Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,699 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
(* ========================================================================= *)
(* Mizar Light proof of duality in projective geometry. *)
(* ========================================================================= *)
let holby_prover =
fun ths (asl,w as gl) -> ACCEPT_TAC(HOL_BY ths w) gl;;
current_prover := holby_prover;;
(* ------------------------------------------------------------------------- *)
(* To avoid adding any axioms, pick a simple model: the Fano plane. *)
(* ------------------------------------------------------------------------- *)
let Line_INDUCT,Line_RECURSION = define_type
"Line = Line_1 | Line_2 | Line_3 | Line_4 |
Line_5 | Line_6 | Line_7";;
let Point_INDUCT,Point_RECURSION = define_type
"Point = Point_1 | Point_2 | Point_3 | Point_4 |
Point_5 | Point_6 | Point_7";;
let Point_DISTINCT = distinctness "Point";;
let Line_DISTINCT = distinctness "Line";;
let fano_incidence =
[1,1; 1,2; 1,3; 2,1; 2,4; 2,5; 3,1; 3,6; 3,7; 4,2; 4,4;
4,6; 5,2; 5,5; 5,7; 6,3; 6,4; 6,7; 7,3; 7,5; 7,6];;
let fano_point i = mk_const("Point_"^string_of_int i,[])
and fano_line i = mk_const("Line_"^string_of_int i,[]);;
let p = `p:Point` and l = `l:Line` ;;
let fano_clause (i,j) =
mk_conj(mk_eq(p,fano_point i),mk_eq(l,fano_line j));;
(* ------------------------------------------------------------------------- *)
(* Define the incidence relation "ON" from "fano_incidence" *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("ON",(11,"right"));;
let ON = new_definition
`(p:Point) ON (l:Line) <=>
(p = Point_1 /\ l = Line_1) \/
(p = Point_1 /\ l = Line_2) \/
(p = Point_1 /\ l = Line_3) \/
(p = Point_2 /\ l = Line_1) \/
(p = Point_2 /\ l = Line_4) \/
(p = Point_2 /\ l = Line_5) \/
(p = Point_3 /\ l = Line_1) \/
(p = Point_3 /\ l = Line_6) \/
(p = Point_3 /\ l = Line_7) \/
(p = Point_4 /\ l = Line_2) \/
(p = Point_4 /\ l = Line_4) \/
(p = Point_4 /\ l = Line_6) \/
(p = Point_5 /\ l = Line_2) \/
(p = Point_5 /\ l = Line_5) \/
(p = Point_5 /\ l = Line_7) \/
(p = Point_6 /\ l = Line_3) \/
(p = Point_6 /\ l = Line_4) \/
(p = Point_6 /\ l = Line_7) \/
(p = Point_7 /\ l = Line_3) \/
(p = Point_7 /\ l = Line_5) \/
(p = Point_7 /\ l = Line_6)`;;
(* ------------------------------------------------------------------------- *)
(* Also produce a more convenient case-by-case rewrite. *)
(* ------------------------------------------------------------------------- *)
let ON_CLAUSES = prove
(`(Point_1 ON Line_1 <=> T) /\
(Point_1 ON Line_2 <=> T) /\
(Point_1 ON Line_3 <=> T) /\
(Point_1 ON Line_4 <=> F) /\
(Point_1 ON Line_5 <=> F) /\
(Point_1 ON Line_6 <=> F) /\
(Point_1 ON Line_7 <=> F) /\
(Point_2 ON Line_1 <=> T) /\
(Point_2 ON Line_2 <=> F) /\
(Point_2 ON Line_3 <=> F) /\
(Point_2 ON Line_4 <=> T) /\
(Point_2 ON Line_5 <=> T) /\
(Point_2 ON Line_6 <=> F) /\
(Point_2 ON Line_7 <=> F) /\
(Point_3 ON Line_1 <=> T) /\
(Point_3 ON Line_2 <=> F) /\
(Point_3 ON Line_3 <=> F) /\
(Point_3 ON Line_4 <=> F) /\
(Point_3 ON Line_5 <=> F) /\
(Point_3 ON Line_6 <=> T) /\
(Point_3 ON Line_7 <=> T) /\
(Point_4 ON Line_1 <=> F) /\
(Point_4 ON Line_2 <=> T) /\
(Point_4 ON Line_3 <=> F) /\
(Point_4 ON Line_4 <=> T) /\
(Point_4 ON Line_5 <=> F) /\
(Point_4 ON Line_6 <=> T) /\
(Point_4 ON Line_7 <=> F) /\
(Point_5 ON Line_1 <=> F) /\
(Point_5 ON Line_2 <=> T) /\
(Point_5 ON Line_3 <=> F) /\
(Point_5 ON Line_4 <=> F) /\
(Point_5 ON Line_5 <=> T) /\
(Point_5 ON Line_6 <=> F) /\
(Point_5 ON Line_7 <=> T) /\
(Point_6 ON Line_1 <=> F) /\
(Point_6 ON Line_2 <=> F) /\
(Point_6 ON Line_3 <=> T) /\
(Point_6 ON Line_4 <=> T) /\
(Point_6 ON Line_5 <=> F) /\
(Point_6 ON Line_6 <=> F) /\
(Point_6 ON Line_7 <=> T) /\
(Point_7 ON Line_1 <=> F) /\
(Point_7 ON Line_2 <=> F) /\
(Point_7 ON Line_3 <=> T) /\
(Point_7 ON Line_4 <=> F) /\
(Point_7 ON Line_5 <=> T) /\
(Point_7 ON Line_6 <=> T) /\
(Point_7 ON Line_7 <=> F)`,
REWRITE_TAC[ON; Line_DISTINCT; Point_DISTINCT]);;
(* ------------------------------------------------------------------------- *)
(* Case analysis theorems. *)
(* ------------------------------------------------------------------------- *)
let FORALL_POINT = prove
(`(!p. P p) <=> P Point_1 /\ P Point_2 /\ P Point_3 /\ P Point_4 /\
P Point_5 /\ P Point_6 /\ P Point_7`,
EQ_TAC THEN REWRITE_TAC[Point_INDUCT] THEN SIMP_TAC[]);;
let EXISTS_POINT = prove
(`(?p. P p) <=> P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/
P Point_5 \/ P Point_6 \/ P Point_7`,
MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_POINT]);;
let FORALL_LINE = prove
(`(!p. P p) <=> P Line_1 /\ P Line_2 /\ P Line_3 /\ P Line_4 /\
P Line_5 /\ P Line_6 /\ P Line_7`,
EQ_TAC THEN REWRITE_TAC[Line_INDUCT] THEN SIMP_TAC[]);;
let EXISTS_LINE = prove
(`(?p. P p) <=> P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/
P Line_5 \/ P Line_6 \/ P Line_7`,
MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_LINE]);;
(* ------------------------------------------------------------------------- *)
(* Hence prove the axioms by a naive case split (a bit slow but easy). *)
(* ------------------------------------------------------------------------- *)
let FANO_TAC =
GEN_REWRITE_TAC DEPTH_CONV
[FORALL_POINT; EXISTS_LINE; EXISTS_POINT; FORALL_LINE] THEN
GEN_REWRITE_TAC DEPTH_CONV
(basic_rewrites() @ [ON_CLAUSES; Point_DISTINCT; Line_DISTINCT]);;
let AXIOM_1 = time prove
(`!p p'. ~(p = p') ==> ?l. p ON l /\ p' ON l /\
!l'. p ON l' /\ p' ON l' ==> (l' = l)`,
FANO_TAC);;
let AXIOM_2 = time prove
(`!l l'. ?p. p ON l /\ p ON l'`,
FANO_TAC);;
let AXIOM_3 = time prove
(`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p ON l /\ p' ON l /\ p'' ON l)`,
FANO_TAC);;
let AXIOM_4 = time prove
(`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p ON l /\ p' ON l /\ p'' ON l`,
FANO_TAC);;
(* ------------------------------------------------------------------------- *)
(* Now the interesting bit. *)
(* ------------------------------------------------------------------------- *)
let AXIOM_1' = theorem
"!p p' l l'. ~(p = p') /\\ p ON l /\\ p' ON l /\\ p ON l' /\\ p' ON l'
==> (l' = l)"
[fix ["p:Point"; "p':Point"; "l:Line"; "l':Line"];
assume "~(p = p') /\\ p ON l /\\ p' ON l /\\ p ON l' /\\ p' ON l'" at 1;
consider ["l1:Line"] st "p ON l1 /\\ p' ON l1 /\\
!l'. p ON l' /\\ p' ON l' ==> (l' = l1)" from [1] by [AXIOM_1] at 2;
have "l = l1" from [1;2];
so have "... = l'" from [1;2];
qed];;
let LEMMA_1 = theorem
"!O. ?l. O ON l"
[consider ["p:Point"; "p':Point"; "p'':Point"] st
"~(p = p') /\\ ~(p' = p'') /\\ ~(p = p'') /\\
~(?l. p ON l /\\ p' ON l /\\ p'' ON l)" by [AXIOM_3] at 1;
fix ["O:Point"];
have "~(p = O) \/ ~(p' = O)" from [1];
so consider ["P:Point"] st "~(P = O)" at 2;
consider ["l:Line"] st "O ON l /\\ P ON l /\\
!l'. O ON l' /\\ P ON l' ==> (l' = l)" from [2] by [AXIOM_1] at 3;
thus "?l. O ON l" from [3]];;
let DUAL_1 = theorem
"!l l'. ~(l = l') ==> ?p. p ON l /\\ p ON l' /\\
!p'. p' ON l /\\ p' ON l' ==> (p' = p)"
[otherwise consider ["l:Line"; "l':Line"] st
"~(l = l') /\\ !p. p ON l /\\ p ON l'
==> ?p'. p' ON l /\\ p' ON l' /\\ ~(p' = p)" at 1;
consider ["p:Point"] st "p ON l /\\ p ON l'" by [AXIOM_2] at 2;
consider ["p':Point"] st "p' ON l /\\ p' ON l' /\\ ~(p' = p)" from [1;2] at 3;
hence contradiction from [1;2] by [AXIOM_1']];;
let DUAL_2 = theorem
"!p p'. ?l. p ON l /\\ p' ON l"
[fix ["p:Point"; "p':Point"];
have "?l. p ON l" by [LEMMA_1] at 1;
have "(p = p') \/
?l. p ON l /\\ p' ON l /\\
!l'. p ON l' /\\ p' ON l' ==> (l' = l)" by [AXIOM_1];
hence thesis from [1]];;
let DUAL_3 = theorem
"?l1 l2 l3. ~(l1 = l2) /\\ ~(l2 = l3) /\\ ~(l1 = l3) /\\
~(?p. p ON l1 /\\ p ON l2 /\\ p ON l3)"
[consider ["p1:Point"; "p2:Point"; "p3:Point"] st
"~(p1 = p2) /\\ ~(p2 = p3) /\\ ~(p1 = p3) /\\
~(?l. p1 ON l /\\ p2 ON l /\\ p3 ON l)" by [AXIOM_3] at 1;
consider ["l1:Line"] st "p1 ON l1 /\\ p3 ON l1" by [DUAL_2] at 2;
consider ["l2:Line"] st "p2 ON l2 /\\ p3 ON l2" by [DUAL_2] at 3;
consider ["l3:Line"] st "p1 ON l3 /\\ p2 ON l3" by [DUAL_2] at 4;
take ["l1"; "l2"; "l3"];
thus "~(l1 = l2) /\\ ~(l2 = l3) /\\ ~(l1 = l3)" from [1;2;3;4] at 5;
otherwise consider ["q:Point"] st "q ON l1 /\\ q ON l2 /\\ q ON l3" at 6;
consider ["q':Point"] st "q' ON l1 /\\ q' ON l3 /\\
!p'. p' ON l1 /\\ p' ON l3 ==> (p' = q')" from [5] by [DUAL_1] at 7;
have "q = q'" from [6;7];
so have "... = p1" from [2;4;7];
hence contradiction from [1;3;6]];;
let DUAL_4 = theorem
"!O. ?OP OQ OR. ~(OP = OQ) /\\ ~(OQ = OR) /\\ ~(OP = OR) /\\
O ON OP /\\ O ON OQ /\\ O ON OR"
[fix ["O:Point"];
consider ["OP:Line"] st "O ON OP" by [LEMMA_1] at 1;
consider ["p:Point"; "p':Point"; "p'':Point"] st
"~(p = p') /\\ ~(p' = p'') /\\ ~(p = p'') /\\
p ON OP /\\ p' ON OP /\\ p'' ON OP" by [AXIOM_4] at 2;
have "~(p = O) \/ ~(p' = O)" from [2];
so consider ["P:Point"] st "~(P = O) /\\ P ON OP" from [2] at 3;
consider ["q:Point"; "q':Point"; "q'':Point"] st
"~(q = q') /\\ ~(q' = q'') /\\ ~(q = q'') /\\
~(?l. q ON l /\\ q' ON l /\\ q'' ON l)" by [AXIOM_3] at 4;
have "~(q ON OP) \/ ~(q' ON OP) \/ ~(q'' ON OP)" from [4];
so consider ["Q:Point"] st "~(Q ON OP)" at 5;
consider ["l:Line"] st "P ON l /\\ Q ON l" by [DUAL_2] at 6;
consider ["r:Point"; "r':Point"; "r'':Point"] st
"~(r = r') /\\ ~(r' = r'') /\\ ~(r = r'') /\\
r ON l /\\ r' ON l /\\ r'' ON l" by [AXIOM_4] at 7;
have "((r = P) \/ (r = Q) \/ ~(r = P) /\\ ~(r = Q)) /\\
((r' = P) \/ (r' = Q) \/ ~(r' = P) /\\ ~(r' = Q))";
so consider ["R:Point"] st "R ON l /\\ ~(R = P) /\\ ~(R = Q)" from [7] at 8;
consider ["OQ:Line"] st "O ON OQ /\\ Q ON OQ" by [DUAL_2] at 9;
consider ["OR:Line"] st "O ON OR /\\ R ON OR" by [DUAL_2] at 10;
take ["OP"; "OQ"; "OR"];
have "~(O ON l)" from [1;3;5;6] by [AXIOM_1'];
hence "~(OP = OQ) /\\ ~(OQ = OR) /\\ ~(OP = OR) /\\
O ON OP /\\ O ON OQ /\\ O ON OR" from [1;3;5;6;8;9;10] by [AXIOM_1']];;
|