Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 4,858 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
let ACI_CONJ =
  let rec build ths tm =
    if is_conj tm then
      let l,r = dest_conj tm in CONJ (build ths l) (build ths r)
    else find (fun th -> concl th = tm) ths in
    fun p p' ->
      let cjs = CONJUNCTS(ASSUME p) and cjs' = CONJUNCTS(ASSUME p') in
      let th = build cjs p' and th' = build cjs' p in
        IMP_ANTISYM_RULE (DISCH_ALL th) (DISCH_ALL th');;

let QE_SIMPLIFY_CONV =
  let NOT_EXISTS_UNIQUE_THM = prove
   (`~(?!x. P x) <=> (!x. ~P x) \/ ?x x'. P x /\ P x' /\ ~(x = x')`,
    REWRITE_TAC[EXISTS_UNIQUE_THM; DE_MORGAN_THM; NOT_EXISTS_THM] THEN
    REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; CONJ_ASSOC]) in
  let tauts =
    [TAUT `~(~p) <=> p`;
     TAUT `~(p /\ q) <=> ~p \/ ~q`;
     TAUT `~(p \/ q) <=> ~p /\ ~q`;
     TAUT `~(p ==> q) <=> p /\ ~q`;
     TAUT `p ==> q <=> ~p \/ q`;
     NOT_FORALL_THM;
     NOT_EXISTS_THM;
     EXISTS_UNIQUE_THM;
     NOT_EXISTS_UNIQUE_THM;
     TAUT `~(p <=> q) <=> (p /\ ~q) \/ (~p /\ q)`;
     TAUT `(p <=> q) <=> (p /\ q) \/ (~p /\ ~q)`;
     TAUT `~(p /\ q \/ ~p /\ r) <=> p /\ ~q \/ ~p /\ ~r`] in
  GEN_REWRITE_CONV TOP_SWEEP_CONV tauts;;

let OR_ASSOC = TAUT `(a \/ b) \/ c <=> a \/ b \/ c`;;
let forall_thm = prove(`!P. (!x. P x) <=> ~ (?x. ~ P x)`,MESON_TAC[])
and or_exists_conv = PURE_REWRITE_CONV[OR_EXISTS_THM]
and triv_exists_conv = REWR_CONV EXISTS_SIMP
and push_exists_conv = REWR_CONV RIGHT_EXISTS_AND_THM
and not_tm = `(~)`
and or_tm = `(\/)`
and t_tm = `T`
and f_tm = `F`;;

let LIFT_QELIM_CONV afn_conv nfn_conv qfn_conv =
  let rec qelift_conv vars fm =
    if fm = t_tm || fm = f_tm then REFL fm
    else if is_neg fm then
      let thm1 = qelift_conv vars (dest_neg fm) in
        MK_COMB(REFL not_tm,thm1)
    else if is_conj fm || is_disj fm || is_imp fm || is_iff fm then
      let (op,p,q) = get_binop fm in
      let thm1 = qelift_conv vars p in
      let thm2 = qelift_conv vars q in
        MK_COMB(MK_COMB((REFL op),thm1),thm2)
    else if is_forall fm then
      let (x,p) = dest_forall fm in
      let nex_thm = BETA_RULE (ISPEC (mk_abs(x,p)) forall_thm) in
      let nex_thm' = CONV_RULE (LAND_CONV (RAND_CONV (ALPHA_CONV x))) nex_thm in
      let nex_thm'' = CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV (ALPHA_CONV x)))) nex_thm' in
      let elim_thm = qelift_conv vars (mk_exists(x,mk_neg p)) in
        TRANS nex_thm'' (MK_COMB (REFL not_tm,elim_thm))
    else if is_exists fm then
      let (x,p) = dest_exists fm in
      let thm1 = qelift_conv (x::vars) p in
      let thm1a = MK_EXISTS x thm1 in
      let thm1b = PURE_REWRITE_RULE[OR_ASSOC] thm1a in
      let thm2 = nfn_conv (rhs(concl thm1)) in
      let thm2a = MK_EXISTS x thm2 in
      let thm2b = PURE_REWRITE_RULE[OR_ASSOC] thm2a in
      let djs = disjuncts (rhs (concl thm2)) in
      let djthms = map (qelim x vars) djs in
      let thm3 = end_itlist
        (fun thm1 thm2 -> MK_COMB(MK_COMB (REFL or_tm,thm1),thm2)) djthms in
      let split_ex_thm = GSYM (or_exists_conv (lhs (concl thm3))) in
      let thm3a = TRANS split_ex_thm thm3 in
        TRANS (TRANS thm1b thm2b) thm3a
    else
      afn_conv vars fm
  and qelim x vars p =
    let cjs = conjuncts p in
    let ycjs,ncjs = partition (mem x o frees) cjs in
    if ycjs = [] then triv_exists_conv(mk_exists(x,p))
    else if ncjs = [] then qfn_conv vars (mk_exists(x,p)) else
    let th1 = ACI_CONJ p (mk_conj(list_mk_conj ncjs,list_mk_conj ycjs)) in
    let th2 = CONV_RULE (RAND_CONV push_exists_conv) (MK_EXISTS x th1) in
    let t1,t2 = dest_comb (rand(concl th2)) in
    TRANS th2 (AP_TERM t1 (qfn_conv vars t2)) in
  fun fm -> ((qelift_conv (frees fm)) THENC QE_SIMPLIFY_CONV) fm;;



(*
let afn_conv,nfn_conv,qfn_conv = POLYATOM_CONV,(EVALC_CONV THENC SIMPLIFY_CONV),BASIC_REAL_QELIM_CONV
let LIFT_QELIM_CONV afn_conv nfn_conv qfn_conv =
  fun fm -> ((qelift_conv (frees fm)) THENC QE_SIMPLIFY_CONV) fm;;


let k0 = (TRANS thm1a thm2a)
let k1 = thm3a
let k2 = CONV_RULE (LAND_CONV (RAND_CONV (ALPHA_CONV `x:real`))) k1
TRANS k0 k2


let vars = []
let fm,vars = !lqc_fm,!lqc_vars
let fm = `?x y z. x * y * z < &0`
let p = `~((&0 + y * (&0 + x * &1) = &0) <=> (&0 + x * &1 = &0) \/ (&0 + y * &1 = &0))`
#trace qelift_conv
#trace qelim



TRANS (ASSUME `T <=> (?x. x * y > &0)`) (ASSUME `(?z. z * y > &0) <=> F`)

MATCH_TRANS (ASSUME `T <=> (?x. x * y > &0)`) (ASSUME `?z. z * y > &0 <=> F`)
MATCH_EQ_MP (ASSUME `(?x. x * y > &0) <=> F`) (ASSUME `?z. z * y > &0`)

qelift_conv vars fm


let fm = `?x y. x * y = &0`
let fm = `!y. (x * y = &0) <=> (x = &0) \/ (y = &0)`
let fm = `?y. (x * y = &0) <=> (x = &0) \/ (y = &0)`
let fm = `?y. ~ ((x * y = &0) <=> (x = &0) \/ (y = &0))`
let fm = `?x. ~(!y. (x * y = &0) <=> (x = &0) \/ (y = &0))`
let vars = [ry;rx]
let vars = [rx]

let QELIM_DLO_CONV =
  (LIFT_QELIM_CONV AFN_DLO_CONV ((CNNF_CONV LFN_DLO_CONV) THENC DNF_CONV)
    (fun v -> DLOBASIC_CONV)) THENC (REWRITE_CONV[]);;
*)