Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 33,532 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
(* ========================================================================= *)
(* Set-theoretic hierarchy for modelling HOL inside itself. *)
(* ========================================================================= *)
let INJ_LEMMA = prove
(`(!x y. (f x = f y) ==> (x = y)) <=> (!x y. (f x = f y) <=> (x = y))`,
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Useful to have a niceish "function update" notation. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|->",(12,"right"));;
let valmod = new_definition
`(x |-> a) (v:A->B) = \y. if y = x then a else v(y)`;;
let VALMOD = prove
(`!v x y a. ((x |-> y) v) a = if a = x then y else v(a)`,
REWRITE_TAC[valmod]);;
let VALMOD_BASIC = prove
(`!v x y. (x |-> y) v x = y`,
REWRITE_TAC[valmod]);;
let VALMOD_VALMOD_BASIC = prove
(`!v a b x. (x |-> a) ((x |-> b) v) = (x |-> a) v`,
REWRITE_TAC[valmod; FUN_EQ_THM] THEN
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;
let VALMOD_REPEAT = prove
(`!v x. (x |-> v(x)) v = v`,
REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);;
let FORALL_VALMOD = prove
(`!x. (!v a. P((x |-> a) v)) = (!v. P v)`,
MESON_TAC[VALMOD_REPEAT]);;
let VALMOD_SWAP = prove
(`!v x y a b.
~(x = y) ==> ((x |-> a) ((y |-> b) v) = (y |-> b) ((x |-> a) v))`,
REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* A dummy finite type inadequately modelling ":ind". *)
(* ------------------------------------------------------------------------- *)
let ind_model_tybij_th =
prove(`?x. x IN @s:num->bool. ~(s = {}) /\ FINITE s`,
MESON_TAC[MEMBER_NOT_EMPTY; IN_SING; FINITE_RULES]);;
let ind_model_tybij =
new_type_definition "ind_model" ("mk_ind","dest_ind") ind_model_tybij_th;;
(* ------------------------------------------------------------------------- *)
(* Introduce a type whose universe is "inaccessible" starting from *)
(* "ind_model". Since "ind_model" is finite, we can just use any *)
(* infinite set. In order to make "ind_model" infinite, we would need *)
(* a new axiom. In order to keep things generic we try to deduce *)
(* everything from this one uniform "axiom". Note that even in the *)
(* infinite case, this can still be a small set in ZF terms, not a real *)
(* inaccessible cardinal. *)
(* ------------------------------------------------------------------------- *)
(****** Here's what we'd do in the infinite case
new_type("I",0);;
let I_AXIOM = new_axiom
`UNIV:ind_model->bool <_c UNIV:I->bool /\
(!s:A->bool. s <_c UNIV:I->bool ==> {t | t SUBSET s} <_c UNIV:I->bool)`;;
*******)
let inacc_tybij_th = prove
(`?x:num. x IN UNIV`,REWRITE_TAC[IN_UNIV]);;
let inacc_tybij =
new_type_definition "I" ("mk_I","dest_I") inacc_tybij_th;;
let I_AXIOM = prove
(`UNIV:ind_model->bool <_c UNIV:I->bool /\
(!s:A->bool. s <_c UNIV:I->bool ==> {t | t SUBSET s} <_c UNIV:I->bool)`,
let lemma = prove
(`!s. s <_c UNIV:I->bool <=> FINITE s`,
GEN_TAC THEN REWRITE_TAC[FINITE_CARD_LT] THEN
MATCH_MP_TAC CARD_LT_CONG THEN REWRITE_TAC[CARD_EQ_REFL] THEN
REWRITE_TAC[GSYM CARD_LE_ANTISYM; le_c; IN_UNIV] THEN
MESON_TAC[inacc_tybij; IN_UNIV]) in
REWRITE_TAC[lemma; FINITE_POWERSET] THEN
SUBGOAL_THEN `UNIV = IMAGE mk_ind (@s. ~(s = {}) /\ FINITE s)`
SUBST1_TAC THENL
[MESON_TAC[EXTENSION; IN_IMAGE; IN_UNIV; ind_model_tybij];
MESON_TAC[FINITE_IMAGE; NOT_INSERT_EMPTY; FINITE_RULES]]);;
(* ------------------------------------------------------------------------- *)
(* I is infinite and therefore admits an injective pairing. *)
(* ------------------------------------------------------------------------- *)
let I_INFINITE = prove
(`INFINITE(UNIV:I->bool)`,
REWRITE_TAC[INFINITE] THEN DISCH_TAC THEN
MP_TAC(ISPEC `{n | n < CARD(UNIV:I->bool) - 1}` (CONJUNCT2 I_AXIOM)) THEN
ASM_SIMP_TAC[CARD_LT_CARD; FINITE_NUMSEG_LT; FINITE_POWERSET] THEN
SIMP_TAC[CARD_NUMSEG_LT; CARD_POWERSET; FINITE_NUMSEG_LT] THEN
SUBGOAL_THEN `~(CARD(UNIV:I->bool) = 0)` MP_TAC THENL
[ASM_SIMP_TAC[CARD_EQ_0; GSYM MEMBER_NOT_EMPTY; IN_UNIV]; ALL_TAC] THEN
SIMP_TAC[ARITH_RULE `~(n = 0) ==> n - 1 < n`; NOT_LT] THEN
MATCH_MP_TAC(ARITH_RULE `a - 1 < b ==> ~(a = 0) ==> a <= b`) THEN
SPEC_TAC(`CARD(UNIV:I->bool) - 1`,`n:num`) THEN POP_ASSUM(K ALL_TAC) THEN
INDUCT_TAC THEN REWRITE_TAC[EXP; ARITH] THEN POP_ASSUM MP_TAC THEN
ARITH_TAC);;
let I_PAIR_EXISTS = prove
(`?f:I#I->I. !x y. (f x = f y) ==> (x = y)`,
SUBGOAL_THEN `UNIV:I#I->bool <=_c UNIV:I->bool` MP_TAC THENL
[ALL_TAC; REWRITE_TAC[le_c; IN_UNIV]] THEN
MATCH_MP_TAC CARD_EQ_IMP_LE THEN
MP_TAC(MATCH_MP CARD_SQUARE_INFINITE I_INFINITE) THEN
MATCH_MP_TAC(TAUT `(a = b) ==> a ==> b`) THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; mul_c; IN_ELIM_THM; IN_UNIV] THEN MESON_TAC[PAIR]);;
let I_PAIR = REWRITE_RULE[INJ_LEMMA]
(new_specification ["I_PAIR"] I_PAIR_EXISTS);;
(* ------------------------------------------------------------------------- *)
(* It also admits injections from "bool" and "ind_model". *)
(* ------------------------------------------------------------------------- *)
let CARD_BOOL_LT_I = prove
(`UNIV:bool->bool <_c UNIV:I->bool`,
REWRITE_TAC[GSYM CARD_NOT_LE] THEN
DISCH_TAC THEN MP_TAC I_INFINITE THEN REWRITE_TAC[INFINITE] THEN
SUBGOAL_THEN `FINITE(UNIV:bool->bool)`
(fun th -> ASM_MESON_TAC[th; CARD_LE_FINITE]) THEN
SUBGOAL_THEN `UNIV:bool->bool = {F,T}` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_UNIV; IN_INSERT] THEN MESON_TAC[];
SIMP_TAC[FINITE_RULES]]);;
let I_BOOL_EXISTS = prove
(`?f:bool->I. !x y. (f x = f y) ==> (x = y)`,
MP_TAC(MATCH_MP CARD_LT_IMP_LE CARD_BOOL_LT_I) THEN
SIMP_TAC[lt_c; le_c; IN_UNIV]);;
let I_BOOL = REWRITE_RULE[INJ_LEMMA]
(new_specification ["I_BOOL"] I_BOOL_EXISTS);;
let I_IND_EXISTS = prove
(`?f:ind_model->I. !x y. (f x = f y) ==> (x = y)`,
MP_TAC(CONJUNCT1 I_AXIOM) THEN SIMP_TAC[lt_c; le_c; IN_UNIV]);;
let I_IND = REWRITE_RULE[INJ_LEMMA]
(new_specification ["I_IND"] I_IND_EXISTS);;
(* ------------------------------------------------------------------------- *)
(* And the injection from powerset of any accessible set. *)
(* ------------------------------------------------------------------------- *)
let I_SET_EXISTS = prove
(`!s:I->bool.
s <_c UNIV:I->bool
==> ?f:(I->bool)->I. !t u. t SUBSET s /\ u SUBSET s /\ (f t = f u)
==> (t = u)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP(CONJUNCT2 I_AXIOM)) THEN
DISCH_THEN(MP_TAC o MATCH_MP CARD_LT_IMP_LE) THEN
REWRITE_TAC[le_c; IN_UNIV; IN_ELIM_THM]);;
let I_SET = new_specification ["I_SET"]
(REWRITE_RULE[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] I_SET_EXISTS);;
(* ------------------------------------------------------------------------- *)
(* Define a type for "levels" of our set theory. *)
(* ------------------------------------------------------------------------- *)
let setlevel_INDUCT,setlevel_RECURSION = define_type
"setlevel = Ur_bool
| Ur_ind
| Powerset setlevel
| Cartprod setlevel setlevel";;
let setlevel_DISTINCT = distinctness "setlevel";;
let setlevel_INJ = injectivity "setlevel";;
(* ------------------------------------------------------------------------- *)
(* Now define a subset of I corresponding to each. *)
(* ------------------------------------------------------------------------- *)
let setlevel = new_recursive_definition setlevel_RECURSION
`(setlevel Ur_bool = IMAGE I_BOOL UNIV) /\
(setlevel Ur_ind = IMAGE I_IND UNIV) /\
(setlevel (Cartprod l1 l2) =
IMAGE I_PAIR {x,y | x IN setlevel l1 /\ y IN setlevel l2}) /\
(setlevel (Powerset l) = IMAGE (I_SET (setlevel l))
{s | s SUBSET (setlevel l)})`;;
(* ------------------------------------------------------------------------- *)
(* Show they all satisfy the cardinal limits. *)
(* ------------------------------------------------------------------------- *)
let SETLEVEL_CARD = prove
(`!l. setlevel l <_c UNIV:I->bool`,
MATCH_MP_TAC setlevel_INDUCT THEN REWRITE_TAC[setlevel] THEN
REPEAT CONJ_TAC THENL
[TRANS_TAC CARD_LET_TRANS `UNIV:bool->bool` THEN
REWRITE_TAC[CARD_LE_IMAGE; CARD_BOOL_LT_I];
TRANS_TAC CARD_LET_TRANS `UNIV:ind_model->bool` THEN
REWRITE_TAC[CARD_LE_IMAGE; I_AXIOM];
X_GEN_TAC `l:setlevel` THEN DISCH_TAC THEN
TRANS_TAC CARD_LET_TRANS `{s | s SUBSET (setlevel l)}` THEN
ASM_SIMP_TAC[I_AXIOM; CARD_LE_IMAGE];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`l1:setlevel`; `l2:setlevel`] THEN STRIP_TAC THEN
TRANS_TAC CARD_LET_TRANS `setlevel l1 *_c setlevel l2` THEN
ASM_SIMP_TAC[CARD_MUL_LT_INFINITE; I_INFINITE; GSYM mul_c; CARD_LE_IMAGE]);;
(* ------------------------------------------------------------------------- *)
(* Hence the injectivity of the mapping from powerset. *)
(* ------------------------------------------------------------------------- *)
let I_SET_SETLEVEL = prove
(`!l s t. s SUBSET setlevel l /\ t SUBSET setlevel l /\
(I_SET (setlevel l) s = I_SET (setlevel l) t)
==> (s = t)`,
MESON_TAC[SETLEVEL_CARD; I_SET]);;
(* ------------------------------------------------------------------------- *)
(* Now our universe of sets and (ur)elements. *)
(* ------------------------------------------------------------------------- *)
let universe = new_definition
`universe = {(t,x) | x IN setlevel t}`;;
(* ------------------------------------------------------------------------- *)
(* Define an actual type V. *)
(* *)
(* This satisfies a suitable number of the ZF axioms. It isn't extensional *)
(* but we could then construct a quotient structure if desired. Anyway it's *)
(* only empty sets that aren't. A more significant difference is that we *)
(* have urelements and the hierarchy levels are all distinct rather than *)
(* being cumulative. *)
(* ------------------------------------------------------------------------- *)
let v_tybij_th = prove
(`?a. a IN universe`,
EXISTS_TAC `Ur_bool,I_BOOL T` THEN
REWRITE_TAC[universe; IN_ELIM_THM; PAIR_EQ; CONJ_ASSOC;
ONCE_REWRITE_RULE[CONJ_SYM] UNWIND_THM1;
setlevel; IN_IMAGE; IN_UNIV] THEN
MESON_TAC[]);;
let v_tybij =
new_type_definition "V" ("mk_V","dest_V") v_tybij_th;;
let V_TYBIJ = prove
(`!l e. e IN setlevel l <=> (dest_V(mk_V(l,e)) = (l,e))`,
REWRITE_TAC[GSYM(CONJUNCT2 v_tybij)] THEN
REWRITE_TAC[IN_ELIM_THM; universe; FORALL_PAIR_THM; PAIR_EQ] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Drop a level; test if something is a set. *)
(* ------------------------------------------------------------------------- *)
let droplevel = new_recursive_definition setlevel_RECURSION
`droplevel(Powerset l) = l`;;
let isasetlevel = new_recursive_definition setlevel_RECURSION
`(isasetlevel Ur_bool = F) /\
(isasetlevel Ur_ind = F) /\
(isasetlevel (Cartprod l1 l2) = F) /\
(isasetlevel (Powerset l) = T)`;;
(* ------------------------------------------------------------------------- *)
(* Define some useful inversions. *)
(* ------------------------------------------------------------------------- *)
let level = new_definition
`level x = FST(dest_V x)`;;
let element = new_definition
`element x = SND(dest_V x)`;;
let ELEMENT_IN_LEVEL = prove
(`!x. (element x) IN setlevel(level x)`,
REWRITE_TAC[V_TYBIJ; v_tybij; level; element; PAIR]);;
let SET = prove
(`!x. mk_V(level x,element x) = x`,
REWRITE_TAC[level; element; PAIR; v_tybij]);;
let set = new_definition
`set x = @s. s SUBSET (setlevel(droplevel(level x))) /\
(I_SET (setlevel(droplevel(level x))) s = element x)`;;
let isaset = new_definition
`isaset x <=> ?l. level x = Powerset l`;;
(* ------------------------------------------------------------------------- *)
(* Now all the critical relations. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("<:",(11,"right"));;
let inset = new_definition
`x <: s <=> (level s = Powerset(level x)) /\ (element x) IN (set s)`;;
parse_as_infix("<=:",(12,"right"));;
let subset_def = new_definition
`s <=: t <=> (level s = level t) /\ !x. x <: s ==> x <: t`;;
(* ------------------------------------------------------------------------- *)
(* If something has members, it's a set. *)
(* ------------------------------------------------------------------------- *)
let MEMBERS_ISASET = prove
(`!x s. x <: s ==> isaset s`,
REWRITE_TAC[inset; isaset] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Each level is nonempty. *)
(* ------------------------------------------------------------------------- *)
let LEVEL_NONEMPTY = prove
(`!l. ?x. x IN setlevel l`,
REWRITE_TAC[MEMBER_NOT_EMPTY] THEN
MATCH_MP_TAC setlevel_INDUCT THEN REWRITE_TAC[setlevel; IMAGE_EQ_EMPTY] THEN
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_UNIV] THEN
REWRITE_TAC[EXISTS_PAIR_THM; IN_ELIM_THM] THEN
MESON_TAC[EMPTY_SUBSET]);;
let LEVEL_SET_EXISTS = prove
(`!l. ?s. level s = l`,
MP_TAC LEVEL_NONEMPTY THEN MATCH_MP_TAC MONO_FORALL THEN
REWRITE_TAC[level] THEN MESON_TAC[FST; PAIR; V_TYBIJ]);;
(* ------------------------------------------------------------------------- *)
(* Empty sets (or non-sets, of course) exist at all set levels. *)
(* ------------------------------------------------------------------------- *)
let MK_V_CLAUSES = prove
(`e IN setlevel l
==> (level(mk_V(l,e)) = l) /\ (element(mk_V(l,e)) = e)`,
REWRITE_TAC[level; element; PAIR; GSYM PAIR_EQ; V_TYBIJ]);;
let MK_V_SET = prove
(`s SUBSET setlevel l
==> (set(mk_V(Powerset l,I_SET (setlevel l) s)) = s) /\
(level(mk_V(Powerset l,I_SET (setlevel l) s)) = Powerset l) /\
(element(mk_V(Powerset l,I_SET (setlevel l) s)) = I_SET (setlevel l) s)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `I_SET (setlevel l) s IN setlevel(Powerset l)` ASSUME_TAC THENL
[REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
ASM_SIMP_TAC[MK_V_CLAUSES; set] THEN
SUBGOAL_THEN `I_SET (setlevel l) s IN setlevel(Powerset l)` ASSUME_TAC THENL
[REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
ASM_SIMP_TAC[MK_V_CLAUSES; droplevel] THEN
MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[] THEN
ASM_MESON_TAC[I_SET_SETLEVEL]);;
let EMPTY_EXISTS = prove
(`!l. ?s. (level s = l) /\ !x. ~(x <: s)`,
MATCH_MP_TAC setlevel_INDUCT THEN
REPEAT CONJ_TAC THENL
[ALL_TAC; ALL_TAC;
X_GEN_TAC `l:setlevel` THEN DISCH_THEN(K ALL_TAC) THEN
EXISTS_TAC `mk_V(Powerset l,I_SET (setlevel l) {})` THEN
SIMP_TAC[inset; MK_V_CLAUSES; MK_V_SET; EMPTY_SUBSET; NOT_IN_EMPTY];
ALL_TAC] THEN
MESON_TAC[LEVEL_SET_EXISTS; MEMBERS_ISASET; isaset;
setlevel_DISTINCT]);;
let EMPTY_SET = new_specification ["emptyset"]
(REWRITE_RULE[SKOLEM_THM] EMPTY_EXISTS);;
(* ------------------------------------------------------------------------- *)
(* Comprehension principle, with no change of levels. *)
(* ------------------------------------------------------------------------- *)
let COMPREHENSION_EXISTS = prove
(`!s p. ?t. (level t = level s) /\ !x. x <: t <=> x <: s /\ p x`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL
[ALL_TAC; ASM_MESON_TAC[MEMBERS_ISASET]] THEN
POP_ASSUM(X_CHOOSE_TAC `l:setlevel` o REWRITE_RULE[isaset]) THEN
MP_TAC(SPEC `s:V` ELEMENT_IN_LEVEL) THEN
ASM_REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `u:I->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `mk_V(Powerset l,
I_SET(setlevel l)
{i | i IN u /\ p(mk_V(l,i))})` THEN
SUBGOAL_THEN `{i | i IN u /\ p (mk_V (l,i))} SUBSET (setlevel l)`
ASSUME_TAC THENL
[REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET];
ALL_TAC] THEN
ASM_SIMP_TAC[MK_V_SET; inset] THEN X_GEN_TAC `x:V` THEN
REWRITE_TAC[setlevel_INJ] THEN
REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[SET; MK_V_SET]);;
parse_as_infix("suchthat",(21,"left"));;
let SUCHTHAT = new_specification ["suchthat"]
(REWRITE_RULE[SKOLEM_THM] COMPREHENSION_EXISTS);;
(* ------------------------------------------------------------------------- *)
(* Each setlevel exists as a set. *)
(* ------------------------------------------------------------------------- *)
let SETLEVEL_EXISTS = prove
(`!l. ?s. (level s = Powerset l) /\
!x. x <: s <=> (level x = l) /\ element(x) IN setlevel l`,
GEN_TAC THEN
EXISTS_TAC `mk_V(Powerset l,I_SET (setlevel l) (setlevel l))` THEN
SIMP_TAC[MK_V_SET; SUBSET_REFL; inset; setlevel_INJ] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Conversely, set(s) belongs in the appropriate level. *)
(* ------------------------------------------------------------------------- *)
let SET_DECOMP = prove
(`!s. isaset s
==> (set s) SUBSET (setlevel(droplevel(level s))) /\
(I_SET (setlevel(droplevel(level s))) (set s) = element s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[isaset] THEN
DISCH_THEN(X_CHOOSE_TAC `l:setlevel`) THEN
REWRITE_TAC[set] THEN CONV_TAC SELECT_CONV THEN
ASM_REWRITE_TAC[setlevel; droplevel] THEN
MP_TAC(SPEC `s:V` ELEMENT_IN_LEVEL) THEN
ASM_REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN
MESON_TAC[]);;
let SET_SUBSET_SETLEVEL = prove
(`!s. isaset s ==> set(s) SUBSET setlevel(droplevel(level s))`,
MESON_TAC[SET_DECOMP]);;
(* ------------------------------------------------------------------------- *)
(* Power set exists. *)
(* ------------------------------------------------------------------------- *)
let POWERSET_EXISTS = prove
(`!s. ?t. (level t = Powerset(level s)) /\ !x. x <: t <=> x <=: s`,
GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL
[FIRST_ASSUM(MP_TAC o GSYM o MATCH_MP SET_DECOMP) THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [isaset]) THEN
DISCH_THEN(X_CHOOSE_THEN `l:setlevel` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[droplevel] THEN STRIP_TAC THEN
X_CHOOSE_THEN `t:V` STRIP_ASSUME_TAC
(SPEC `Powerset l` SETLEVEL_EXISTS) THEN
MP_TAC(SPECL [`t:V`; `\v. !x. x <: v ==> x <: s`]
COMPREHENSION_EXISTS) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:V` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[subset_def] THEN
ASM_MESON_TAC[ELEMENT_IN_LEVEL];
MP_TAC(SPEC `level s` SETLEVEL_EXISTS) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:V` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[subset_def] THEN
ASM_MESON_TAC[ELEMENT_IN_LEVEL; MEMBERS_ISASET; isaset]]);;
let POWERSET = new_specification ["powerset"]
(REWRITE_RULE[SKOLEM_THM] POWERSET_EXISTS);;
(* ------------------------------------------------------------------------- *)
(* Pairing operation. *)
(* ------------------------------------------------------------------------- *)
let pair = new_definition
`pair x y =
mk_V(Cartprod (level x) (level y),I_PAIR(element x,element y))`;;
let PAIR_IN_LEVEL = prove
(`!x y l m. x IN setlevel l /\ y IN setlevel m
==> I_PAIR(x,y) IN setlevel (Cartprod l m)`,
REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]);;
let DEST_MK_PAIR = prove
(`dest_V(mk_V(Cartprod (level x) (level y),I_PAIR(element x,element y))) =
Cartprod (level x) (level y),I_PAIR(element x,element y)`,
REWRITE_TAC[GSYM V_TYBIJ] THEN SIMP_TAC[PAIR_IN_LEVEL; ELEMENT_IN_LEVEL]);;
let PAIR_INJ = prove
(`!x1 y1 x2 y2. (pair x1 y1 = pair x2 y2) <=> (x1 = x2) /\ (y1 = y2)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN
REWRITE_TAC[pair] THEN
DISCH_THEN(MP_TAC o AP_TERM `dest_V`) THEN REWRITE_TAC[DEST_MK_PAIR] THEN
REWRITE_TAC[setlevel_INJ; PAIR_EQ; I_PAIR] THEN
REWRITE_TAC[level; element] THEN MESON_TAC[PAIR; CONJUNCT1 v_tybij]);;
let LEVEL_PAIR = prove
(`!x y. level(pair x y) = Cartprod (level x) (level y)`,
REWRITE_TAC[level;
REWRITE_RULE[DEST_MK_PAIR] (AP_TERM `dest_V` (SPEC_ALL pair))]);;
(* ------------------------------------------------------------------------- *)
(* Decomposition functions. *)
(* ------------------------------------------------------------------------- *)
let fst_def = new_definition
`fst p = @x. ?y. p = pair x y`;;
let snd_def = new_definition
`snd p = @y. ?x. p = pair x y`;;
let PAIR_CLAUSES = prove
(`!x y. (fst(pair x y) = x) /\ (snd(pair x y) = y)`,
REWRITE_TAC[fst_def; snd_def] THEN MESON_TAC[PAIR_INJ]);;
(* ------------------------------------------------------------------------- *)
(* And the Cartesian product space. *)
(* ------------------------------------------------------------------------- *)
let CARTESIAN_EXISTS = prove
(`!s t. ?u. (level u =
Powerset(Cartprod (droplevel(level s))
(droplevel(level t)))) /\
!z. z <: u <=> ?x y. (z = pair x y) /\ x <: s /\ y <: t`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `isaset s` THENL
[ALL_TAC; ASM_MESON_TAC[EMPTY_EXISTS; MEMBERS_ISASET]] THEN
SUBGOAL_THEN `?l. (level s = Powerset l)` CHOOSE_TAC THENL
[ASM_MESON_TAC[isaset]; ALL_TAC] THEN
ASM_CASES_TAC `isaset t` THENL
[ALL_TAC; ASM_MESON_TAC[EMPTY_EXISTS; MEMBERS_ISASET]] THEN
SUBGOAL_THEN `?m. (level t = Powerset m)` CHOOSE_TAC THENL
[ASM_MESON_TAC[isaset]; ALL_TAC] THEN
MP_TAC(SPEC `Cartprod l m` SETLEVEL_EXISTS) THEN
ASM_REWRITE_TAC[droplevel] THEN
DISCH_THEN(X_CHOOSE_THEN `u:V` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`u:V`; `\z. ?x y. (z = pair x y) /\ x <: s /\ y <: t`]
COMPREHENSION_EXISTS) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `w:V` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `z:V` THEN
MATCH_MP_TAC(TAUT `(a ==> b) /\ (c ==> a) ==> ((a /\ b) /\ c <=> c)`) THEN
CONJ_TAC THENL [MESON_TAC[ELEMENT_IN_LEVEL]; ALL_TAC] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[LEVEL_PAIR] THEN BINOP_TAC THEN
ASM_MESON_TAC[inset; setlevel_INJ]);;
let CARTPRODUCT = new_specification ["cartproduct"]
(REWRITE_RULE[SKOLEM_THM] CARTESIAN_EXISTS);;
(* ------------------------------------------------------------------------- *)
(* Extensionality for sets at the same level. *)
(* ------------------------------------------------------------------------- *)
let IN_SET_ELEMENT = prove
(`!s. isaset s /\ e IN set(s)
==> ?x. (e = element x) /\ (level s = Powerset(level x)) /\ x <: s`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(X_CHOOSE_TAC `l:setlevel` o REWRITE_RULE[isaset]) THEN
EXISTS_TAC `mk_V(l,e)` THEN REWRITE_TAC[inset] THEN
SUBGOAL_THEN `e IN setlevel l` (fun t -> ASM_SIMP_TAC[t; MK_V_CLAUSES]) THEN
ASM_MESON_TAC[SET_SUBSET_SETLEVEL; SUBSET; droplevel]);;
let SUBSET_ALT = prove
(`isaset s /\ isaset t
==> (s <=: t <=> (level s = level t) /\ set(s) SUBSET set(t))`,
REPEAT GEN_TAC THEN REWRITE_TAC[subset_def; inset] THEN
ASM_CASES_TAC `level s = level t` THEN ASM_REWRITE_TAC[SUBSET] THEN
STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
ASM_MESON_TAC[IN_SET_ELEMENT]);;
let SUBSET_ANTISYM_LEVEL = prove
(`!s t. isaset s /\ isaset t /\ s <=: t /\ t <=: s ==> (s = t)`,
REPEAT GEN_TAC THEN
REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_SIMP_TAC[SUBSET_ALT] THEN
EVERY_ASSUM(MP_TAC o GSYM o MATCH_MP SET_DECOMP) THEN
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `s:V` SET) THEN MP_TAC(SPEC `t:V` SET) THEN
REPEAT(DISCH_THEN(SUBST1_TAC o SYM)) THEN
AP_TERM_TAC THEN BINOP_TAC THEN ASM_MESON_TAC[SUBSET_ANTISYM]);;
let EXTENSIONALITY_LEVEL = prove
(`!s t. isaset s /\ isaset t /\ (level s = level t) /\ (!x. x <: s <=> x <: t)
==> (s = t)`,
MESON_TAC[SUBSET_ANTISYM_LEVEL; subset_def]);;
(* ------------------------------------------------------------------------- *)
(* And hence for any nonempty sets. *)
(* ------------------------------------------------------------------------- *)
let EXTENSIONALITY_NONEMPTY = prove
(`!s t. (?x. x <: s) /\ (?x. x <: t) /\ (!x. x <: s <=> x <: t)
==> (s = t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC EXTENSIONALITY_LEVEL THEN
ASM_MESON_TAC[MEMBERS_ISASET; inset]);;
(* ------------------------------------------------------------------------- *)
(* Union set exists. I don't need this but if might be a sanity check. *)
(* ------------------------------------------------------------------------- *)
let UNION_EXISTS = prove
(`!s. ?t. (level t = droplevel(level s)) /\
!x. x <: t <=> ?u. x <: u /\ u <: s`,
GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL
[ALL_TAC;
MP_TAC(SPEC `droplevel(level s)` EMPTY_EXISTS) THEN
MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[MEMBERS_ISASET]] THEN
FIRST_ASSUM(X_CHOOSE_TAC `l:setlevel` o REWRITE_RULE[isaset]) THEN
ASM_REWRITE_TAC[droplevel] THEN ASM_CASES_TAC `?m. l = Powerset m` THENL
[ALL_TAC;
MP_TAC(SPEC `l:setlevel` EMPTY_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[inset] THEN
ASM_MESON_TAC[setlevel_INJ]] THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `m:setlevel` SUBST_ALL_TAC) THEN
MP_TAC(SPEC `m:setlevel` SETLEVEL_EXISTS) THEN
ASM_REWRITE_TAC[droplevel] THEN
DISCH_THEN(X_CHOOSE_THEN `t:V` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`t:V`; `\x. ?u. x <: u /\ u <: s`]
COMPREHENSION_EXISTS) THEN
MATCH_MP_TAC MONO_EXISTS THEN
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[inset; ELEMENT_IN_LEVEL; setlevel_INJ]);;
let SETUNION = new_specification ["setunion"]
(REWRITE_RULE[SKOLEM_THM] UNION_EXISTS);;
(* ------------------------------------------------------------------------- *)
(* Boolean stuff. *)
(* ------------------------------------------------------------------------- *)
let true_def = new_definition
`true = mk_V(Ur_bool,I_BOOL T)`;;
let false_def = new_definition
`false = mk_V(Ur_bool,I_BOOL F)`;;
let boolset = new_definition
`boolset =
mk_V(Powerset Ur_bool,I_SET (setlevel Ur_bool) (setlevel Ur_bool))`;;
let IN_BOOL = prove
(`!x. x <: boolset <=> (x = true) \/ (x = false)`,
REWRITE_TAC[inset; boolset; true_def; false_def] THEN
SIMP_TAC[MK_V_SET; SUBSET_REFL] THEN
REWRITE_TAC[setlevel_INJ; setlevel] THEN
SUBGOAL_THEN `IMAGE I_BOOL UNIV = {I_BOOL F,I_BOOL T}` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNIV; IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[I_BOOL];
ALL_TAC] THEN
GEN_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o BINOP_CONV o LAND_CONV) [GSYM SET] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
SUBGOAL_THEN `!b. (I_BOOL b) IN setlevel Ur_bool` ASSUME_TAC THENL
[REWRITE_TAC[setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[];
ASM_MESON_TAC[V_TYBIJ; ELEMENT_IN_LEVEL; PAIR_EQ]]);;
let TRUE_NE_FALSE = prove
(`~(true = false)`,
REWRITE_TAC[true_def; false_def] THEN
DISCH_THEN(MP_TAC o AP_TERM `dest_V`) THEN
SUBGOAL_THEN `!b. (I_BOOL b) IN setlevel Ur_bool` ASSUME_TAC THENL
[REWRITE_TAC[setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[];
ASM_MESON_TAC[V_TYBIJ; I_BOOL; PAIR_EQ]]);;
let BOOLEAN_EQ = prove
(`!x y. x <: boolset /\ y <: boolset /\
((x = true) <=> (y = true))
==> (x = y)`,
MESON_TAC[TRUE_NE_FALSE; IN_BOOL]);;
(* ------------------------------------------------------------------------- *)
(* Ind stuff. *)
(* ------------------------------------------------------------------------- *)
let indset = new_definition
`indset = mk_V(Powerset Ur_ind,I_SET (setlevel Ur_ind) (setlevel Ur_ind))`;;
let INDSET_IND_MODEL = prove
(`?f. (!i:ind_model. f(i) <: indset) /\ (!i j. (f i = f j) ==> (i = j))`,
EXISTS_TAC `\i. mk_V(Ur_ind,I_IND i)` THEN REWRITE_TAC[] THEN
SUBGOAL_THEN `!i. (I_IND i) IN setlevel Ur_ind` ASSUME_TAC THENL
[REWRITE_TAC[setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[]; ALL_TAC] THEN
ASM_SIMP_TAC[MK_V_SET; SUBSET_REFL; inset; indset; MK_V_CLAUSES] THEN
ASM_MESON_TAC[V_TYBIJ; I_IND; ELEMENT_IN_LEVEL; PAIR_EQ]);;
let INDSET_INHABITED = prove
(`?x. x <: indset`,
MESON_TAC[INDSET_IND_MODEL]);;
(* ------------------------------------------------------------------------- *)
(* Axiom of choice (this is trivially so in HOL anyway, but...) *)
(* ------------------------------------------------------------------------- *)
let ch =
let th = prove
(`?ch. !s. (?x. x <: s) ==> ch(s) <: s`,
REWRITE_TAC[GSYM SKOLEM_THM] THEN MESON_TAC[]) in
new_specification ["ch"] th;;
(* ------------------------------------------------------------------------- *)
(* Sanity check lemmas. *)
(* ------------------------------------------------------------------------- *)
let IN_POWERSET = prove
(`!x s. x <: powerset s <=> x <=: s`,
MESON_TAC[POWERSET]);;
let IN_CARTPRODUCT = prove
(`!z s t. z <: cartproduct s t <=> ?x y. (z = pair x y) /\ x <: s /\ y <: t`,
MESON_TAC[CARTPRODUCT]);;
let IN_COMPREHENSION = prove
(`!p s x. x <: s suchthat p <=> x <: s /\ p x`,
MESON_TAC[SUCHTHAT]);;
let CARTPRODUCT_INHABITED = prove
(`(?x. x <: s) /\ (?y. y <: t) ==> ?z. z <: cartproduct s t`,
MESON_TAC[IN_CARTPRODUCT]);;
(* ------------------------------------------------------------------------- *)
(* Definition of function space. *)
(* ------------------------------------------------------------------------- *)
let funspace = new_definition
`funspace s t =
powerset(cartproduct s t) suchthat
(\u. !x. x <: s ==> ?!y. pair x y <: u)`;;
let apply_def = new_definition
`apply f x = @y. pair x y <: f`;;
let abstract = new_definition
`abstract s t f =
(cartproduct s t) suchthat (\z. !x y. (pair x y = z) ==> (y = f x))`;;
let APPLY_ABSTRACT = prove
(`!x s t. x <: s /\ f(x) <: t ==> (apply(abstract s t f) x = f(x))`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[apply_def; abstract; IN_CARTPRODUCT; SUCHTHAT] THEN
MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[PAIR_INJ] THEN
ASM_MESON_TAC[]);;
let APPLY_IN_RANSPACE = prove
(`!f x s t. x <: s /\ f <: funspace s t ==> apply f x <: t`,
REWRITE_TAC[funspace; SUCHTHAT; IN_POWERSET; IN_CARTPRODUCT; subset_def] THEN
REWRITE_TAC[apply_def] THEN MESON_TAC[PAIR_INJ]);;
let ABSTRACT_IN_FUNSPACE = prove
(`!f x s t. (!x. x <: s ==> f(x) <: t)
==> abstract s t f <: funspace s t`,
REWRITE_TAC[funspace; abstract; SUCHTHAT; IN_POWERSET; IN_CARTPRODUCT;
subset_def; PAIR_INJ] THEN
SIMP_TAC[LEFT_FORALL_IMP_THM; GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN
REWRITE_TAC[UNWIND_THM1; EXISTS_REFL] THEN MESON_TAC[]);;
let FUNSPACE_INHABITED = prove
(`!s t. ((?x. x <: s) ==> (?y. y <: t)) ==> ?f. f <: funspace s t`,
REPEAT STRIP_TAC THEN
EXISTS_TAC `abstract s t (\x. @y. y <: t)` THEN
MATCH_MP_TAC ABSTRACT_IN_FUNSPACE THEN ASM_MESON_TAC[]);;
let ABSTRACT_EQ = prove
(`!s t1 t2 f g.
(?x. x <: s) /\
(!x. x <: s ==> f(x) <: t1 /\ g(x) <: t2 /\ (f x = g x))
==> (abstract s t1 f = abstract s t2 g)`,
REWRITE_TAC[abstract] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC EXTENSIONALITY_NONEMPTY THEN
REWRITE_TAC[SUCHTHAT; IN_CARTPRODUCT] THEN REPEAT CONJ_TAC THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
SIMP_TAC[TAUT `(a /\ b /\ c) /\ d <=> ~(a ==> b /\ c ==> ~d)`] THEN
REWRITE_TAC[PAIR_INJ] THEN SIMP_TAC[LEFT_FORALL_IMP_THM] THENL
[ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[PAIR_INJ] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[NOT_IMP] THEN GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[PAIR_INJ] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Special case of treating a Boolean function as a set. *)
(* ------------------------------------------------------------------------- *)
let boolean = new_definition
`boolean b = if b then true else false`;;
let holds = new_definition
`holds s x <=> (apply s x = true)`;;
let BOOLEAN_IN_BOOLSET = prove
(`!b. boolean b <: boolset`,
REWRITE_TAC[boolean] THEN MESON_TAC[IN_BOOL]);;
let BOOLEAN_EQ_TRUE = prove
(`!b. (boolean b = true) <=> b`,
REWRITE_TAC[boolean] THEN MESON_TAC[TRUE_NE_FALSE]);;
|