Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,794 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
let aacons_tm = `CONS:A -> A list -> A list` ;;
let HD_CONV conv tm =
let h::rest = dest_list tm in
let ty = type_of h in
let thm = conv h in
let thm2 = REFL (mk_list(rest,ty)) in
let cs = inst [ty,aty] aacons_tm in
MK_COMB ((AP_TERM cs thm),thm2);;
let TL_CONV conv tm =
(* try *)
let h::t = dest_list tm in
let lty = type_of h in
let cs = inst [lty,aty] aacons_tm in
MK_COMB ((AP_TERM cs (REFL h)), (LIST_CONV conv (mk_list(t,lty))))
(* with _ -> failwith "TL_CONV" *)
let rec EL_CONV conv i tm =
if i = 0 then HD_CONV conv tm
else
let h::t = dest_list tm in
let lty = type_of h in
let cs = inst [lty,aty] aacons_tm in
MK_COMB ((AP_TERM cs (REFL h)), (EL_CONV conv (i - 1) (mk_list(t,lty))))
(*
let conv = (REWRITE_CONV[ARITH_RULE `x + x = &2 * x`])
let tm = `[&5 + &5; &6 + &6; &7 + &7]`
HD_CONV conv tm
TL_CONV conv tm
HD_CONV(TL_CONV conv) tm
CONS_CONV conv tm
EL_CONV conv 0 tm
EL_CONV conv 1 tm
EL_CONV conv 2 tm
*)
let NOT_CONS = prove_by_refinement(
`!l. (~ ?(h:A) t. (l = CONS h t)) ==> (l = [])`,
(* {{{ Proof *)
[
MESON_TAC[list_CASES];
]);;
(* }}} *)
let REMOVE = new_recursive_definition list_RECURSION
`(REMOVE x [] = []) /\
(REMOVE x (CONS (h:A) t) =
let rest = REMOVE x t in
if x = h then rest else CONS h rest)`;;
let CHOP_LIST = new_recursive_definition num_RECURSION
`(CHOP_LIST 0 l = [],l) /\
(CHOP_LIST (SUC n) l =
let a,b = CHOP_LIST n (TL l) in
CONS (HD l) a,b)`;;
let REM_NIL = prove(
`REMOVE x [] = []`,
MESON_TAC[REMOVE]);;
let REM_FALSE = prove_by_refinement(
`!x l. ~(MEM x (REMOVE x l))`,
(* {{{ Proof *)
[
STRIP_TAC;
LIST_INDUCT_TAC;
ASM_MESON_TAC[MEM;REM_NIL];
CASES_ON `x = h`;
ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF];
ASM_MESON_TAC[];
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF];
ASM_MESON_TAC[MEM];
]);;
(* }}} *)
let MEM_REMOVE = prove_by_refinement(
`!x y z l. MEM x (REMOVE y l) ==> MEM x (REMOVE y (CONS z l))`,
(* {{{ Proof *)
[
REPEAT_N 3 STRIP_TAC;
CASES_ON `y = z`;
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF];
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF];
ASM_MESON_TAC[MEM];
]);;
(* }}} *)
let REM_NEQ = prove_by_refinement(
`!x x1 l. MEM x l /\ ~(x = x1) ==> MEM x (REMOVE x1 l)`,
(* {{{ Proof *)
[
STRIP_TAC THEN STRIP_TAC;
LIST_INDUCT_TAC;
MESON_TAC[MEM];
CASES_ON `x = h`;
POP_ASSUM SUBST1_TAC;
STRIP_TAC;
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF;COND_CLAUSES;MEM];
STRIP_TAC;
CLAIM `MEM x t`;
ASM_MESON_TAC[MEM];
STRIP_TAC;
CLAIM `MEM x (REMOVE x1 t)`;
ASM_MESON_TAC[];
STRIP_TAC;
MATCH_MP_TAC MEM_REMOVE;
FIRST_ASSUM MATCH_ACCEPT_TAC;
]);;
(* }}} *)
let LAST_SING = prove_by_refinement(
`!h. LAST [h] = h`,
(* {{{ Proof *)
[
MESON_TAC[LAST];
]);;
(* }}} *)
let LAST_CONS = prove_by_refinement(
`!h t. ~(t = []) ==> (LAST (CONS h t) = LAST t)`,
(* {{{ Proof *)
[
ASM_MESON_TAC[LAST];
]);;
(* }}} *)
let LAST_CONS_CONS = prove_by_refinement(
`!h1 h2 t. ~(t = []) ==> (LAST (CONS h1 (CONS h2 t)) = LAST (CONS h1 t))`,
(* {{{ Proof *)
[
REWRITE_TAC[LAST;NOT_CONS_NIL];
MESON_TAC[LAST;NOT_CONS_NIL;COND_CLAUSES];
]);;
(* }}} *)
let HD_APPEND = prove_by_refinement(
`!h t l. HD (APPEND (CONS h t) l) = h`,
(* {{{ Proof *)
[
ASM_MESON_TAC[HD;APPEND];
]);;
(* }}} *)
let LENGTH_0 = prove_by_refinement(
`!l. (LENGTH l = 0) <=> (l = [])`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
REWRITE_TAC[LENGTH];
ASM_MESON_TAC[LENGTH;NOT_CONS_NIL;ARITH_RULE `~(0 = SUC n)`];
]);;
(* }}} *)
let LENGTH_1 = prove_by_refinement(
`!l. (LENGTH l = 1) <=> ?x. l = [x]`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
EQ_TAC;
MESON_TAC[LENGTH;ARITH_RULE `~(1 = 0)`];
MESON_TAC[NOT_CONS_NIL];
EQ_TAC;
REWRITE_TAC[LENGTH;ARITH_RULE `~(0 = 1)`];
REWRITE_TAC[LENGTH];
STRIP_TAC;
CLAIM `LENGTH t = 0`;
POP_ASSUM MP_TAC THEN ARITH_TAC;
STRIP_TAC;
CLAIM `t = []`;
ASM_MESON_TAC[LENGTH_0];
STRIP_TAC;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
STRIP_TAC;
ASM_MESON_TAC[LENGTH;ONE];
]);;
(* }}} *)
let LIST_TRI = prove_by_refinement(
`!p. (p = []) \/ (?x. p = [x:A]) \/ (?x y t. p = CONS x (CONS y t))`,
(* {{{ Proof *)
[
STRIP_TAC;
DISJ_CASES_TAC (ISPEC `p:A list` list_CASES);
ASM_REWRITE_TAC[];
POP_ASSUM MP_TAC THEN STRIP_TAC;
DISJ_CASES_TAC (ISPEC `t:A list` list_CASES);
ASM_MESON_TAC[];
ASM_MESON_TAC[];
]);;
(* }}} *)
let LENGTH_PAIR = prove_by_refinement(
`!p. (LENGTH p = 2) <=> ?h t. p = [h:A; t]`,
(* {{{ Proof *)
[
STRIP_TAC THEN EQ_TAC;
STRIP_TAC;
MP_TAC (ISPEC `p:A list` list_CASES);
STRIP_TAC;
ASM_MESON_TAC[LENGTH_0;ARITH_RULE `~(2 = 0)`];
MP_TAC (ISPEC `t:A list` list_CASES);
STRIP_TAC;
ASM_MESON_TAC[LENGTH_1;ARITH_RULE `~(1 = 2)`];
MP_TAC (ISPEC `t':A list` list_CASES);
STRIP_TAC;
EXISTS_TAC `h:A`;
EXISTS_TAC `h':A`;
ASM_MESON_TAC[];
CLAIM `p = CONS h (CONS h' (CONS h'' t''))`;
ASM_MESON_TAC[];
STRIP_TAC;
CLAIM `2 < LENGTH p`;
POP_ASSUM SUBST1_TAC;
REWRITE_TAC[LENGTH];
ARITH_TAC;
ASM_MESON_TAC[LT_REFL];
STRIP_TAC;
ASM_REWRITE_TAC[LENGTH];
ARITH_TAC;
]);;
(* }}} *)
let LENGTH_SING = prove_by_refinement(
`!p. (LENGTH p = 1) <=> ?h. p = [h:A]`,
(* {{{ Proof *)
[
STRIP_TAC THEN EQ_TAC;
STRIP_TAC;
MP_TAC (ISPEC `p:A list` list_CASES);
STRIP_TAC;
ASM_MESON_TAC[LENGTH_0;ARITH_RULE `~(1 = 0)`];
MP_TAC (ISPEC `t:A list` list_CASES);
STRIP_TAC;
EXISTS_TAC `h:A`;
ASM_MESON_TAC[];
CLAIM `p = CONS h (CONS h' t')`;
ASM_MESON_TAC[];
STRIP_TAC;
CLAIM `1 < LENGTH p`;
POP_ASSUM SUBST1_TAC;
REWRITE_TAC[LENGTH];
ARITH_TAC;
ASM_REWRITE_TAC[];
ARITH_TAC;
STRIP_TAC;
ASM_REWRITE_TAC[LENGTH;];
ARITH_TAC;
]);;
(* }}} *)
let TL_NIL = prove_by_refinement(
`!l. ~(l = []) ==> ((TL l = []) <=> ?x. l = [x])`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC THEN EQ_TAC;
CLAIM `?h t. l = CONS h t`;
ASM_MESON_TAC[list_CASES];
STRIP_TAC;
ASM_REWRITE_TAC[TL];
ASM_MESON_TAC !LIST_REWRITES;
ASM_MESON_TAC !LIST_REWRITES;
]);;
(* }}} *)
let LAST_TL = prove_by_refinement(
`!l. ~(l = []) /\ ~(TL l = []) ==> (LAST (TL l) = LAST l)`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
REWRITE_TAC[];
REWRITE_TAC[TL;LAST];
ASM_MESON_TAC[NOT_CONS_NIL];
]);;
(* }}} *)
let LENGTH_TL = prove_by_refinement(
`!l. ~(l = []) /\ ~(TL l = []) ==> (LENGTH (TL l) = PRE(LENGTH l))`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
REWRITE_TAC[];
REPEAT STRIP_TAC;
LIST_SIMP_TAC;
NUM_SIMP_TAC;
]);;
(* }}} *)
let LENGTH_NZ = prove_by_refinement(
`!p. 0 < LENGTH p <=> ~(p = [])`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
EQ_TAC;
ASM_MESON_TAC[LENGTH;NOT_CONS_NIL;LT_REFL];
REWRITE_TAC[LENGTH;NOT_CONS_NIL;LT_REFL;NOT_NIL];
STRIP_TAC THEN ASM_REWRITE_TAC[];
REWRITE_TAC[LENGTH];
ARITH_TAC;
]);;
(* }}} *)
|