Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,794 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

let aacons_tm = `CONS:A -> A list -> A list` ;;
let HD_CONV conv tm =
  let h::rest = dest_list tm in
  let ty = type_of h in
  let thm = conv h in
  let thm2 = REFL (mk_list(rest,ty)) in
  let cs = inst [ty,aty] aacons_tm in
    MK_COMB ((AP_TERM cs thm),thm2);;

let TL_CONV conv tm =
(*   try *)
    let h::t = dest_list tm in
    let lty = type_of h in
    let cs = inst [lty,aty] aacons_tm in
      MK_COMB ((AP_TERM cs (REFL h)), (LIST_CONV conv (mk_list(t,lty))))
(*   with _ -> failwith "TL_CONV" *)

let rec EL_CONV conv i tm =
  if i = 0 then HD_CONV conv tm
  else
    let h::t = dest_list tm in
    let lty = type_of h in
    let cs = inst [lty,aty] aacons_tm in
      MK_COMB ((AP_TERM cs (REFL h)), (EL_CONV conv (i - 1) (mk_list(t,lty))))


(*

  let conv = (REWRITE_CONV[ARITH_RULE `x + x = &2 * x`])
  let tm = `[&5 + &5; &6 + &6; &7 + &7]`
  HD_CONV conv tm
  TL_CONV conv tm
  HD_CONV(TL_CONV conv) tm
  CONS_CONV conv tm
  EL_CONV conv 0 tm
  EL_CONV conv 1 tm
  EL_CONV conv 2 tm

*)

let NOT_CONS = prove_by_refinement(
  `!l. (~ ?(h:A) t. (l = CONS h t)) ==> (l = [])`,
(* {{{ Proof *)

[
  MESON_TAC[list_CASES];
]);;

(* }}} *)

let REMOVE = new_recursive_definition list_RECURSION
  `(REMOVE x [] = []) /\
   (REMOVE x (CONS (h:A) t) =
     let rest = REMOVE x t in
       if x = h then rest else CONS h rest)`;;

let CHOP_LIST = new_recursive_definition num_RECURSION
  `(CHOP_LIST 0 l = [],l) /\
   (CHOP_LIST (SUC n) l =
     let a,b = CHOP_LIST n (TL l) in
      CONS (HD l) a,b)`;;

let REM_NIL = prove(
 `REMOVE x [] = []`,
 MESON_TAC[REMOVE]);;

let REM_FALSE = prove_by_refinement(
 `!x l. ~(MEM x (REMOVE x l))`,
(* {{{ Proof *)
[
 STRIP_TAC;
 LIST_INDUCT_TAC;
 ASM_MESON_TAC[MEM;REM_NIL];
 CASES_ON `x = h`;
 ASM_REWRITE_TAC[];
 ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF];
 ASM_MESON_TAC[];
 ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF];
 ASM_MESON_TAC[MEM];
]);;
(* }}} *)

let MEM_REMOVE = prove_by_refinement(
  `!x y z l. MEM x (REMOVE y l) ==> MEM x (REMOVE y (CONS z l))`,
(* {{{ Proof *)
[
  REPEAT_N 3 STRIP_TAC;
  CASES_ON `y = z`;
  ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF];
  ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF];
  ASM_MESON_TAC[MEM];
]);;
(* }}} *)

let REM_NEQ = prove_by_refinement(
  `!x x1 l. MEM x l /\ ~(x = x1) ==> MEM x (REMOVE x1 l)`,
(* {{{ Proof *)
[
  STRIP_TAC THEN STRIP_TAC;
  LIST_INDUCT_TAC;
  MESON_TAC[MEM];
  CASES_ON `x = h`;
  POP_ASSUM SUBST1_TAC;
  STRIP_TAC;
  ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF;COND_CLAUSES;MEM];
  STRIP_TAC;
  CLAIM `MEM x t`;
  ASM_MESON_TAC[MEM];
  STRIP_TAC;
  CLAIM `MEM x (REMOVE x1 t)`;
  ASM_MESON_TAC[];
  STRIP_TAC;
  MATCH_MP_TAC MEM_REMOVE;
  FIRST_ASSUM MATCH_ACCEPT_TAC;
]);;
(* }}} *)


let LAST_SING = prove_by_refinement(
  `!h. LAST [h] = h`,
(* {{{ Proof *)

[
  MESON_TAC[LAST];
]);;

(* }}} *)

let LAST_CONS = prove_by_refinement(
  `!h t. ~(t = []) ==> (LAST (CONS h t) = LAST t)`,
(* {{{ Proof *)
[
  ASM_MESON_TAC[LAST];
]);;
(* }}} *)


let LAST_CONS_CONS = prove_by_refinement(
  `!h1 h2 t. ~(t = []) ==> (LAST (CONS h1 (CONS h2 t)) = LAST (CONS h1 t))`,
(* {{{ Proof *)
[
  REWRITE_TAC[LAST;NOT_CONS_NIL];
  MESON_TAC[LAST;NOT_CONS_NIL;COND_CLAUSES];
]);;
(* }}} *)

let HD_APPEND = prove_by_refinement(
  `!h t l. HD (APPEND (CONS h t) l) = h`,
(* {{{ Proof *)
[
  ASM_MESON_TAC[HD;APPEND];
]);;
(* }}} *)

let LENGTH_0 = prove_by_refinement(
  `!l. (LENGTH l = 0) <=> (l = [])`,
(* {{{ Proof *)
[
  LIST_INDUCT_TAC;
  REWRITE_TAC[LENGTH];
  ASM_MESON_TAC[LENGTH;NOT_CONS_NIL;ARITH_RULE `~(0 = SUC n)`];
]);;
(* }}} *)

let LENGTH_1 = prove_by_refinement(
  `!l. (LENGTH l = 1) <=> ?x. l = [x]`,
(* {{{ Proof *)
[
  LIST_INDUCT_TAC;
  EQ_TAC;
  MESON_TAC[LENGTH;ARITH_RULE `~(1 = 0)`];
  MESON_TAC[NOT_CONS_NIL];
  EQ_TAC;
  REWRITE_TAC[LENGTH;ARITH_RULE `~(0 = 1)`];
  REWRITE_TAC[LENGTH];
  STRIP_TAC;
  CLAIM `LENGTH t = 0`;
  POP_ASSUM MP_TAC THEN ARITH_TAC;
  STRIP_TAC;
  CLAIM `t = []`;
  ASM_MESON_TAC[LENGTH_0];
  STRIP_TAC;
  ASM_REWRITE_TAC[];
  ASM_MESON_TAC[];
  STRIP_TAC;
  ASM_MESON_TAC[LENGTH;ONE];
]);;
(* }}} *)

let LIST_TRI = prove_by_refinement(
  `!p. (p = []) \/ (?x. p = [x:A]) \/ (?x y t. p = CONS x (CONS y t))`,
(* {{{ Proof *)
[
  STRIP_TAC;
  DISJ_CASES_TAC (ISPEC `p:A list` list_CASES);
  ASM_REWRITE_TAC[];
  POP_ASSUM MP_TAC THEN STRIP_TAC;
  DISJ_CASES_TAC (ISPEC `t:A list` list_CASES);
  ASM_MESON_TAC[];
  ASM_MESON_TAC[];
]);;
(* }}} *)

let LENGTH_PAIR = prove_by_refinement(
  `!p. (LENGTH p = 2) <=> ?h t. p = [h:A; t]`,
(* {{{ Proof *)
[
  STRIP_TAC THEN EQ_TAC;
  STRIP_TAC;
  MP_TAC (ISPEC `p:A list` list_CASES);
  STRIP_TAC;
  ASM_MESON_TAC[LENGTH_0;ARITH_RULE `~(2 = 0)`];
  MP_TAC (ISPEC `t:A list` list_CASES);
  STRIP_TAC;
  ASM_MESON_TAC[LENGTH_1;ARITH_RULE `~(1 = 2)`];
  MP_TAC (ISPEC `t':A list` list_CASES);
  STRIP_TAC;
  EXISTS_TAC `h:A`;
  EXISTS_TAC `h':A`;
  ASM_MESON_TAC[];
  CLAIM `p = CONS h (CONS h' (CONS h'' t''))`;
  ASM_MESON_TAC[];
  STRIP_TAC;
  CLAIM `2 < LENGTH p`;
  POP_ASSUM SUBST1_TAC;
  REWRITE_TAC[LENGTH];
  ARITH_TAC;
  ASM_MESON_TAC[LT_REFL];
  STRIP_TAC;
  ASM_REWRITE_TAC[LENGTH];
  ARITH_TAC;
]);;
(* }}} *)

let LENGTH_SING = prove_by_refinement(
  `!p. (LENGTH p = 1) <=> ?h. p = [h:A]`,
(* {{{ Proof *)
[
  STRIP_TAC THEN EQ_TAC;
  STRIP_TAC;
  MP_TAC (ISPEC `p:A list` list_CASES);
  STRIP_TAC;
  ASM_MESON_TAC[LENGTH_0;ARITH_RULE `~(1 = 0)`];
  MP_TAC (ISPEC `t:A list` list_CASES);
  STRIP_TAC;
  EXISTS_TAC `h:A`;
  ASM_MESON_TAC[];
  CLAIM `p = CONS h (CONS h' t')`;
  ASM_MESON_TAC[];
  STRIP_TAC;
  CLAIM `1 < LENGTH p`;
  POP_ASSUM SUBST1_TAC;
  REWRITE_TAC[LENGTH];
  ARITH_TAC;
  ASM_REWRITE_TAC[];
  ARITH_TAC;
  STRIP_TAC;
  ASM_REWRITE_TAC[LENGTH;];
  ARITH_TAC;
]);;
(* }}} *)

let TL_NIL = prove_by_refinement(
  `!l. ~(l = []) ==> ((TL l = []) <=> ?x. l = [x])`,
(* {{{ Proof *)
[
  REPEAT STRIP_TAC THEN EQ_TAC;
  CLAIM `?h t. l = CONS h t`;
  ASM_MESON_TAC[list_CASES];
  STRIP_TAC;
  ASM_REWRITE_TAC[TL];
  ASM_MESON_TAC !LIST_REWRITES;
  ASM_MESON_TAC !LIST_REWRITES;
]);;
(* }}} *)

let LAST_TL = prove_by_refinement(
  `!l. ~(l = []) /\  ~(TL l = []) ==> (LAST (TL l) = LAST l)`,
(* {{{ Proof *)
[
  LIST_INDUCT_TAC;
  REWRITE_TAC[];
  REWRITE_TAC[TL;LAST];
  ASM_MESON_TAC[NOT_CONS_NIL];
]);;
(* }}} *)

let LENGTH_TL = prove_by_refinement(
  `!l. ~(l = []) /\  ~(TL l = []) ==> (LENGTH (TL l) = PRE(LENGTH l))`,
(* {{{ Proof *)
[
  LIST_INDUCT_TAC;
  REWRITE_TAC[];
  REPEAT STRIP_TAC;
  LIST_SIMP_TAC;
  NUM_SIMP_TAC;
]);;
(* }}} *)

let LENGTH_NZ = prove_by_refinement(
 `!p. 0 < LENGTH p <=> ~(p = [])`,
(* {{{ Proof *)
[
  REPEAT STRIP_TAC;
  EQ_TAC;
  ASM_MESON_TAC[LENGTH;NOT_CONS_NIL;LT_REFL];
  REWRITE_TAC[LENGTH;NOT_CONS_NIL;LT_REFL;NOT_NIL];
  STRIP_TAC THEN ASM_REWRITE_TAC[];
  REWRITE_TAC[LENGTH];
  ARITH_TAC;
]);;
(* }}} *)