASSUME ` &0 + b * (&0 + b * (&0 + a * -- &1)) = &0`;
ASSUME `&0 + a * (&0 + a * &1) = &0`;ASSUME `&0 + b * &1 = &0`;
ASSUME `&0 + a * &1 = &0`; ASSUME ` &1 > &0`],
[]
*)
(* }}} *)
(* ---------------------------------------------------------------------- *)
(* Factoring *)
(* ---------------------------------------------------------------------- *)
let UNFACTOR_ISIGN vars xsign_thm pol isign_thm =
let x = hd vars in
let k,pol' = weakfactor x pol in
if k = 0 then isign_thm else
let fact_thm = GEN x (GSYM (WEAKFACTOR_CONV x pol)) in
let par_thm = PARITY_CONV (mk_small_numeral k) in
let _,_,xsign = dest_interpsign xsign_thm in
let _,_,psign = dest_interpsign isign_thm in
let parity,_ = dest_comb (concl par_thm) in
if xsign = spos_tm then
let mp_thm =
if psign = spos_tm then factor_pos_pos
else if psign = sneg_tm then factor_pos_neg
else if psign = szero_tm then factor_pos_zero
else failwith "bad sign" in
let ret = BETA_RULE(MATCH_MPL[mp_thm;xsign_thm;isign_thm]) in
MATCH_MP ret fact_thm
else if xsign = szero_tm then
let k_thm = prove(mk_neg(mk_eq(mk_small_numeral k,nzero)),ARITH_TAC) in
let mp_thm =
if psign = spos_tm then factor_zero_pos
else if psign = sneg_tm then factor_zero_neg
else if psign = szero_tm then factor_zero_zero
else failwith "bad sign" in
let ret = BETA_RULE(MATCH_MPL[mp_thm;xsign_thm;isign_thm;k_thm]) in
MATCH_MP ret fact_thm
else if xsign = sneg_tm && parity = even_tm then
let k_thm = prove(mk_neg(mk_eq(mk_small_numeral k,nzero)),ARITH_TAC) in
let mp_thm =
if psign = spos_tm then factor_neg_even_pos
else if psign = sneg_tm then factor_neg_even_neg
else if psign = szero_tm then factor_neg_even_zero
else failwith "bad sign" in
let ret = BETA_RULE(MATCH_MPL[mp_thm;xsign_thm;isign_thm;par_thm;k_thm]) in
MATCH_MP ret fact_thm
else if xsign = sneg_tm && parity = odd_tm then
let k_thm = prove(mk_neg(mk_eq(mk_small_numeral k,nzero)),ARITH_TAC) in
let mp_thm =
if psign = spos_tm then factor_neg_odd_pos
else if psign = sneg_tm then factor_neg_odd_neg
else if psign = szero_tm then factor_neg_odd_zero
else failwith "bad sign" in
let ret = BETA_RULE(MATCH_MPL[mp_thm;xsign_thm;isign_thm;par_thm;k_thm]) in
MATCH_MP ret fact_thm
else failwith "bad something...";;
(* {{{ Examples *)
(*
let vars,xsign_thm,pol,isign_thm =
[ry;rx],
`interpsign (\x. x < x1) (\x. x) Pos`,
ASSUME `interpsign (\x. x < x_254) (\y. &0 + y * &1) Neg`
`\x. &0 + x * (&4 + x * &6)`,
ASSUME `interpsign (\x. x < x1) (\x. &4 + x * &6) Pos`
let xsign_thm,pol,isign_thm =
ASSUME `interpsign (\x. x < x1) (\x. x) Pos`,
`\x. &0 + x * (&4 + x * &6)`,
ASSUME `interpsign (\x. x < x1) (\x. &4 + x * &6) Pos`
*)
(* }}} *)
let UNFACTOR_ISIGNS vars pols isigns_thm =
let isign_thms = interpsigns_thms2 isigns_thm in
let isign_thms' = map2 (UNFACTOR_ISIGN vars (hd isign_thms)) pols (tl isign_thms) in
mk_interpsigns isign_thms';;
let UNFACTOR_MAT vars pols mat_thm =
let rol_thm,all_thm = interpmat_thms mat_thm in
let ints,part,signs = dest_all2 (concl all_thm) in
let part_thm = PARTITION_LINE_CONV (snd (dest_comb part)) in
let isigns_thms = CONJUNCTS (REWRITE_RULE[ALL2;part_thm] all_thm) in
let isigns_thms' = map (UNFACTOR_ISIGNS vars pols) isigns_thms in
let all_thm' = mk_all2_interpsigns part_thm isigns_thms' in
let all_thm'' = REWRITE_RULE[GSYM part_thm] all_thm' in
let mat_thm' = mk_interpmat_thm rol_thm all_thm'' in
mat_thm';;
let UNFACTOR_MAT vars pols mat_thm =
let start_time = Sys.time() in
let res = UNFACTOR_MAT vars pols mat_thm in
unfactor_mat_timer +.= (Sys.time() -. start_time);
res;;
(* {{{ Examples *)
(*
#untrace UNFACTOR_ISIGN
let isigns_thm = el 0 isigns_thms
UNFACTOR_ISIGNS pols isigns_thm
let isign_thm = el 1 isign_thm
pols
let isigns_thms' = map (UNFACTOR_ISIGNS pols) isigns_thms in
let xsign_thm = hd isign_thms
let xsign_thm = ASSUME `interpsign (\x. x < x1) (\x. x) Neg`
let isign_thm = hd (tl isign_thms)
let pol = hd pols
let pol = `\x. &0 + x * (&0 + x * (&0 + x * (&0 + y * &1)))`
let isigns_thm = hd isigns_thms
let vars = [rx;ry;rz]
let pols =
[`\x. &0 + x * (&0 + x * (&0 + y * &1))`; `\x. &0 + x * (&4 + x * &6)`; `\x. &3 + x * (&6 + x * &9)`;
`\x. &0 + x * (&0 + x * (&0 + x * (&0 + z * &1)))`; `\x. -- &4 + x * (&0 + x * &1)`]
let mat_thm = ASSUME
`interpmat [x1; x2; x3; x4; x5]
[\x. x; \x. &0 + y * &1; \x. &4 + x * &6; \x. &3 + x * (&6 + x * &9);
\x. &0 + z * &1; \x. -- &4 + x * (&0 + x * &1)]
[[Pos; Pos; Pos; Neg; Neg; Neg];
[Neg; Pos; Zero; Zero; Neg; Neg];
[Neg; Pos; Neg; Pos; Neg; Neg];
[Neg; Pos; Neg; Pos; Neg; Zero];
[Neg; Pos; Neg; Pos; Neg; Pos];
[Zero; Pos; Neg; Pos; Zero; Pos];
[Pos; Pos; Neg; Pos; Pos; Pos];
[Pos; Zero; Neg; Pos; Pos; Pos];
[Pos; Neg; Neg; Pos; Pos; Pos];
[Pos; Zero; Zero; Pos; Pos; Pos];
[Pos; Pos; Pos; Pos; Pos; Pos]]`
UNFACTOR_MAT pols mat_thm
*)
(* }}} *)
let message_time s f x =
report s;
time f x;;
(* ---------------------------------------------------------------------- *)
(* Matrix *)
(* ---------------------------------------------------------------------- *)
let matrix_count,splitzero_count,splitsigns_count,monicize_count = ref 0,ref 0,ref 0,ref 0;;
let reset_counts() = matrix_count := 0;splitzero_count := 0;splitsigns_count := 0;monicize_count := 0;;
let print_counts() = !matrix_count,!splitzero_count,!splitsigns_count,!monicize_count;;
(*
let vars,dun,pols,cont,sgns,ex_thms,fm = !szvars,!szdun,!szpols,!szcont,!szsgns,!szex_thms,!szfm
*)
let rec MATRIX vars pols cont sgns ex_thms fm =
incr matrix_count;
if pols = [] then TRAPOUT cont empty_mat [] fm else
if exists (is_constant vars) pols then
let p = find (is_constant vars) pols in
let i = try index p pols with _ -> failwith "MATRIX: no such pol" in
let pols1,pols2 = chop_list i pols in
let pols' = pols1 @ tl pols2 in
let cont' = MATINSERT vars i (FINDSIGN vars sgns p) cont in
MATRIX vars pols' cont' sgns ex_thms fm
else
let kqs = map (weakfactor (hd vars)) pols in
if exists (fun (k,q) -> k <> 0 && not(is_constant vars q)) kqs then
let pols' = poly_var(hd vars) :: map snd kqs in
let ks = map fst kqs in
let cont' mat_thm ex_thms = cont (UNFACTOR_MAT vars pols mat_thm) ex_thms in
MATRIX vars pols' cont' sgns ex_thms fm
else
let d = itlist (max o degree_ vars) pols (-1) in
let p = find (fun p -> degree_ vars p = d) pols in
let pl_thm = POLY_ENLIST_CONV vars p in
let pl = rhs(concl pl_thm) in
let l,x = dest_poly pl in
let pdiff_thm = GEN_POLY_DIFF_CONV vars p in
let p'l = rhs (concl pdiff_thm) in
let p' = mk_comb(mk_comb(poly_tm,p'l),hd vars) in
let p'thm = (POLY_DELIST_CONV THENC (POLYNATE_CONV vars)) p' in
let p'c = rhs (concl p'thm) in
let hdp' = last (dest_list p'l) in
let sign_thm = FINDSIGN vars sgns hdp' in
let normal_thm = NORMAL_LIST_CONV sign_thm p'l in
let i = try index p pols with _ -> failwith "MATRIX: no such pol1" in
let qs = let p1,p2 = chop_list i pols in p'c::p1 @ tl p2 in
let gs,div_thms = unzip (map (PDIVIDES vars sgns p) qs) in
let cont' mat_thm = cont (SWAP_HEAD_COL i mat_thm) in
let dedcont mat_thm ex_thms =
DEDMATRIX vars sgns div_thms pdiff_thm normal_thm cont' mat_thm ex_thms in
SPLITZERO vars qs gs dedcont sgns ex_thms fm
and SPLITZERO vars dun pols cont sgns ex_thms fm =
incr splitzero_count;
match pols with
[] -> SPLITSIGNS vars [] dun cont sgns ex_thms fm
| p::ops ->
if p = rzero then
let cont' mat_thm ex_thms = MATINSERT vars (length dun) (REFL rzero) cont mat_thm ex_thms in
SPLITZERO vars dun ops cont' sgns ex_thms fm
else
let hp = behead vars p in
let h = head vars p in
let nzcont =
let tmp = SPLITZERO vars (dun@[p]) ops cont in
fun sgns ex_thms -> tmp sgns ex_thms fm in
let zcont =
let tmp = SPLITZERO vars dun (hp :: ops) in
fun sgns ex_thms ->
let zthm = FINDSIGN vars sgns h in
let b_thm = GSYM (BEHEAD vars zthm p) in
let lam_thm = ABS (hd vars) b_thm in
let cont' mat_thm ex_thms =
let mat_thm' = REPLACE_POL (lam_thm) mat_thm in
let mat_thm'' = MATCH_EQ_MP mat_thm' mat_thm in
cont mat_thm'' ex_thms in
tmp cont' sgns ex_thms fm in
SPLIT_ZERO (tl vars) sgns (head vars p) zcont nzcont ex_thms
and SPLITSIGNS vars dun pols cont sgns ex_thms fm =
incr splitsigns_count;
match pols with
[] -> MONICIZE vars dun cont sgns ex_thms fm
(* [] -> MATRIX vars dun cont sgns ex_thms fm *)
| p::ops ->
let cont' sgns ex_thms = SPLITSIGNS vars (dun@[p]) ops cont sgns ex_thms fm in
SPLIT_SIGN (tl vars) sgns (head vars p) cont' cont' ex_thms
and MONICIZE vars pols cont sgns ex_thms fm =
incr monicize_count;
let monic_thms = map (MONIC_CONV vars) pols in
let monic_pols = map (rhs o concl) monic_thms in
let sols = setify monic_pols in
let indices = map (fun p -> try index p sols with _ -> failwith "MONICIZE: no such pol") monic_pols in
let transform mat_thm =
let mat_thm' = DUPLICATE_COLUMNS mat_thm indices in
(* mat_thm' *)
UNMONICIZE_MAT vars monic_thms mat_thm' in
let cont' mat_thm ex_thms = cont (transform mat_thm) ex_thms in
MATRIX vars sols cont' sgns ex_thms fm
;;
(* {{{ Examples *)
(*
let vars,pols,sgns,ex_thms = [],[],[],[]
let mat_thm = mat_thm'
monic_thms
let vars = [rx]
let mat_thm = ASSUME
`interpmat [x1; x2; x3; x4; x5]
[(\x. &1 + x * (&2 + x * &3)); (\x. &2 + x * (&4 + x * &6)); \x. &3 + x * (&6 + x * &9); \x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1); \x. &8 + x * &4]
[[Pos; Pos; Pos; Neg; Neg; Neg];
[Pos; Pos; Zero; Zero; Neg; Neg];
[Pos; Pos; Neg; Pos; Neg; Neg];
[Pos; Pos; Neg; Pos; Neg; Zero];
[Pos; Pos; Neg; Pos; Neg; Pos];
[Pos; Pos; Neg; Pos; Zero; Pos];
[Pos; Pos; Neg; Pos; Pos; Pos];
[Pos; Zero; Neg; Pos; Pos; Pos];
[Pos; Neg; Neg; Pos; Pos; Pos];
[Pos; Zero; Zero; Pos; Pos; Pos];
[Pos; Pos; Pos; Pos; Pos; Pos]]`
let mat_thm = ASSUME
`interpmat [x1; x2; x3; x4; x5]
[\x. -- &4 + x * (&0 + x * &1); \x. &2 + x * &1; \x. &2 + x * (-- &3 + x * &1); \x. &1 / &3 + x * (&2 / &3 + x * &1)]
[[Pos; Pos; Pos; Neg];
[Pos; Pos; Zero; Zero];
[Pos; Pos; Neg; Pos];
[Pos; Pos; Neg; Pos];
[Pos; Pos; Neg; Pos];
[Pos; Pos; Neg; Pos];
[Pos; Pos; Neg; Pos];
[Pos; Zero; Neg; Pos];
[Pos; Neg; Neg; Pos];
[Pos; Zero; Zero; Pos];
[Pos; Pos; Pos; Pos]]`;;
let vars = [rx]
let pols = [`&1 + x * (&2 + x * &3)`;`&2 + x * (&4 + x * &6)`;`&3 + x * (&6 + x * &9)`; `&2 + x * (-- &3 + x * &1)`;`-- &4 + x * (&0 + x * &1)`;`&8 + x * &4`]
*)
(* }}} *)
(* ---------------------------------------------------------------------- *)
(* Set up RQE *)
(* ---------------------------------------------------------------------- *)
let polynomials tm =
let rec polynomials tm =
if tm = t_tm || tm = f_tm then []
else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then
let _,l,r = get_binop tm in polynomials l @ polynomials r
else if is_neg tm then polynomials (dest_neg tm)
else if
can (dest_binop rlt) tm ||
can (dest_binop rgt) tm ||
can (dest_binop rle) tm ||
can (dest_binop rge) tm ||
can (dest_binop req) tm ||
can (dest_binop rneq) tm then
let _,l,_ = get_binop tm in [l]
else failwith "not a fol atom" in
setify (polynomials tm);;
(* {{{ Examples *)
(*
let pols = polynomials `(poly [&1; -- &2] x > &0 ==> poly [&1; -- &2] x >= &0 /\ (poly [&8] x = &0)) /\ ~(poly [y] x <= &0)`
*)
(* }}} *)
let BASIC_REAL_QELIM_CONV vars fm =
let x,bod = dest_exists fm in
let pols = polynomials bod in
let cont mat_thm ex_thms =
let ex_thms' = sort (fun x y -> xterm_lt (fst y) (fst x)) ex_thms in
let comb_thm = COMBINE_TESTFORMS x mat_thm bod in
let comb_thm' = rev_itlist CHOOSE ex_thms' comb_thm in
comb_thm' in
let ret_thm = SPLITZERO (x::vars) [] pols cont empty_sgns [] fm in
PURE_REWRITE_RULE[NEQ] ret_thm;;
let REAL_QELIM_CONV fm =
reset_counts();
((LIFT_QELIM_CONV POLYATOM_CONV (EVALC_CONV THENC SIMPLIFY_CONV)
BASIC_REAL_QELIM_CONV) THENC EVALC_CONV THENC SIMPLIFY_CONV) fm;;
(* ---------------------------------------------------------------------- *)
(* timers *)
(* ---------------------------------------------------------------------- *)
|