Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 33,532 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
(* ========================================================================= *)
(* Set-theoretic hierarchy for modelling HOL inside itself.                  *)
(* ========================================================================= *)

let INJ_LEMMA = prove
 (`(!x y. (f x = f y) ==> (x = y)) <=> (!x y. (f x = f y) <=> (x = y))`,
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Useful to have a niceish "function update" notation.                      *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("|->",(12,"right"));;

let valmod = new_definition
  `(x |-> a) (v:A->B) = \y. if y = x then a else v(y)`;;

let VALMOD = prove
 (`!v x y a. ((x |-> y) v) a = if a = x then y else v(a)`,
  REWRITE_TAC[valmod]);;

let VALMOD_BASIC = prove
 (`!v x y. (x |-> y) v x = y`,
  REWRITE_TAC[valmod]);;

let VALMOD_VALMOD_BASIC = prove
 (`!v a b x. (x |-> a) ((x |-> b) v) = (x |-> a) v`,
  REWRITE_TAC[valmod; FUN_EQ_THM] THEN
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;

let VALMOD_REPEAT = prove
 (`!v x. (x |-> v(x)) v = v`,
  REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);;

let FORALL_VALMOD = prove
 (`!x. (!v a. P((x |-> a) v)) = (!v. P v)`,
  MESON_TAC[VALMOD_REPEAT]);;

let VALMOD_SWAP = prove
 (`!v x y a b.
     ~(x = y) ==> ((x |-> a) ((y |-> b) v) = (y |-> b) ((x |-> a) v))`,
  REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* A dummy finite type inadequately modelling ":ind".                        *)
(* ------------------------------------------------------------------------- *)

let ind_model_tybij_th =
  prove(`?x. x IN @s:num->bool. ~(s = {}) /\ FINITE s`,
         MESON_TAC[MEMBER_NOT_EMPTY; IN_SING; FINITE_RULES]);;

let ind_model_tybij =
  new_type_definition "ind_model" ("mk_ind","dest_ind") ind_model_tybij_th;;

(* ------------------------------------------------------------------------- *)
(* Introduce a type whose universe is "inaccessible" starting from           *)
(* "ind_model". Since "ind_model" is finite, we can just use any             *)
(* infinite set. In order to make "ind_model" infinite, we would need        *)
(* a new axiom. In order to keep things generic we try to deduce             *)
(* everything from this one uniform "axiom". Note that even in the           *)
(* infinite case, this can still be a small set in ZF terms, not a real      *)
(* inaccessible cardinal.                                                    *)
(* ------------------------------------------------------------------------- *)

(****** Here's what we'd do in the infinite case

 new_type("I",0);;

 let I_AXIOM = new_axiom
  `UNIV:ind_model->bool <_c UNIV:I->bool /\
   (!s:A->bool. s <_c UNIV:I->bool ==> {t | t SUBSET s} <_c UNIV:I->bool)`;;

 *******)

let inacc_tybij_th = prove
 (`?x:num. x IN UNIV`,REWRITE_TAC[IN_UNIV]);;

let inacc_tybij =
  new_type_definition "I" ("mk_I","dest_I") inacc_tybij_th;;

let I_AXIOM = prove
 (`UNIV:ind_model->bool <_c UNIV:I->bool /\
   (!s:A->bool. s <_c UNIV:I->bool ==> {t | t SUBSET s} <_c UNIV:I->bool)`,
  let lemma = prove
   (`!s. s <_c UNIV:I->bool <=> FINITE s`,
    GEN_TAC THEN REWRITE_TAC[FINITE_CARD_LT] THEN
    MATCH_MP_TAC CARD_LT_CONG THEN REWRITE_TAC[CARD_EQ_REFL] THEN
    REWRITE_TAC[GSYM CARD_LE_ANTISYM; le_c; IN_UNIV] THEN
    MESON_TAC[inacc_tybij; IN_UNIV]) in
  REWRITE_TAC[lemma; FINITE_POWERSET] THEN
  SUBGOAL_THEN `UNIV = IMAGE mk_ind (@s. ~(s = {}) /\ FINITE s)`
  SUBST1_TAC THENL
   [MESON_TAC[EXTENSION; IN_IMAGE; IN_UNIV; ind_model_tybij];
    MESON_TAC[FINITE_IMAGE; NOT_INSERT_EMPTY; FINITE_RULES]]);;

(* ------------------------------------------------------------------------- *)
(* I is infinite and therefore admits an injective pairing.                  *)
(* ------------------------------------------------------------------------- *)

let I_INFINITE = prove
 (`INFINITE(UNIV:I->bool)`,
  REWRITE_TAC[INFINITE] THEN DISCH_TAC THEN
  MP_TAC(ISPEC `{n | n < CARD(UNIV:I->bool) - 1}` (CONJUNCT2 I_AXIOM)) THEN
  ASM_SIMP_TAC[CARD_LT_CARD; FINITE_NUMSEG_LT; FINITE_POWERSET] THEN
  SIMP_TAC[CARD_NUMSEG_LT; CARD_POWERSET; FINITE_NUMSEG_LT] THEN
  SUBGOAL_THEN `~(CARD(UNIV:I->bool) = 0)` MP_TAC THENL
   [ASM_SIMP_TAC[CARD_EQ_0; GSYM MEMBER_NOT_EMPTY; IN_UNIV]; ALL_TAC] THEN
  SIMP_TAC[ARITH_RULE `~(n = 0) ==> n - 1 < n`; NOT_LT] THEN
  MATCH_MP_TAC(ARITH_RULE `a - 1 < b ==> ~(a = 0) ==> a <= b`) THEN
  SPEC_TAC(`CARD(UNIV:I->bool) - 1`,`n:num`) THEN POP_ASSUM(K ALL_TAC) THEN
  INDUCT_TAC THEN REWRITE_TAC[EXP; ARITH] THEN POP_ASSUM MP_TAC THEN
  ARITH_TAC);;

let I_PAIR_EXISTS = prove
 (`?f:I#I->I. !x y. (f x = f y) ==> (x = y)`,
  SUBGOAL_THEN `UNIV:I#I->bool <=_c UNIV:I->bool` MP_TAC THENL
   [ALL_TAC; REWRITE_TAC[le_c; IN_UNIV]] THEN
  MATCH_MP_TAC CARD_EQ_IMP_LE THEN
  MP_TAC(MATCH_MP CARD_SQUARE_INFINITE I_INFINITE) THEN
  MATCH_MP_TAC(TAUT `(a = b) ==> a ==> b`) THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[EXTENSION; mul_c; IN_ELIM_THM; IN_UNIV] THEN MESON_TAC[PAIR]);;

let I_PAIR = REWRITE_RULE[INJ_LEMMA]
 (new_specification ["I_PAIR"] I_PAIR_EXISTS);;

(* ------------------------------------------------------------------------- *)
(* It also admits injections from "bool" and "ind_model".                    *)
(* ------------------------------------------------------------------------- *)

let CARD_BOOL_LT_I = prove
 (`UNIV:bool->bool <_c UNIV:I->bool`,
  REWRITE_TAC[GSYM CARD_NOT_LE] THEN
  DISCH_TAC THEN MP_TAC I_INFINITE THEN REWRITE_TAC[INFINITE] THEN
  SUBGOAL_THEN `FINITE(UNIV:bool->bool)`
   (fun th -> ASM_MESON_TAC[th; CARD_LE_FINITE]) THEN
  SUBGOAL_THEN `UNIV:bool->bool = {F,T}` SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_UNIV; IN_INSERT] THEN MESON_TAC[];
    SIMP_TAC[FINITE_RULES]]);;

let I_BOOL_EXISTS = prove
 (`?f:bool->I. !x y. (f x = f y) ==> (x = y)`,
  MP_TAC(MATCH_MP CARD_LT_IMP_LE CARD_BOOL_LT_I) THEN
  SIMP_TAC[lt_c; le_c; IN_UNIV]);;

let I_BOOL = REWRITE_RULE[INJ_LEMMA]
 (new_specification ["I_BOOL"] I_BOOL_EXISTS);;

let I_IND_EXISTS = prove
 (`?f:ind_model->I. !x y. (f x = f y) ==> (x = y)`,
  MP_TAC(CONJUNCT1 I_AXIOM) THEN SIMP_TAC[lt_c; le_c; IN_UNIV]);;

let I_IND = REWRITE_RULE[INJ_LEMMA]
 (new_specification ["I_IND"] I_IND_EXISTS);;

(* ------------------------------------------------------------------------- *)
(* And the injection from powerset of any accessible set.                    *)
(* ------------------------------------------------------------------------- *)

let I_SET_EXISTS = prove
 (`!s:I->bool.
        s <_c UNIV:I->bool
        ==> ?f:(I->bool)->I. !t u. t SUBSET s /\ u SUBSET s /\ (f t = f u)
                                   ==> (t = u)`,
  GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP(CONJUNCT2 I_AXIOM)) THEN
  DISCH_THEN(MP_TAC o MATCH_MP CARD_LT_IMP_LE) THEN
  REWRITE_TAC[le_c; IN_UNIV; IN_ELIM_THM]);;

let I_SET = new_specification ["I_SET"]
 (REWRITE_RULE[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] I_SET_EXISTS);;

(* ------------------------------------------------------------------------- *)
(* Define a type for "levels" of our set theory.                             *)
(* ------------------------------------------------------------------------- *)

let setlevel_INDUCT,setlevel_RECURSION = define_type
 "setlevel = Ur_bool
           | Ur_ind
           | Powerset setlevel
           | Cartprod setlevel setlevel";;

let setlevel_DISTINCT = distinctness "setlevel";;
let setlevel_INJ = injectivity "setlevel";;

(* ------------------------------------------------------------------------- *)
(* Now define a subset of I corresponding to each.                           *)
(* ------------------------------------------------------------------------- *)

let setlevel = new_recursive_definition setlevel_RECURSION
 `(setlevel Ur_bool = IMAGE I_BOOL UNIV) /\
  (setlevel Ur_ind = IMAGE I_IND UNIV) /\
  (setlevel (Cartprod l1 l2) =
           IMAGE I_PAIR {x,y | x IN setlevel l1 /\ y IN setlevel l2}) /\
  (setlevel (Powerset l) = IMAGE (I_SET (setlevel l))
                                 {s | s SUBSET (setlevel l)})`;;

(* ------------------------------------------------------------------------- *)
(* Show they all satisfy the cardinal limits.                                *)
(* ------------------------------------------------------------------------- *)

let SETLEVEL_CARD = prove
 (`!l. setlevel l <_c UNIV:I->bool`,
  MATCH_MP_TAC setlevel_INDUCT THEN REWRITE_TAC[setlevel] THEN
  REPEAT CONJ_TAC THENL
   [TRANS_TAC CARD_LET_TRANS `UNIV:bool->bool` THEN
    REWRITE_TAC[CARD_LE_IMAGE; CARD_BOOL_LT_I];
    TRANS_TAC CARD_LET_TRANS `UNIV:ind_model->bool` THEN
    REWRITE_TAC[CARD_LE_IMAGE; I_AXIOM];
    X_GEN_TAC `l:setlevel` THEN DISCH_TAC THEN
    TRANS_TAC CARD_LET_TRANS `{s | s SUBSET (setlevel l)}` THEN
    ASM_SIMP_TAC[I_AXIOM; CARD_LE_IMAGE];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`l1:setlevel`; `l2:setlevel`] THEN STRIP_TAC THEN
  TRANS_TAC CARD_LET_TRANS `setlevel l1 *_c setlevel l2` THEN
  ASM_SIMP_TAC[CARD_MUL_LT_INFINITE; I_INFINITE; GSYM mul_c; CARD_LE_IMAGE]);;

(* ------------------------------------------------------------------------- *)
(* Hence the injectivity of the mapping from powerset.                       *)
(* ------------------------------------------------------------------------- *)

let I_SET_SETLEVEL = prove
 (`!l s t. s SUBSET setlevel l /\ t SUBSET setlevel l /\
          (I_SET (setlevel l) s = I_SET (setlevel l) t)
          ==> (s = t)`,
  MESON_TAC[SETLEVEL_CARD; I_SET]);;

(* ------------------------------------------------------------------------- *)
(* Now our universe of sets and (ur)elements.                                *)
(* ------------------------------------------------------------------------- *)

let universe = new_definition
 `universe = {(t,x) | x IN setlevel t}`;;

(* ------------------------------------------------------------------------- *)
(* Define an actual type V.                                                  *)
(*                                                                           *)
(* This satisfies a suitable number of the ZF axioms. It isn't extensional   *)
(* but we could then construct a quotient structure if desired. Anyway it's  *)
(* only empty sets that aren't. A more significant difference is that we     *)
(* have urelements and the hierarchy levels are all distinct rather than     *)
(* being cumulative.                                                         *)
(* ------------------------------------------------------------------------- *)

let v_tybij_th = prove
 (`?a. a IN universe`,
  EXISTS_TAC `Ur_bool,I_BOOL T` THEN
  REWRITE_TAC[universe; IN_ELIM_THM; PAIR_EQ; CONJ_ASSOC;
              ONCE_REWRITE_RULE[CONJ_SYM] UNWIND_THM1;
              setlevel; IN_IMAGE; IN_UNIV] THEN
  MESON_TAC[]);;

let v_tybij =
  new_type_definition "V" ("mk_V","dest_V") v_tybij_th;;

let V_TYBIJ = prove
 (`!l e. e IN setlevel l <=> (dest_V(mk_V(l,e)) = (l,e))`,
  REWRITE_TAC[GSYM(CONJUNCT2 v_tybij)] THEN
  REWRITE_TAC[IN_ELIM_THM; universe; FORALL_PAIR_THM; PAIR_EQ] THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Drop a level; test if something is a set.                                 *)
(* ------------------------------------------------------------------------- *)

let droplevel = new_recursive_definition setlevel_RECURSION
  `droplevel(Powerset l) = l`;;

let isasetlevel = new_recursive_definition setlevel_RECURSION
 `(isasetlevel Ur_bool = F) /\
  (isasetlevel Ur_ind = F) /\
  (isasetlevel (Cartprod l1 l2) = F) /\
  (isasetlevel (Powerset l) = T)`;;

(* ------------------------------------------------------------------------- *)
(* Define some useful inversions.                                            *)
(* ------------------------------------------------------------------------- *)

let level = new_definition
 `level x = FST(dest_V x)`;;

let element = new_definition
 `element x = SND(dest_V x)`;;

let ELEMENT_IN_LEVEL = prove
 (`!x. (element x) IN setlevel(level x)`,
  REWRITE_TAC[V_TYBIJ; v_tybij; level; element; PAIR]);;

let SET = prove
 (`!x. mk_V(level x,element x) = x`,
 REWRITE_TAC[level; element; PAIR; v_tybij]);;

let set = new_definition
 `set x = @s. s SUBSET (setlevel(droplevel(level x))) /\
              (I_SET (setlevel(droplevel(level x))) s = element x)`;;

let isaset = new_definition
 `isaset x <=> ?l. level x = Powerset l`;;

(* ------------------------------------------------------------------------- *)
(* Now all the critical relations.                                           *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("<:",(11,"right"));;

let inset = new_definition
 `x <: s <=> (level s = Powerset(level x)) /\ (element x) IN (set s)`;;

parse_as_infix("<=:",(12,"right"));;

let subset_def = new_definition
 `s <=: t <=> (level s = level t) /\ !x. x <: s ==> x <: t`;;

(* ------------------------------------------------------------------------- *)
(* If something has members, it's a set.                                     *)
(* ------------------------------------------------------------------------- *)

let MEMBERS_ISASET = prove
 (`!x s. x <: s ==> isaset s`,
  REWRITE_TAC[inset; isaset] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Each level is nonempty.                                                   *)
(* ------------------------------------------------------------------------- *)

let LEVEL_NONEMPTY = prove
 (`!l. ?x. x IN setlevel l`,
  REWRITE_TAC[MEMBER_NOT_EMPTY] THEN
  MATCH_MP_TAC setlevel_INDUCT THEN REWRITE_TAC[setlevel; IMAGE_EQ_EMPTY] THEN
  REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_UNIV] THEN
  REWRITE_TAC[EXISTS_PAIR_THM; IN_ELIM_THM] THEN
  MESON_TAC[EMPTY_SUBSET]);;

let LEVEL_SET_EXISTS = prove
 (`!l. ?s. level s = l`,
  MP_TAC LEVEL_NONEMPTY THEN MATCH_MP_TAC MONO_FORALL THEN
  REWRITE_TAC[level] THEN MESON_TAC[FST; PAIR; V_TYBIJ]);;

(* ------------------------------------------------------------------------- *)
(* Empty sets (or non-sets, of course) exist at all set levels.              *)
(* ------------------------------------------------------------------------- *)

let MK_V_CLAUSES = prove
 (`e IN setlevel l
   ==> (level(mk_V(l,e)) = l) /\ (element(mk_V(l,e)) = e)`,
  REWRITE_TAC[level; element; PAIR; GSYM PAIR_EQ; V_TYBIJ]);;

let MK_V_SET = prove
 (`s SUBSET setlevel l
   ==> (set(mk_V(Powerset l,I_SET (setlevel l) s)) = s) /\
       (level(mk_V(Powerset l,I_SET (setlevel l) s)) = Powerset l) /\
       (element(mk_V(Powerset l,I_SET (setlevel l) s)) = I_SET (setlevel l) s)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN `I_SET (setlevel l) s IN setlevel(Powerset l)` ASSUME_TAC THENL
   [REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  ASM_SIMP_TAC[MK_V_CLAUSES; set] THEN
  SUBGOAL_THEN `I_SET (setlevel l) s IN setlevel(Powerset l)` ASSUME_TAC THENL
   [REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  ASM_SIMP_TAC[MK_V_CLAUSES; droplevel] THEN
  MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[] THEN
  ASM_MESON_TAC[I_SET_SETLEVEL]);;

let EMPTY_EXISTS = prove
 (`!l. ?s. (level s = l) /\ !x. ~(x <: s)`,
  MATCH_MP_TAC setlevel_INDUCT THEN
  REPEAT CONJ_TAC THENL
   [ALL_TAC; ALL_TAC;
    X_GEN_TAC `l:setlevel` THEN DISCH_THEN(K ALL_TAC) THEN
    EXISTS_TAC `mk_V(Powerset l,I_SET (setlevel l) {})` THEN
    SIMP_TAC[inset; MK_V_CLAUSES; MK_V_SET; EMPTY_SUBSET; NOT_IN_EMPTY];
    ALL_TAC] THEN
 MESON_TAC[LEVEL_SET_EXISTS; MEMBERS_ISASET; isaset;
           setlevel_DISTINCT]);;

let EMPTY_SET = new_specification ["emptyset"]
        (REWRITE_RULE[SKOLEM_THM] EMPTY_EXISTS);;

(* ------------------------------------------------------------------------- *)
(* Comprehension principle, with no change of levels.                        *)
(* ------------------------------------------------------------------------- *)

let COMPREHENSION_EXISTS = prove
 (`!s p. ?t. (level t = level s) /\ !x. x <: t <=> x <: s /\ p x`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL
   [ALL_TAC; ASM_MESON_TAC[MEMBERS_ISASET]] THEN
  POP_ASSUM(X_CHOOSE_TAC `l:setlevel` o REWRITE_RULE[isaset]) THEN
  MP_TAC(SPEC `s:V` ELEMENT_IN_LEVEL) THEN
  ASM_REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN
  DISCH_THEN(X_CHOOSE_THEN `u:I->bool` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `mk_V(Powerset l,
                   I_SET(setlevel l)
                   {i | i IN u /\ p(mk_V(l,i))})` THEN
  SUBGOAL_THEN `{i | i IN u /\ p (mk_V (l,i))} SUBSET (setlevel l)`
  ASSUME_TAC THENL
   [REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET];
    ALL_TAC] THEN
  ASM_SIMP_TAC[MK_V_SET; inset] THEN X_GEN_TAC `x:V` THEN
  REWRITE_TAC[setlevel_INJ] THEN
  REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[SET; MK_V_SET]);;

parse_as_infix("suchthat",(21,"left"));;

let SUCHTHAT = new_specification ["suchthat"]
     (REWRITE_RULE[SKOLEM_THM] COMPREHENSION_EXISTS);;

(* ------------------------------------------------------------------------- *)
(* Each setlevel exists as a set.                                            *)
(* ------------------------------------------------------------------------- *)

let SETLEVEL_EXISTS = prove
 (`!l. ?s. (level s = Powerset l) /\
           !x. x <: s <=> (level x = l) /\ element(x) IN setlevel l`,
  GEN_TAC THEN
  EXISTS_TAC `mk_V(Powerset l,I_SET (setlevel l) (setlevel l))` THEN
  SIMP_TAC[MK_V_SET; SUBSET_REFL; inset; setlevel_INJ] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Conversely, set(s) belongs in the appropriate level.                      *)
(* ------------------------------------------------------------------------- *)

let SET_DECOMP = prove
 (`!s. isaset s
       ==> (set s) SUBSET (setlevel(droplevel(level s))) /\
           (I_SET (setlevel(droplevel(level s))) (set s) = element s)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[isaset] THEN
  DISCH_THEN(X_CHOOSE_TAC `l:setlevel`) THEN
  REWRITE_TAC[set] THEN CONV_TAC SELECT_CONV THEN
  ASM_REWRITE_TAC[setlevel; droplevel] THEN
  MP_TAC(SPEC `s:V` ELEMENT_IN_LEVEL) THEN
  ASM_REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN
  MESON_TAC[]);;

let SET_SUBSET_SETLEVEL = prove
 (`!s. isaset s ==> set(s) SUBSET setlevel(droplevel(level s))`,
  MESON_TAC[SET_DECOMP]);;

(* ------------------------------------------------------------------------- *)
(* Power set exists.                                                         *)
(* ------------------------------------------------------------------------- *)

let POWERSET_EXISTS = prove
 (`!s. ?t. (level t = Powerset(level s)) /\ !x. x <: t <=> x <=: s`,
  GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL
   [FIRST_ASSUM(MP_TAC o GSYM o MATCH_MP SET_DECOMP) THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [isaset]) THEN
    DISCH_THEN(X_CHOOSE_THEN `l:setlevel` STRIP_ASSUME_TAC) THEN
    ASM_REWRITE_TAC[droplevel] THEN STRIP_TAC THEN
    X_CHOOSE_THEN `t:V` STRIP_ASSUME_TAC
      (SPEC `Powerset l` SETLEVEL_EXISTS) THEN
    MP_TAC(SPECL [`t:V`; `\v. !x. x <: v ==> x <: s`]
      COMPREHENSION_EXISTS) THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:V` THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[subset_def] THEN
    ASM_MESON_TAC[ELEMENT_IN_LEVEL];
    MP_TAC(SPEC `level s` SETLEVEL_EXISTS) THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:V` THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[subset_def] THEN
    ASM_MESON_TAC[ELEMENT_IN_LEVEL; MEMBERS_ISASET; isaset]]);;

let POWERSET = new_specification ["powerset"]
     (REWRITE_RULE[SKOLEM_THM] POWERSET_EXISTS);;

(* ------------------------------------------------------------------------- *)
(* Pairing operation.                                                        *)
(* ------------------------------------------------------------------------- *)

let pair = new_definition
 `pair x y =
        mk_V(Cartprod (level x) (level y),I_PAIR(element x,element y))`;;

let PAIR_IN_LEVEL = prove
 (`!x y l m. x IN setlevel l /\ y IN setlevel m
             ==> I_PAIR(x,y) IN setlevel (Cartprod l m)`,
  REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]);;

let DEST_MK_PAIR = prove
 (`dest_V(mk_V(Cartprod (level x) (level y),I_PAIR(element x,element y))) =
        Cartprod (level x) (level y),I_PAIR(element x,element y)`,
  REWRITE_TAC[GSYM V_TYBIJ] THEN SIMP_TAC[PAIR_IN_LEVEL; ELEMENT_IN_LEVEL]);;

let PAIR_INJ = prove
 (`!x1 y1 x2 y2. (pair x1 y1 = pair x2 y2) <=> (x1 = x2) /\ (y1 = y2)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN
  REWRITE_TAC[pair] THEN
  DISCH_THEN(MP_TAC o AP_TERM `dest_V`) THEN REWRITE_TAC[DEST_MK_PAIR] THEN
  REWRITE_TAC[setlevel_INJ; PAIR_EQ; I_PAIR] THEN
  REWRITE_TAC[level; element] THEN MESON_TAC[PAIR; CONJUNCT1 v_tybij]);;

let LEVEL_PAIR = prove
 (`!x y. level(pair x y) = Cartprod (level x) (level y)`,
  REWRITE_TAC[level;
              REWRITE_RULE[DEST_MK_PAIR] (AP_TERM `dest_V` (SPEC_ALL pair))]);;

(* ------------------------------------------------------------------------- *)
(* Decomposition functions.                                                  *)
(* ------------------------------------------------------------------------- *)

let fst_def = new_definition
  `fst p = @x. ?y. p = pair x y`;;

let snd_def = new_definition
  `snd p = @y. ?x. p = pair x y`;;

let PAIR_CLAUSES = prove
 (`!x y. (fst(pair x y) = x) /\ (snd(pair x y) = y)`,
  REWRITE_TAC[fst_def; snd_def] THEN MESON_TAC[PAIR_INJ]);;

(* ------------------------------------------------------------------------- *)
(* And the Cartesian product space.                                          *)
(* ------------------------------------------------------------------------- *)

let CARTESIAN_EXISTS = prove
 (`!s t. ?u. (level u =
                  Powerset(Cartprod (droplevel(level s))
                                    (droplevel(level t)))) /\
                 !z. z <: u <=> ?x y. (z = pair x y) /\ x <: s /\ y <: t`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `isaset s` THENL
   [ALL_TAC; ASM_MESON_TAC[EMPTY_EXISTS; MEMBERS_ISASET]] THEN
  SUBGOAL_THEN `?l. (level s = Powerset l)` CHOOSE_TAC THENL
   [ASM_MESON_TAC[isaset]; ALL_TAC] THEN
  ASM_CASES_TAC `isaset t` THENL
   [ALL_TAC; ASM_MESON_TAC[EMPTY_EXISTS; MEMBERS_ISASET]] THEN
  SUBGOAL_THEN `?m. (level t = Powerset m)` CHOOSE_TAC THENL
   [ASM_MESON_TAC[isaset]; ALL_TAC] THEN
  MP_TAC(SPEC `Cartprod l m` SETLEVEL_EXISTS) THEN
  ASM_REWRITE_TAC[droplevel] THEN
  DISCH_THEN(X_CHOOSE_THEN `u:V` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPECL [`u:V`; `\z. ?x y. (z = pair x y) /\ x <: s /\ y <: t`]
               COMPREHENSION_EXISTS) THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `w:V` THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  X_GEN_TAC `z:V` THEN
  MATCH_MP_TAC(TAUT `(a ==> b) /\ (c ==> a) ==> ((a /\ b) /\ c <=> c)`) THEN
  CONJ_TAC THENL [MESON_TAC[ELEMENT_IN_LEVEL]; ALL_TAC] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[LEVEL_PAIR] THEN BINOP_TAC THEN
  ASM_MESON_TAC[inset; setlevel_INJ]);;

let CARTPRODUCT = new_specification ["cartproduct"]
       (REWRITE_RULE[SKOLEM_THM] CARTESIAN_EXISTS);;

(* ------------------------------------------------------------------------- *)
(* Extensionality for sets at the same level.                                *)
(* ------------------------------------------------------------------------- *)

let IN_SET_ELEMENT = prove
 (`!s. isaset s /\ e IN set(s)
       ==> ?x. (e = element x) /\ (level s = Powerset(level x)) /\ x <: s`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(X_CHOOSE_TAC `l:setlevel` o REWRITE_RULE[isaset]) THEN
  EXISTS_TAC `mk_V(l,e)` THEN REWRITE_TAC[inset] THEN
  SUBGOAL_THEN `e IN setlevel l` (fun t -> ASM_SIMP_TAC[t; MK_V_CLAUSES]) THEN
  ASM_MESON_TAC[SET_SUBSET_SETLEVEL; SUBSET; droplevel]);;

let SUBSET_ALT = prove
 (`isaset s /\ isaset t
   ==> (s <=: t <=> (level s = level t) /\ set(s) SUBSET set(t))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[subset_def; inset] THEN
  ASM_CASES_TAC `level s = level t` THEN ASM_REWRITE_TAC[SUBSET] THEN
  STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
  ASM_MESON_TAC[IN_SET_ELEMENT]);;

let SUBSET_ANTISYM_LEVEL = prove
 (`!s t. isaset s /\ isaset t /\ s <=: t /\ t <=: s ==> (s = t)`,
  REPEAT GEN_TAC THEN
  REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  ASM_SIMP_TAC[SUBSET_ALT]  THEN
  EVERY_ASSUM(MP_TAC o GSYM o MATCH_MP SET_DECOMP) THEN
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `s:V` SET) THEN MP_TAC(SPEC `t:V` SET) THEN
  REPEAT(DISCH_THEN(SUBST1_TAC o SYM)) THEN
  AP_TERM_TAC THEN BINOP_TAC THEN ASM_MESON_TAC[SUBSET_ANTISYM]);;

let EXTENSIONALITY_LEVEL = prove
 (`!s t. isaset s /\ isaset t /\ (level s = level t) /\ (!x. x <: s <=> x <: t)
         ==> (s = t)`,
  MESON_TAC[SUBSET_ANTISYM_LEVEL; subset_def]);;

(* ------------------------------------------------------------------------- *)
(* And hence for any nonempty sets.                                          *)
(* ------------------------------------------------------------------------- *)

let EXTENSIONALITY_NONEMPTY = prove
 (`!s t. (?x. x <: s) /\ (?x. x <: t) /\ (!x. x <: s <=> x <: t)
         ==> (s = t)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC EXTENSIONALITY_LEVEL THEN
  ASM_MESON_TAC[MEMBERS_ISASET; inset]);;

(* ------------------------------------------------------------------------- *)
(* Union set exists. I don't need this but if might be a sanity check.       *)
(* ------------------------------------------------------------------------- *)

let UNION_EXISTS = prove
 (`!s. ?t. (level t = droplevel(level s)) /\
           !x. x <: t <=> ?u. x <: u /\ u <: s`,
  GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL
   [ALL_TAC;
    MP_TAC(SPEC `droplevel(level s)` EMPTY_EXISTS) THEN
    MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[MEMBERS_ISASET]] THEN
  FIRST_ASSUM(X_CHOOSE_TAC `l:setlevel` o REWRITE_RULE[isaset]) THEN
  ASM_REWRITE_TAC[droplevel] THEN ASM_CASES_TAC `?m. l = Powerset m` THENL
   [ALL_TAC;
    MP_TAC(SPEC `l:setlevel` EMPTY_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[inset] THEN
    ASM_MESON_TAC[setlevel_INJ]] THEN
  FIRST_X_ASSUM(X_CHOOSE_THEN `m:setlevel` SUBST_ALL_TAC) THEN
  MP_TAC(SPEC `m:setlevel` SETLEVEL_EXISTS) THEN
  ASM_REWRITE_TAC[droplevel] THEN
  DISCH_THEN(X_CHOOSE_THEN `t:V` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPECL [`t:V`; `\x. ?u. x <: u /\ u <: s`]
      COMPREHENSION_EXISTS) THEN
  MATCH_MP_TAC MONO_EXISTS THEN
  GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[inset; ELEMENT_IN_LEVEL; setlevel_INJ]);;

let SETUNION = new_specification ["setunion"]
        (REWRITE_RULE[SKOLEM_THM] UNION_EXISTS);;

(* ------------------------------------------------------------------------- *)
(* Boolean stuff.                                                            *)
(* ------------------------------------------------------------------------- *)

let true_def = new_definition
 `true = mk_V(Ur_bool,I_BOOL T)`;;

let false_def = new_definition
 `false = mk_V(Ur_bool,I_BOOL F)`;;

let boolset = new_definition
 `boolset =
     mk_V(Powerset Ur_bool,I_SET (setlevel Ur_bool) (setlevel Ur_bool))`;;

let IN_BOOL = prove
 (`!x. x <: boolset <=> (x = true) \/ (x = false)`,
  REWRITE_TAC[inset; boolset; true_def; false_def] THEN
  SIMP_TAC[MK_V_SET; SUBSET_REFL] THEN
  REWRITE_TAC[setlevel_INJ; setlevel] THEN
  SUBGOAL_THEN `IMAGE I_BOOL UNIV = {I_BOOL F,I_BOOL T}` SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNIV; IN_INSERT; NOT_IN_EMPTY] THEN
    MESON_TAC[I_BOOL];
    ALL_TAC] THEN
  GEN_TAC THEN
  GEN_REWRITE_TAC (RAND_CONV o BINOP_CONV o LAND_CONV) [GSYM SET] THEN
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
  SUBGOAL_THEN `!b. (I_BOOL b) IN setlevel Ur_bool` ASSUME_TAC THENL
   [REWRITE_TAC[setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[];
    ASM_MESON_TAC[V_TYBIJ; ELEMENT_IN_LEVEL; PAIR_EQ]]);;

let TRUE_NE_FALSE = prove
 (`~(true = false)`,
  REWRITE_TAC[true_def; false_def] THEN
  DISCH_THEN(MP_TAC o AP_TERM `dest_V`) THEN
  SUBGOAL_THEN `!b. (I_BOOL b) IN setlevel Ur_bool` ASSUME_TAC THENL
   [REWRITE_TAC[setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[];
    ASM_MESON_TAC[V_TYBIJ; I_BOOL; PAIR_EQ]]);;

let BOOLEAN_EQ = prove
 (`!x y. x <: boolset /\ y <: boolset /\
         ((x = true) <=> (y = true))
         ==> (x = y)`,
  MESON_TAC[TRUE_NE_FALSE; IN_BOOL]);;

(* ------------------------------------------------------------------------- *)
(* Ind stuff.                                                                *)
(* ------------------------------------------------------------------------- *)

let indset = new_definition
 `indset = mk_V(Powerset Ur_ind,I_SET (setlevel Ur_ind) (setlevel Ur_ind))`;;

let INDSET_IND_MODEL = prove
 (`?f. (!i:ind_model. f(i) <: indset) /\ (!i j. (f i = f j) ==> (i = j))`,
  EXISTS_TAC `\i. mk_V(Ur_ind,I_IND i)` THEN REWRITE_TAC[] THEN
  SUBGOAL_THEN `!i. (I_IND i) IN setlevel Ur_ind` ASSUME_TAC THENL
   [REWRITE_TAC[setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[]; ALL_TAC] THEN
  ASM_SIMP_TAC[MK_V_SET; SUBSET_REFL; inset; indset; MK_V_CLAUSES] THEN
  ASM_MESON_TAC[V_TYBIJ; I_IND; ELEMENT_IN_LEVEL; PAIR_EQ]);;

let INDSET_INHABITED = prove
 (`?x. x <: indset`,
  MESON_TAC[INDSET_IND_MODEL]);;

(* ------------------------------------------------------------------------- *)
(* Axiom of choice (this is trivially so in HOL anyway, but...)              *)
(* ------------------------------------------------------------------------- *)

let ch =
  let th = prove
   (`?ch. !s. (?x. x <: s) ==> ch(s) <: s`,
    REWRITE_TAC[GSYM SKOLEM_THM] THEN MESON_TAC[]) in
  new_specification ["ch"] th;;

(* ------------------------------------------------------------------------- *)
(* Sanity check lemmas.                                                      *)
(* ------------------------------------------------------------------------- *)

let IN_POWERSET = prove
 (`!x s. x <: powerset s <=> x <=: s`,
  MESON_TAC[POWERSET]);;

let IN_CARTPRODUCT = prove
 (`!z s t. z <: cartproduct s t <=> ?x y. (z = pair x y) /\ x <: s /\ y <: t`,
  MESON_TAC[CARTPRODUCT]);;

let IN_COMPREHENSION = prove
 (`!p s x. x <: s suchthat p <=> x <: s /\ p x`,
  MESON_TAC[SUCHTHAT]);;

let CARTPRODUCT_INHABITED = prove
 (`(?x. x <: s) /\ (?y. y <: t) ==> ?z. z <: cartproduct s t`,
  MESON_TAC[IN_CARTPRODUCT]);;

(* ------------------------------------------------------------------------- *)
(* Definition of function space.                                             *)
(* ------------------------------------------------------------------------- *)

let funspace = new_definition
  `funspace s t =
      powerset(cartproduct s t) suchthat
      (\u. !x. x <: s ==> ?!y. pair x y <: u)`;;

let apply_def = new_definition
  `apply f x = @y. pair x y <: f`;;

let abstract = new_definition
  `abstract s t f =
        (cartproduct s t) suchthat (\z. !x y. (pair x y = z) ==> (y = f x))`;;

let APPLY_ABSTRACT = prove
 (`!x s t. x <: s /\ f(x) <: t ==> (apply(abstract s t f) x = f(x))`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[apply_def; abstract; IN_CARTPRODUCT; SUCHTHAT] THEN
  MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[PAIR_INJ] THEN
  ASM_MESON_TAC[]);;

let APPLY_IN_RANSPACE = prove
 (`!f x s t. x <: s /\ f <: funspace s t ==> apply f x <: t`,
  REWRITE_TAC[funspace; SUCHTHAT; IN_POWERSET; IN_CARTPRODUCT; subset_def] THEN
  REWRITE_TAC[apply_def] THEN MESON_TAC[PAIR_INJ]);;

let ABSTRACT_IN_FUNSPACE = prove
 (`!f x s t. (!x. x <: s ==> f(x) <: t)
             ==> abstract s t f <: funspace s t`,
  REWRITE_TAC[funspace; abstract; SUCHTHAT; IN_POWERSET; IN_CARTPRODUCT;
              subset_def; PAIR_INJ] THEN
  SIMP_TAC[LEFT_FORALL_IMP_THM; GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN
  REWRITE_TAC[UNWIND_THM1; EXISTS_REFL] THEN MESON_TAC[]);;

let FUNSPACE_INHABITED = prove
 (`!s t. ((?x. x <: s) ==> (?y. y <: t)) ==> ?f. f <: funspace s t`,
  REPEAT STRIP_TAC THEN
  EXISTS_TAC `abstract s t (\x. @y. y <: t)` THEN
  MATCH_MP_TAC ABSTRACT_IN_FUNSPACE THEN ASM_MESON_TAC[]);;

let ABSTRACT_EQ = prove
 (`!s t1 t2 f g.
        (?x. x <: s) /\
        (!x. x <: s ==> f(x) <: t1 /\ g(x) <: t2 /\ (f x = g x))
        ==> (abstract s t1 f = abstract s t2 g)`,
  REWRITE_TAC[abstract] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC EXTENSIONALITY_NONEMPTY THEN
  REWRITE_TAC[SUCHTHAT; IN_CARTPRODUCT] THEN REPEAT CONJ_TAC THEN
  REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
  SIMP_TAC[TAUT `(a /\ b /\ c) /\ d <=> ~(a ==> b /\ c ==> ~d)`] THEN
  REWRITE_TAC[PAIR_INJ] THEN SIMP_TAC[LEFT_FORALL_IMP_THM] THENL
   [ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC] THEN
  ASM_REWRITE_TAC[PAIR_INJ] THEN
  REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
  REWRITE_TAC[NOT_IMP] THEN GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[PAIR_INJ] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Special case of treating a Boolean function as a set.                     *)
(* ------------------------------------------------------------------------- *)

let boolean = new_definition
  `boolean b = if b then true else false`;;

let holds = new_definition
  `holds s x <=> (apply s x = true)`;;

let BOOLEAN_IN_BOOLSET = prove
 (`!b. boolean b <: boolset`,
  REWRITE_TAC[boolean] THEN MESON_TAC[IN_BOOL]);;

let BOOLEAN_EQ_TRUE = prove
 (`!b. (boolean b = true) <=> b`,
  REWRITE_TAC[boolean] THEN MESON_TAC[TRUE_NE_FALSE]);;