Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 18,532 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
(* ========================================================================= *)
(* Geometric "without loss of generality" tactics to pick convenient coords. *)
(* ========================================================================= *)
needs "Multivariate/determinants.ml";;
needs "Multivariate/convex.ml";;
(* ------------------------------------------------------------------------- *)
(* Flyspeck definition of plane, and its invariance theorems. *)
(* ------------------------------------------------------------------------- *)
let plane = new_definition
`plane x = (?u v w. ~(collinear {u,v,w}) /\ x = affine hull {u,v,w})`;;
let PLANE_TRANSLATION_EQ = prove
(`!a:real^N s. plane(IMAGE (\x. a + x) s) <=> plane s`,
REWRITE_TAC[plane] THEN GEOM_TRANSLATE_TAC[]);;
let PLANE_TRANSLATION = prove
(`!a:real^N s. plane s ==> plane(IMAGE (\x. a + x) s)`,
REWRITE_TAC[PLANE_TRANSLATION_EQ]);;
add_translation_invariants [PLANE_TRANSLATION_EQ];;
let PLANE_LINEAR_IMAGE_EQ = prove
(`!f:real^M->real^N p.
linear f /\ (!x y. f x = f y ==> x = y)
==> (plane(IMAGE f p) <=> plane p)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[plane] THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
`?u. u IN IMAGE f (:real^M) /\
?v. v IN IMAGE f (:real^M) /\
?w. w IN IMAGE (f:real^M->real^N) (:real^M) /\
~collinear {u, v, w} /\ IMAGE f p = affine hull {u, v, w}` THEN
CONJ_TAC THENL
[REWRITE_TAC[RIGHT_AND_EXISTS_THM; IN_IMAGE; IN_UNIV] THEN
REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN
EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `{u,v,w} SUBSET IMAGE (f:real^M->real^N) p` MP_TAC THENL
[ASM_REWRITE_TAC[HULL_SUBSET]; SET_TAC[]];
REWRITE_TAC[EXISTS_IN_IMAGE; IN_UNIV] THEN
REWRITE_TAC[SET_RULE `{f a,f b,f c} = IMAGE f {a,b,c}`] THEN
ASM_SIMP_TAC[AFFINE_HULL_LINEAR_IMAGE] THEN
REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN BINOP_TAC THENL
[ASM_MESON_TAC[COLLINEAR_LINEAR_IMAGE_EQ]; ASM SET_TAC[]]]);;
let PLANE_LINEAR_IMAGE = prove
(`!f:real^M->real^N p.
linear f /\ plane p /\ (!x y. f x = f y ==> x = y)
==> plane(IMAGE f p)`,
MESON_TAC[PLANE_LINEAR_IMAGE_EQ]);;
add_linear_invariants [PLANE_LINEAR_IMAGE_EQ];;
(* ------------------------------------------------------------------------- *)
(* Rotating and translating so a given plane in R^3 becomes {x | x$3 = &0}. *)
(* ------------------------------------------------------------------------- *)
let ROTATION_PLANE_HORIZONTAL = prove
(`!s. plane s
==> ?a f. orthogonal_transformation f /\ det(matrix f) = &1 /\
IMAGE f (IMAGE (\x. a + x) s) = {z:real^3 | z$3 = &0}`,
let lemma = prove
(`span {z:real^3 | z$3 = &0} = {z:real^3 | z$3 = &0}`,
REWRITE_TAC[SPAN_EQ_SELF; subspace; IN_ELIM_THM] THEN
SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VEC_COMPONENT;
DIMINDEX_3; ARITH] THEN REAL_ARITH_TAC) in
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [plane]) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:real^3`; `b:real^3`; `c:real^3`] THEN
MAP_EVERY (fun t ->
ASM_CASES_TAC t THENL [ASM_REWRITE_TAC[COLLINEAR_2; INSERT_AC];
ALL_TAC])
[`a:real^3 = b`; `a:real^3 = c`; `b:real^3 = c`] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC) THEN
ASM_SIMP_TAC[AFFINE_HULL_INSERT_SPAN; IN_INSERT; NOT_IN_EMPTY] THEN
EXISTS_TAC `--a:real^3` THEN
REWRITE_TAC[SET_RULE `IMAGE (\x:real^3. --a + x) {a + x | x | x IN s} =
IMAGE (\x. --a + a + x) s`] THEN
REWRITE_TAC[VECTOR_ARITH `--a + a + x:real^3 = x`; IMAGE_ID] THEN
REWRITE_TAC[SET_RULE `{x - a:real^x | x = b \/ x = c} = {b - a,c - a}`] THEN
MP_TAC(ISPEC `span{b - a:real^3,c - a}`
ROTATION_LOWDIM_HORIZONTAL) THEN
REWRITE_TAC[DIMINDEX_3] THEN ANTS_TAC THENL
[MATCH_MP_TAC LET_TRANS THEN
EXISTS_TAC `CARD{b - a:real^3,c - a}` THEN
SIMP_TAC[DIM_SPAN; DIM_LE_CARD; FINITE_RULES] THEN
SIMP_TAC[CARD_CLAUSES; FINITE_RULES] THEN ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:real^3->real^3` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP ORTHOGONAL_TRANSFORMATION_LINEAR) THEN
ASM_SIMP_TAC[GSYM SPAN_LINEAR_IMAGE] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM lemma] THEN
MATCH_MP_TAC DIM_EQ_SPAN THEN CONJ_TAC THENL
[ASM_MESON_TAC[IMAGE_SUBSET; SPAN_INC; SUBSET_TRANS]; ALL_TAC] THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `2` THEN CONJ_TAC THENL
[MP_TAC(ISPECL [`{z:real^3 | z$3 = &0}`; `(:real^3)`] DIM_EQ_SPAN) THEN
REWRITE_TAC[SUBSET_UNIV; DIM_UNIV; DIMINDEX_3; lemma] THEN
MATCH_MP_TAC(TAUT `~r /\ (~p ==> q) ==> (q ==> r) ==> p`) THEN
REWRITE_TAC[ARITH_RULE `~(x <= 2) <=> 3 <= x`] THEN
REWRITE_TAC[EXTENSION; SPAN_UNIV; IN_ELIM_THM] THEN
DISCH_THEN(MP_TAC o SPEC `vector[&0;&0;&1]:real^3`) THEN
REWRITE_TAC[IN_UNIV; VECTOR_3] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `dim {b - a:real^3,c - a}` THEN
CONJ_TAC THENL
[ALL_TAC; ASM_MESON_TAC[LE_REFL; DIM_INJECTIVE_LINEAR_IMAGE;
ORTHOGONAL_TRANSFORMATION_INJECTIVE]] THEN
MP_TAC(ISPEC `{b - a:real^3,c - a}` INDEPENDENT_BOUND_GENERAL) THEN
SIMP_TAC[CARD_CLAUSES; FINITE_RULES; IN_SING; NOT_IN_EMPTY] THEN
ASM_REWRITE_TAC[VECTOR_ARITH `b - a:real^3 = c - a <=> b = c`; ARITH] THEN
DISCH_THEN MATCH_MP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE (RAND_CONV o RAND_CONV)
[SET_RULE `{a,b,c} = {b,a,c}`]) THEN
REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COLLINEAR_3] THEN
REWRITE_TAC[independent; CONTRAPOS_THM; dependent] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; RIGHT_OR_DISTRIB] THEN
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2] THEN
ASM_SIMP_TAC[SET_RULE `~(a = b) ==> {a,b} DELETE b = {a}`;
SET_RULE `~(a = b) ==> {a,b} DELETE a = {b}`;
VECTOR_ARITH `b - a:real^3 = c - a <=> b = c`] THEN
REWRITE_TAC[SPAN_BREAKDOWN_EQ; SPAN_EMPTY; IN_SING] THEN
ONCE_REWRITE_TAC[VECTOR_SUB_EQ] THEN MESON_TAC[COLLINEAR_LEMMA; INSERT_AC]);;
let ROTATION_HORIZONTAL_PLANE = prove
(`!p. plane p
==> ?a f. orthogonal_transformation f /\ det(matrix f) = &1 /\
IMAGE (\x. a + x) (IMAGE f {z:real^3 | z$3 = &0}) = p`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP ROTATION_PLANE_HORIZONTAL) THEN
DISCH_THEN(X_CHOOSE_THEN `a:real^3`
(X_CHOOSE_THEN `f:real^3->real^3` STRIP_ASSUME_TAC)) THEN
FIRST_ASSUM(X_CHOOSE_THEN `g:real^3->real^3` STRIP_ASSUME_TAC o MATCH_MP
ORTHOGONAL_TRANSFORMATION_INVERSE) THEN
MAP_EVERY EXISTS_TAC [`--a:real^3`; `g:real^3->real^3`] THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
ASM_REWRITE_TAC[GSYM IMAGE_o; o_DEF; IMAGE_ID;
VECTOR_ARITH `--a + a + x:real^3 = x`] THEN
MATCH_MP_TAC(REAL_RING `!f. f * g = &1 /\ f = &1 ==> g = &1`) THEN
EXISTS_TAC `det(matrix(f:real^3->real^3))` THEN
REWRITE_TAC[GSYM DET_MUL] THEN
ASM_SIMP_TAC[GSYM MATRIX_COMPOSE; ORTHOGONAL_TRANSFORMATION_LINEAR] THEN
ASM_REWRITE_TAC[o_DEF; MATRIX_ID; DET_I]);;
(* ------------------------------------------------------------------------- *)
(* Apply plane rotation to a goal. *)
(* ------------------------------------------------------------------------- *)
let GEOM_HORIZONTAL_PLANE_RULE =
let ifn = MATCH_MP
(TAUT `(p ==> (x <=> x')) /\ (~p ==> (x <=> T)) ==> (x' ==> x)`)
and pth = prove
(`!a f. orthogonal_transformation (f:real^N->real^N)
==> ((!P. (!x. P x) <=> (!x. P (a + f x))) /\
(!P. (?x. P x) <=> (?x. P (a + f x))) /\
(!Q. (!s. Q s) <=> (!s. Q (IMAGE (\x. a + x) (IMAGE f s)))) /\
(!Q. (?s. Q s) <=> (?s. Q (IMAGE (\x. a + x) (IMAGE f s))))) /\
(!P. {x | P x} =
IMAGE (\x. a + x) (IMAGE f {x | P(a + f x)}))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
MP_TAC(ISPEC `(\x. a + x) o (f:real^N->real^N)`
QUANTIFY_SURJECTION_THM) THEN REWRITE_TAC[o_THM; IMAGE_o] THEN
DISCH_THEN MATCH_MP_TAC THEN
ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_SURJECTIVE;
VECTOR_ARITH `a + (x - a:real^N) = x`])
and cth = prove
(`!a f. {} = IMAGE (\x:real^3. a + x) (IMAGE f {})`,
REWRITE_TAC[IMAGE_CLAUSES])
and oth = prove
(`!f:real^3->real^3.
orthogonal_transformation f /\ det(matrix f) = &1
==> linear f /\
(!x y. f x = f y ==> x = y) /\
(!y. ?x. f x = y) /\
(!x. norm(f x) = norm x) /\
(2 <= dimindex(:3) ==> det(matrix f) = &1)`,
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_LINEAR];
ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_INJECTIVE];
ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_SURJECTIVE];
ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION]])
and fth = MESON[]
`(!a f. q a f ==> (p <=> p' a f))
==> ((?a f. q a f) ==> (p <=> !a f. q a f ==> p' a f))` in
fun tm ->
let x,bod = dest_forall tm in
let th1 = EXISTS_GENVAR_RULE
(UNDISCH(ISPEC x ROTATION_HORIZONTAL_PLANE)) in
let [a;f],tm1 = strip_exists(concl th1) in
let [th_orth;th_det;th_im] = CONJUNCTS(ASSUME tm1) in
let th2 = PROVE_HYP th_orth (UNDISCH(ISPECL [a;f] pth)) in
let th3 = (EXPAND_QUANTS_CONV(ASSUME(concl th2)) THENC
SUBS_CONV[GSYM th_im; ISPECL [a;f] cth]) bod in
let th4 = PROVE_HYP th2 th3 in
let th5 = TRANSLATION_INVARIANTS a in
let th6 = GEN_REWRITE_RULE (RAND_CONV o REDEPTH_CONV)
[ASSUME(concl th5)] th4 in
let th7 = PROVE_HYP th5 th6 in
let th8s = CONJUNCTS(MATCH_MP oth (CONJ th_orth th_det)) in
let th9 = LINEAR_INVARIANTS f th8s in
let th10 = GEN_REWRITE_RULE (RAND_CONV o REDEPTH_CONV) [th9] th7 in
let th11 = if intersect (frees(concl th10)) [a;f] = []
then PROVE_HYP th1 (itlist SIMPLE_CHOOSE [a;f] th10)
else MP (MATCH_MP fth (GENL [a;f] (DISCH_ALL th10))) th1 in
let th12 = REWRITE_CONV[ASSUME(mk_neg(hd(hyp th11)))] bod in
let th13 = ifn(CONJ (DISCH_ALL th11) (DISCH_ALL th12)) in
let th14 = MATCH_MP MONO_FORALL (GEN x th13) in
GEN_REWRITE_RULE (TRY_CONV o LAND_CONV) [FORALL_SIMP] th14;;
let GEOM_HORIZONTAL_PLANE_TAC p =
W(fun (asl,w) ->
let avs,bod = strip_forall w
and avs' = subtract (frees w) (freesl(map (concl o snd) asl)) in
let avs,bod = strip_forall w in
MAP_EVERY X_GEN_TAC avs THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) (rev(subtract (avs@avs') [p])) THEN
SPEC_TAC(p,p) THEN
W(MATCH_MP_TAC o GEOM_HORIZONTAL_PLANE_RULE o snd));;
(* ------------------------------------------------------------------------- *)
(* Injection from real^2 -> real^3 plane with zero last coordinate. *)
(* ------------------------------------------------------------------------- *)
let pad2d3d = new_definition
`(pad2d3d:real^2->real^3) x = lambda i. if i < 3 then x$i else &0`;;
let FORALL_PAD2D3D_THM = prove
(`!P. (!y:real^3. y$3 = &0 ==> P y) <=> (!x. P(pad2d3d x))`,
GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[pad2d3d] THEN
SIMP_TAC[LAMBDA_BETA; DIMINDEX_3; ARITH; LT_REFL];
FIRST_X_ASSUM(MP_TAC o SPEC `(lambda i. (y:real^3)$i):real^2`) THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
SIMP_TAC[CART_EQ; pad2d3d; DIMINDEX_3; ARITH; LAMBDA_BETA; DIMINDEX_2;
ARITH_RULE `i < 3 <=> i <= 2`] THEN
REWRITE_TAC[ARITH_RULE `i <= 3 <=> i <= 2 \/ i = 3`] THEN
ASM_MESON_TAC[]]);;
let QUANTIFY_PAD2D3D_THM = prove
(`(!P. (!y:real^3. y$3 = &0 ==> P y) <=> (!x. P(pad2d3d x))) /\
(!P. (?y:real^3. y$3 = &0 /\ P y) <=> (?x. P(pad2d3d x)))`,
REWRITE_TAC[MESON[] `(?y. P y) <=> ~(!x. ~P x)`] THEN
REWRITE_TAC[GSYM FORALL_PAD2D3D_THM] THEN MESON_TAC[]);;
let LINEAR_PAD2D3D = prove
(`linear pad2d3d`,
REWRITE_TAC[linear; pad2d3d] THEN
SIMP_TAC[CART_EQ; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT;
LAMBDA_BETA; DIMINDEX_2; DIMINDEX_3; ARITH;
ARITH_RULE `i < 3 ==> i <= 2`] THEN
REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
REAL_ARITH_TAC);;
let INJECTIVE_PAD2D3D = prove
(`!x y. pad2d3d x = pad2d3d y ==> x = y`,
SIMP_TAC[CART_EQ; pad2d3d; LAMBDA_BETA; DIMINDEX_3; DIMINDEX_2] THEN
REWRITE_TAC[ARITH_RULE `i < 3 <=> i <= 2`] THEN
MESON_TAC[ARITH_RULE `i <= 2 ==> i <= 3`]);;
let NORM_PAD2D3D = prove
(`!x. norm(pad2d3d x) = norm x`,
SIMP_TAC[NORM_EQ; DOT_2; DOT_3; pad2d3d; LAMBDA_BETA;
DIMINDEX_2; DIMINDEX_3; ARITH] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Apply 3D->2D conversion to a goal. Take care to preserve variable names. *)
(* ------------------------------------------------------------------------- *)
let PAD2D3D_QUANTIFY_CONV =
let gv = genvar `:real^2` in
let pth = CONV_RULE (BINOP_CONV(BINDER_CONV(RAND_CONV(GEN_ALPHA_CONV gv))))
QUANTIFY_PAD2D3D_THM in
let conv1 = GEN_REWRITE_CONV I [pth]
and dest_quant tm = try dest_forall tm with Failure _ -> dest_exists tm in
fun tm ->
let th = conv1 tm in
let name = fst(dest_var(fst(dest_quant tm))) in
let ty = snd(dest_var(fst(dest_quant(rand(concl th))))) in
CONV_RULE(RAND_CONV(GEN_ALPHA_CONV(mk_var(name,ty)))) th;;
let PAD2D3D_TAC =
let pad2d3d_tm = `pad2d3d`
and pths = [LINEAR_PAD2D3D; INJECTIVE_PAD2D3D; NORM_PAD2D3D]
and cth = prove
(`{} = IMAGE pad2d3d {} /\
vec 0 = pad2d3d(vec 0)`,
REWRITE_TAC[IMAGE_CLAUSES] THEN MESON_TAC[LINEAR_PAD2D3D; LINEAR_0]) in
let lasttac =
GEN_REWRITE_TAC REDEPTH_CONV [LINEAR_INVARIANTS pad2d3d_tm pths] in
fun gl -> (GEN_REWRITE_TAC ONCE_DEPTH_CONV [cth] THEN
CONV_TAC(DEPTH_CONV PAD2D3D_QUANTIFY_CONV) THEN
lasttac) gl;;
(* ------------------------------------------------------------------------- *)
(* Rotating so a given line from the origin becomes the x-axis. *)
(* ------------------------------------------------------------------------- *)
let ROTATION_HORIZONTAL_LINE = prove
(`!a:real^N.
?b f. orthogonal_transformation f /\ det(matrix f) = &1 /\ f b = a /\
(!k. 1 < k /\ k <= dimindex(:N) ==> b$k = &0)`,
GEN_TAC THEN ASM_CASES_TAC `dimindex(:N) = 1` THENL
[MAP_EVERY EXISTS_TAC [`a:real^N`; `\x:real^N. x`] THEN
ASM_SIMP_TAC[DET_I; MATRIX_ID; ORTHOGONAL_TRANSFORMATION_ID; LTE_ANTISYM];
EXISTS_TAC `norm(a:real^N) % (basis 1):real^N` THEN
SIMP_TAC[VECTOR_MUL_COMPONENT; LT_IMP_LE; BASIS_COMPONENT] THEN
SIMP_TAC[ARITH_RULE `1 < k ==> ~(k = 1)`; REAL_MUL_RZERO] THEN
MATCH_MP_TAC ROTATION_EXISTS THEN
SIMP_TAC[NORM_MUL; NORM_BASIS; LE_REFL; DIMINDEX_GE_1] THEN
REWRITE_TAC[REAL_ABS_NORM; REAL_MUL_RID] THEN
MATCH_MP_TAC(ARITH_RULE `~(n = 1) /\ 1 <= n ==> 2 <= n`) THEN
ASM_REWRITE_TAC[DIMINDEX_GE_1]]);;
let GEOM_HORIZONTAL_LINE_RULE =
let pth = prove
(`!f. orthogonal_transformation (f:real^N->real^N)
==> (vec 0 = f(vec 0) /\ {} = IMAGE f {}) /\
((!P. (!x. P x) <=> (!x. P (f x))) /\
(!P. (?x. P x) <=> (?x. P (f x))) /\
(!Q. (!s. Q s) <=> (!s. Q (IMAGE f s))) /\
(!Q. (?s. Q s) <=> (?s. Q (IMAGE f s)))) /\
(!P. {x | P x} = IMAGE f {x | P(f x)})`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[IMAGE_CLAUSES] THEN
CONJ_TAC THENL
[FIRST_X_ASSUM(MP_TAC o MATCH_MP ORTHOGONAL_TRANSFORMATION_LINEAR) THEN
MESON_TAC[LINEAR_0];
MATCH_MP_TAC QUANTIFY_SURJECTION_THM THEN
ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_SURJECTIVE]])
and oth = prove
(`!f:real^N->real^N.
orthogonal_transformation f /\ det(matrix f) = &1
==> linear f /\
(!x y. f x = f y ==> x = y) /\
(!y. ?x. f x = y) /\
(!x. norm(f x) = norm x) /\
(2 <= dimindex(:N) ==> det(matrix f) = &1)`,
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_LINEAR];
ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_INJECTIVE];
ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_SURJECTIVE];
ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION]])
and sth = prove
(`((!k. 1 < k /\ k <= dimindex(:2) ==> b$k = &0) <=> b$2 = &0) /\
((!k. 1 < k /\ k <= dimindex(:3) ==> b$k = &0) <=> b$2 = &0 /\ b$3 = &0)`,
REWRITE_TAC[DIMINDEX_2; DIMINDEX_3;
ARITH_RULE `k <= 3 <=> k = 3 \/ k <= 2`;
ARITH_RULE `k <= 2 <=> k = 2 \/ ~(1 < k)`] THEN
MESON_TAC[ARITH_RULE `1 < 2 /\ 1 < 3`]) in
let sfn = GEN_REWRITE_RULE ONCE_DEPTH_CONV [sth] in
fun tm ->
let x,bod = dest_forall tm in
let th1 = EXISTS_GENVAR_RULE
(sfn(ISPEC x ROTATION_HORIZONTAL_LINE)) in
let [a;f],tm1 = strip_exists(concl th1) in
let th_orth,th2 = CONJ_PAIR(ASSUME tm1) in
let th_det,th2a = CONJ_PAIR th2 in
let th_works,th_zero = CONJ_PAIR th2a in
let thc,thq = CONJ_PAIR(PROVE_HYP th2 (UNDISCH(ISPEC f pth))) in
let th3 = CONV_RULE(RAND_CONV(SUBS_CONV(GSYM th_works::CONJUNCTS thc)))
(EXPAND_QUANTS_CONV(ASSUME(concl thq)) bod) in
let th4 = PROVE_HYP thq th3 in
let thps = CONJUNCTS(MATCH_MP oth (CONJ th_orth th_det)) in
let th5 = LINEAR_INVARIANTS f thps in
let th6 = PROVE_HYP th_orth
(GEN_REWRITE_RULE (RAND_CONV o REDEPTH_CONV) [th5] th4) in
let ntm = mk_forall(a,mk_imp(concl th_zero,rand(concl th6))) in
let th7 = MP(SPEC a (ASSUME ntm)) th_zero in
let th8 = DISCH ntm (EQ_MP (SYM th6) th7) in
if intersect (frees(concl th8)) [a;f] = [] then
let th9 = PROVE_HYP th1 (itlist SIMPLE_CHOOSE [a;f] th8) in
let th10 = DISCH ntm (GEN x (UNDISCH th9)) in
CONV_RULE(LAND_CONV (GEN_ALPHA_CONV x)) th10
else
let mtm = list_mk_forall([a;f],mk_imp(hd(hyp th8),rand(concl th6))) in
let th9 = EQ_MP (SYM th6) (UNDISCH(SPECL [a;f] (ASSUME mtm))) in
let th10 = itlist SIMPLE_CHOOSE [a;f] (DISCH mtm th9) in
let th11 = GEN x (PROVE_HYP th1 th10) in
MATCH_MP MONO_FORALL th11;;
let GEOM_HORIZONTAL_LINE_TAC l (asl,w as gl) =
let avs,bod = strip_forall w
and avs' = subtract (frees w) (freesl(map (concl o snd) asl)) in
(MAP_EVERY X_GEN_TAC avs THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) (rev(subtract (avs@avs') [l])) THEN
SPEC_TAC(l,l) THEN
W(MATCH_MP_TAC o GEOM_HORIZONTAL_LINE_RULE o snd)) gl;;
|