Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 4,858 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
let ACI_CONJ =
let rec build ths tm =
if is_conj tm then
let l,r = dest_conj tm in CONJ (build ths l) (build ths r)
else find (fun th -> concl th = tm) ths in
fun p p' ->
let cjs = CONJUNCTS(ASSUME p) and cjs' = CONJUNCTS(ASSUME p') in
let th = build cjs p' and th' = build cjs' p in
IMP_ANTISYM_RULE (DISCH_ALL th) (DISCH_ALL th');;
let QE_SIMPLIFY_CONV =
let NOT_EXISTS_UNIQUE_THM = prove
(`~(?!x. P x) <=> (!x. ~P x) \/ ?x x'. P x /\ P x' /\ ~(x = x')`,
REWRITE_TAC[EXISTS_UNIQUE_THM; DE_MORGAN_THM; NOT_EXISTS_THM] THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; CONJ_ASSOC]) in
let tauts =
[TAUT `~(~p) <=> p`;
TAUT `~(p /\ q) <=> ~p \/ ~q`;
TAUT `~(p \/ q) <=> ~p /\ ~q`;
TAUT `~(p ==> q) <=> p /\ ~q`;
TAUT `p ==> q <=> ~p \/ q`;
NOT_FORALL_THM;
NOT_EXISTS_THM;
EXISTS_UNIQUE_THM;
NOT_EXISTS_UNIQUE_THM;
TAUT `~(p <=> q) <=> (p /\ ~q) \/ (~p /\ q)`;
TAUT `(p <=> q) <=> (p /\ q) \/ (~p /\ ~q)`;
TAUT `~(p /\ q \/ ~p /\ r) <=> p /\ ~q \/ ~p /\ ~r`] in
GEN_REWRITE_CONV TOP_SWEEP_CONV tauts;;
let OR_ASSOC = TAUT `(a \/ b) \/ c <=> a \/ b \/ c`;;
let forall_thm = prove(`!P. (!x. P x) <=> ~ (?x. ~ P x)`,MESON_TAC[])
and or_exists_conv = PURE_REWRITE_CONV[OR_EXISTS_THM]
and triv_exists_conv = REWR_CONV EXISTS_SIMP
and push_exists_conv = REWR_CONV RIGHT_EXISTS_AND_THM
and not_tm = `(~)`
and or_tm = `(\/)`
and t_tm = `T`
and f_tm = `F`;;
let LIFT_QELIM_CONV afn_conv nfn_conv qfn_conv =
let rec qelift_conv vars fm =
if fm = t_tm || fm = f_tm then REFL fm
else if is_neg fm then
let thm1 = qelift_conv vars (dest_neg fm) in
MK_COMB(REFL not_tm,thm1)
else if is_conj fm || is_disj fm || is_imp fm || is_iff fm then
let (op,p,q) = get_binop fm in
let thm1 = qelift_conv vars p in
let thm2 = qelift_conv vars q in
MK_COMB(MK_COMB((REFL op),thm1),thm2)
else if is_forall fm then
let (x,p) = dest_forall fm in
let nex_thm = BETA_RULE (ISPEC (mk_abs(x,p)) forall_thm) in
let nex_thm' = CONV_RULE (LAND_CONV (RAND_CONV (ALPHA_CONV x))) nex_thm in
let nex_thm'' = CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV (ALPHA_CONV x)))) nex_thm' in
let elim_thm = qelift_conv vars (mk_exists(x,mk_neg p)) in
TRANS nex_thm'' (MK_COMB (REFL not_tm,elim_thm))
else if is_exists fm then
let (x,p) = dest_exists fm in
let thm1 = qelift_conv (x::vars) p in
let thm1a = MK_EXISTS x thm1 in
let thm1b = PURE_REWRITE_RULE[OR_ASSOC] thm1a in
let thm2 = nfn_conv (rhs(concl thm1)) in
let thm2a = MK_EXISTS x thm2 in
let thm2b = PURE_REWRITE_RULE[OR_ASSOC] thm2a in
let djs = disjuncts (rhs (concl thm2)) in
let djthms = map (qelim x vars) djs in
let thm3 = end_itlist
(fun thm1 thm2 -> MK_COMB(MK_COMB (REFL or_tm,thm1),thm2)) djthms in
let split_ex_thm = GSYM (or_exists_conv (lhs (concl thm3))) in
let thm3a = TRANS split_ex_thm thm3 in
TRANS (TRANS thm1b thm2b) thm3a
else
afn_conv vars fm
and qelim x vars p =
let cjs = conjuncts p in
let ycjs,ncjs = partition (mem x o frees) cjs in
if ycjs = [] then triv_exists_conv(mk_exists(x,p))
else if ncjs = [] then qfn_conv vars (mk_exists(x,p)) else
let th1 = ACI_CONJ p (mk_conj(list_mk_conj ncjs,list_mk_conj ycjs)) in
let th2 = CONV_RULE (RAND_CONV push_exists_conv) (MK_EXISTS x th1) in
let t1,t2 = dest_comb (rand(concl th2)) in
TRANS th2 (AP_TERM t1 (qfn_conv vars t2)) in
fun fm -> ((qelift_conv (frees fm)) THENC QE_SIMPLIFY_CONV) fm;;
(*
let afn_conv,nfn_conv,qfn_conv = POLYATOM_CONV,(EVALC_CONV THENC SIMPLIFY_CONV),BASIC_REAL_QELIM_CONV
let LIFT_QELIM_CONV afn_conv nfn_conv qfn_conv =
fun fm -> ((qelift_conv (frees fm)) THENC QE_SIMPLIFY_CONV) fm;;
let k0 = (TRANS thm1a thm2a)
let k1 = thm3a
let k2 = CONV_RULE (LAND_CONV (RAND_CONV (ALPHA_CONV `x:real`))) k1
TRANS k0 k2
let vars = []
let fm,vars = !lqc_fm,!lqc_vars
let fm = `?x y z. x * y * z < &0`
let p = `~((&0 + y * (&0 + x * &1) = &0) <=> (&0 + x * &1 = &0) \/ (&0 + y * &1 = &0))`
#trace qelift_conv
#trace qelim
TRANS (ASSUME `T <=> (?x. x * y > &0)`) (ASSUME `(?z. z * y > &0) <=> F`)
MATCH_TRANS (ASSUME `T <=> (?x. x * y > &0)`) (ASSUME `?z. z * y > &0 <=> F`)
MATCH_EQ_MP (ASSUME `(?x. x * y > &0) <=> F`) (ASSUME `?z. z * y > &0`)
qelift_conv vars fm
let fm = `?x y. x * y = &0`
let fm = `!y. (x * y = &0) <=> (x = &0) \/ (y = &0)`
let fm = `?y. (x * y = &0) <=> (x = &0) \/ (y = &0)`
let fm = `?y. ~ ((x * y = &0) <=> (x = &0) \/ (y = &0))`
let fm = `?x. ~(!y. (x * y = &0) <=> (x = &0) \/ (y = &0))`
let vars = [ry;rx]
let vars = [rx]
let QELIM_DLO_CONV =
(LIFT_QELIM_CONV AFN_DLO_CONV ((CNNF_CONV LFN_DLO_CONV) THENC DNF_CONV)
(fun v -> DLOBASIC_CONV)) THENC (REWRITE_CONV[]);;
*)
|