Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,699 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
(* ========================================================================= *)
(* Mizar Light proof of duality in projective geometry.                      *)
(* ========================================================================= *)

let holby_prover =
  fun ths (asl,w as gl) -> ACCEPT_TAC(HOL_BY ths w) gl;;

current_prover := holby_prover;;

(* ------------------------------------------------------------------------- *)
(* To avoid adding any axioms, pick a simple model: the Fano plane.          *)
(* ------------------------------------------------------------------------- *)

let Line_INDUCT,Line_RECURSION = define_type
 "Line = Line_1 | Line_2 | Line_3 | Line_4 |
         Line_5 | Line_6 | Line_7";;

let Point_INDUCT,Point_RECURSION = define_type
 "Point = Point_1 | Point_2 | Point_3 | Point_4 |
          Point_5 | Point_6 | Point_7";;

let Point_DISTINCT = distinctness "Point";;

let Line_DISTINCT = distinctness "Line";;

let fano_incidence =
  [1,1; 1,2; 1,3; 2,1; 2,4; 2,5; 3,1; 3,6; 3,7; 4,2; 4,4;
   4,6; 5,2; 5,5; 5,7; 6,3; 6,4; 6,7; 7,3; 7,5; 7,6];;

let fano_point i = mk_const("Point_"^string_of_int i,[])
and fano_line i = mk_const("Line_"^string_of_int i,[]);;

let p = `p:Point` and l = `l:Line` ;;

let fano_clause (i,j) =
  mk_conj(mk_eq(p,fano_point i),mk_eq(l,fano_line j));;

(* ------------------------------------------------------------------------- *)
(* Define the incidence relation "ON" from "fano_incidence"                  *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("ON",(11,"right"));;

let ON = new_definition
 `(p:Point) ON (l:Line) <=>
        (p = Point_1 /\ l = Line_1) \/
        (p = Point_1 /\ l = Line_2) \/
        (p = Point_1 /\ l = Line_3) \/
        (p = Point_2 /\ l = Line_1) \/
        (p = Point_2 /\ l = Line_4) \/
        (p = Point_2 /\ l = Line_5) \/
        (p = Point_3 /\ l = Line_1) \/
        (p = Point_3 /\ l = Line_6) \/
        (p = Point_3 /\ l = Line_7) \/
        (p = Point_4 /\ l = Line_2) \/
        (p = Point_4 /\ l = Line_4) \/
        (p = Point_4 /\ l = Line_6) \/
        (p = Point_5 /\ l = Line_2) \/
        (p = Point_5 /\ l = Line_5) \/
        (p = Point_5 /\ l = Line_7) \/
        (p = Point_6 /\ l = Line_3) \/
        (p = Point_6 /\ l = Line_4) \/
        (p = Point_6 /\ l = Line_7) \/
        (p = Point_7 /\ l = Line_3) \/
        (p = Point_7 /\ l = Line_5) \/
        (p = Point_7 /\ l = Line_6)`;;

(* ------------------------------------------------------------------------- *)
(* Also produce a more convenient case-by-case rewrite.                      *)
(* ------------------------------------------------------------------------- *)

let ON_CLAUSES = prove
 (`(Point_1 ON Line_1 <=> T) /\
   (Point_1 ON Line_2 <=> T) /\
   (Point_1 ON Line_3 <=> T) /\
   (Point_1 ON Line_4 <=> F) /\
   (Point_1 ON Line_5 <=> F) /\
   (Point_1 ON Line_6 <=> F) /\
   (Point_1 ON Line_7 <=> F) /\
   (Point_2 ON Line_1 <=> T) /\
   (Point_2 ON Line_2 <=> F) /\
   (Point_2 ON Line_3 <=> F) /\
   (Point_2 ON Line_4 <=> T) /\
   (Point_2 ON Line_5 <=> T) /\
   (Point_2 ON Line_6 <=> F) /\
   (Point_2 ON Line_7 <=> F) /\
   (Point_3 ON Line_1 <=> T) /\
   (Point_3 ON Line_2 <=> F) /\
   (Point_3 ON Line_3 <=> F) /\
   (Point_3 ON Line_4 <=> F) /\
   (Point_3 ON Line_5 <=> F) /\
   (Point_3 ON Line_6 <=> T) /\
   (Point_3 ON Line_7 <=> T) /\
   (Point_4 ON Line_1 <=> F) /\
   (Point_4 ON Line_2 <=> T) /\
   (Point_4 ON Line_3 <=> F) /\
   (Point_4 ON Line_4 <=> T) /\
   (Point_4 ON Line_5 <=> F) /\
   (Point_4 ON Line_6 <=> T) /\
   (Point_4 ON Line_7 <=> F) /\
   (Point_5 ON Line_1 <=> F) /\
   (Point_5 ON Line_2 <=> T) /\
   (Point_5 ON Line_3 <=> F) /\
   (Point_5 ON Line_4 <=> F) /\
   (Point_5 ON Line_5 <=> T) /\
   (Point_5 ON Line_6 <=> F) /\
   (Point_5 ON Line_7 <=> T) /\
   (Point_6 ON Line_1 <=> F) /\
   (Point_6 ON Line_2 <=> F) /\
   (Point_6 ON Line_3 <=> T) /\
   (Point_6 ON Line_4 <=> T) /\
   (Point_6 ON Line_5 <=> F) /\
   (Point_6 ON Line_6 <=> F) /\
   (Point_6 ON Line_7 <=> T) /\
   (Point_7 ON Line_1 <=> F) /\
   (Point_7 ON Line_2 <=> F) /\
   (Point_7 ON Line_3 <=> T) /\
   (Point_7 ON Line_4 <=> F) /\
   (Point_7 ON Line_5 <=> T) /\
   (Point_7 ON Line_6 <=> T) /\
   (Point_7 ON Line_7 <=> F)`,
  REWRITE_TAC[ON; Line_DISTINCT; Point_DISTINCT]);;

(* ------------------------------------------------------------------------- *)
(* Case analysis theorems.                                                   *)
(* ------------------------------------------------------------------------- *)

let FORALL_POINT = prove
 (`(!p. P p) <=> P Point_1 /\ P Point_2 /\ P Point_3 /\ P Point_4 /\
                 P Point_5 /\ P Point_6 /\ P Point_7`,
  EQ_TAC THEN REWRITE_TAC[Point_INDUCT] THEN SIMP_TAC[]);;

let EXISTS_POINT = prove
 (`(?p. P p) <=> P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/
                 P Point_5 \/ P Point_6 \/ P Point_7`,
  MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
  REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_POINT]);;

let FORALL_LINE = prove
 (`(!p. P p) <=> P Line_1 /\ P Line_2 /\ P Line_3 /\ P Line_4 /\
                 P Line_5 /\ P Line_6 /\ P Line_7`,
  EQ_TAC THEN REWRITE_TAC[Line_INDUCT] THEN SIMP_TAC[]);;

let EXISTS_LINE = prove
 (`(?p. P p) <=> P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/
                 P Line_5 \/ P Line_6 \/ P Line_7`,
  MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
  REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_LINE]);;

(* ------------------------------------------------------------------------- *)
(* Hence prove the axioms by a naive case split (a bit slow but easy).       *)
(* ------------------------------------------------------------------------- *)

let FANO_TAC =
  GEN_REWRITE_TAC DEPTH_CONV
   [FORALL_POINT; EXISTS_LINE; EXISTS_POINT; FORALL_LINE] THEN
  GEN_REWRITE_TAC DEPTH_CONV
   (basic_rewrites() @ [ON_CLAUSES; Point_DISTINCT; Line_DISTINCT]);;

let AXIOM_1 = time prove
 (`!p p'. ~(p = p') ==> ?l. p ON l /\ p' ON l /\
     !l'. p ON l' /\ p' ON l' ==> (l' = l)`,
  FANO_TAC);;

let AXIOM_2 = time prove
 (`!l l'. ?p. p ON l /\ p ON l'`,
  FANO_TAC);;

let AXIOM_3 = time prove
 (`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
    ~(?l. p ON l /\ p' ON l /\ p'' ON l)`,
  FANO_TAC);;

let AXIOM_4 = time prove
 (`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
    p ON l /\ p' ON l /\ p'' ON l`,
  FANO_TAC);;

(* ------------------------------------------------------------------------- *)
(* Now the interesting bit.                                                  *)
(* ------------------------------------------------------------------------- *)

let AXIOM_1' = theorem
 "!p p' l l'. ~(p = p') /\\ p ON l /\\ p' ON l /\\ p ON l' /\\ p' ON l'
    ==> (l' = l)"
 [fix ["p:Point"; "p':Point"; "l:Line"; "l':Line"];
  assume "~(p = p') /\\ p ON l /\\ p' ON l /\\ p ON l' /\\ p' ON l'" at 1;
  consider ["l1:Line"] st "p ON l1 /\\ p' ON l1 /\\
    !l'. p ON l' /\\ p' ON l' ==> (l' = l1)" from [1] by [AXIOM_1] at 2;
  have "l = l1" from [1;2];
  so have "... = l'" from [1;2];
  qed];;

let LEMMA_1 = theorem
 "!O. ?l. O ON l"
 [consider ["p:Point"; "p':Point"; "p'':Point"] st
   "~(p = p') /\\ ~(p' = p'') /\\ ~(p = p'') /\\
     ~(?l. p ON l /\\ p' ON l /\\ p'' ON l)" by [AXIOM_3] at 1;
  fix ["O:Point"];
  have "~(p = O) \/ ~(p' = O)" from [1];
  so consider ["P:Point"] st "~(P = O)" at 2;
  consider ["l:Line"] st "O ON l /\\ P ON l /\\
    !l'. O ON l' /\\ P ON l' ==> (l' = l)" from [2] by [AXIOM_1] at 3;
  thus "?l. O ON l" from [3]];;

let DUAL_1 = theorem
 "!l l'. ~(l = l') ==> ?p. p ON l /\\ p ON l' /\\
    !p'. p' ON l /\\ p' ON l' ==> (p' = p)"
 [otherwise consider ["l:Line"; "l':Line"] st
   "~(l = l') /\\ !p. p ON l /\\ p ON l'
     ==> ?p'. p' ON l /\\ p' ON l' /\\ ~(p' = p)" at 1;
  consider ["p:Point"] st "p ON l /\\ p ON l'" by [AXIOM_2] at 2;
  consider ["p':Point"] st "p' ON l /\\ p' ON l' /\\ ~(p' = p)" from [1;2] at 3;
  hence contradiction from [1;2] by [AXIOM_1']];;

let DUAL_2 = theorem
 "!p p'. ?l. p ON l /\\ p' ON l"
 [fix ["p:Point"; "p':Point"];
  have "?l. p ON l" by [LEMMA_1] at 1;
  have "(p = p') \/
    ?l. p ON l /\\ p' ON l /\\
      !l'. p ON l' /\\ p' ON l' ==> (l' = l)" by [AXIOM_1];
  hence thesis from [1]];;

let DUAL_3 = theorem
 "?l1 l2 l3. ~(l1 = l2) /\\ ~(l2 = l3) /\\ ~(l1 = l3) /\\
    ~(?p. p ON l1 /\\ p ON l2 /\\ p ON l3)"
 [consider ["p1:Point"; "p2:Point"; "p3:Point"] st
   "~(p1 = p2) /\\ ~(p2 = p3) /\\ ~(p1 = p3) /\\
      ~(?l. p1 ON l /\\ p2 ON l /\\ p3 ON l)" by [AXIOM_3] at 1;
  consider ["l1:Line"] st "p1 ON l1 /\\ p3 ON l1" by [DUAL_2] at 2;
  consider ["l2:Line"] st "p2 ON l2 /\\ p3 ON l2" by [DUAL_2] at 3;
  consider ["l3:Line"] st "p1 ON l3 /\\ p2 ON l3" by [DUAL_2] at 4;
  take ["l1"; "l2"; "l3"];
  thus "~(l1 = l2) /\\ ~(l2 = l3) /\\ ~(l1 = l3)" from [1;2;3;4] at 5;
  otherwise consider ["q:Point"] st "q ON l1 /\\ q ON l2 /\\ q ON l3" at 6;
  consider ["q':Point"] st "q' ON l1 /\\ q' ON l3 /\\
    !p'. p' ON l1 /\\ p' ON l3 ==> (p' = q')" from [5] by [DUAL_1] at 7;
  have "q = q'" from [6;7];
  so have "... = p1" from [2;4;7];
  hence contradiction from [1;3;6]];;

let DUAL_4 = theorem
 "!O. ?OP OQ OR. ~(OP = OQ) /\\ ~(OQ = OR) /\\ ~(OP = OR) /\\
    O ON OP /\\ O ON OQ /\\ O ON OR"
 [fix ["O:Point"];
  consider ["OP:Line"] st "O ON OP" by [LEMMA_1] at 1;
  consider ["p:Point"; "p':Point"; "p'':Point"] st
   "~(p = p') /\\ ~(p' = p'') /\\ ~(p = p'') /\\
      p ON OP /\\ p' ON OP /\\ p'' ON OP" by [AXIOM_4] at 2;
  have "~(p = O) \/ ~(p' = O)" from [2];
  so consider ["P:Point"] st "~(P = O) /\\ P ON OP" from [2] at 3;
  consider ["q:Point"; "q':Point"; "q'':Point"] st
   "~(q = q') /\\ ~(q' = q'') /\\ ~(q = q'') /\\
      ~(?l. q ON l /\\ q' ON l /\\ q'' ON l)" by [AXIOM_3] at 4;
  have "~(q ON OP) \/ ~(q' ON OP) \/ ~(q'' ON OP)" from [4];
  so consider ["Q:Point"] st "~(Q ON OP)" at 5;
  consider ["l:Line"] st "P ON l /\\ Q ON l" by [DUAL_2] at 6;
  consider ["r:Point"; "r':Point"; "r'':Point"] st
   "~(r = r') /\\ ~(r' = r'') /\\ ~(r = r'') /\\
      r ON l /\\ r' ON l /\\ r'' ON l" by [AXIOM_4] at 7;
  have "((r = P) \/ (r = Q) \/ ~(r = P) /\\ ~(r = Q)) /\\
    ((r' = P) \/ (r' = Q) \/ ~(r' = P) /\\ ~(r' = Q))";
  so consider ["R:Point"] st "R ON l /\\ ~(R = P) /\\ ~(R = Q)" from [7] at 8;
  consider ["OQ:Line"] st "O ON OQ /\\ Q ON OQ" by [DUAL_2] at 9;
  consider ["OR:Line"] st "O ON OR /\\ R ON OR" by [DUAL_2] at 10;
  take ["OP"; "OQ"; "OR"];
  have "~(O ON l)" from [1;3;5;6] by [AXIOM_1'];
  hence "~(OP = OQ) /\\ ~(OQ = OR) /\\ ~(OP = OR) /\\
    O ON OP /\\ O ON OQ /\\ O ON OR" from [1;3;5;6;8;9;10] by [AXIOM_1']];;