Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 1,469 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
(* ------------------------------------------------------------------------- *)
(* Condense subdivision by removing points with no relevant zeros.           *)
(* ------------------------------------------------------------------------- *)

let real_cases = prove(`!x y. x < y \/ (x = y) \/ y < x`,REAL_ARITH_TAC);;

let gt_aux = prove(
  `!x. (x1 < x2 /\ x2 < x3) /\ ((x1 < x /\ x < x2) \/ (x = x2) \/ (x2 < x /\ x < x3)) ==> x1 < x /\ x < x3`,
   REAL_ARITH_TAC);;

let gen_thm = prove_by_refinement(
 `!P x1 x2 x3.
      (x1 < x3) ==>
      (!x. x1 < x /\ x < x2 ==> P x) ==>
      (!x. (x = x2) ==> P x) ==>
      (!x. x2 < x /\ x < x3 ==> P x) ==>
        (!x. x1 < x /\ x < x3 ==> P x)`,
(* {{{ Proof *)

[
  MESON_TAC[real_cases;gt_aux;DE_MORGAN_THM;REAL_NOT_LT;REAL_LE_LT];
]);;

(* }}} *)

let gen_thm_noleft = prove(
 `!P x2 x3.
      (x2 < x3) ==>
      (!x. x < x2 ==> P x) ==>
      (!x. (x = x2) ==> P x) ==>
      (!x. x2 < x /\ x < x3 ==> P x) ==>
        (!x. x < x3 ==> P x)`,
  MESON_TAC[real_cases;gt_aux]);;

let gen_thm_noright = prove(
 `!P x1 x2.
      (x1 < x2) ==>
      (!x. x1 < x /\ x < x2 ==> P x) ==>
      (!x. (x = x2) ==> P x) ==>
      (!x. x2 < x ==> P x) ==>
        (!x. x1 < x ==> P x)`,
  MESON_TAC[real_cases;gt_aux]);;

let gen_thm_noboth = prove(
 `!P Q x2.
       Q ==>
      (!x. x < x2 ==> P x) ==>
      (!x. (x = x2) ==> P x) ==>
      (!x. x2 < x ==> P x) ==>
        (!x. T ==> P x)`,
  MESON_TAC[real_cases;gt_aux]);;