Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,190 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
(* open satTools dimacsTools SatSolvers minisatResolve
satCommonTools minisatParse satScript def_cnf *)
(*
for interactive use:
#load "str.cma";;
#use "def_cnf.ml";;
#use "satCommonTools.ml";;
#use "dimacsTools.ml";;
#use "SatSolvers.ml";;
#use "satScript.ml";;
#use "satTools.ml";;
#use "minisatParse.ml";;
#use "minisatResolve.ml";;
#use "minisatProve.ml";;
#use "taut.ml";;
*)
(* ------------------------------------------------------------------------- *)
(* Flag to (de-)activate debugging facilities. *)
(* ------------------------------------------------------------------------- *)
let sat_debugging = ref false;;
(* ------------------------------------------------------------------------- *)
(* Split up a theorem according to conjuncts, in a general sense. *)
(* ------------------------------------------------------------------------- *)
let GCONJUNCTS =
let [pth_ni1; pth_ni2; pth_no1; pth_no2; pth_an1; pth_an2; pth_nn] =
(map UNDISCH_ALL o CONJUNCTS o TAUT)
`(~(p ==> q) ==> p) /\
(~(p ==> q) ==> ~q) /\
(~(p \/ q) ==> ~p) /\
(~(p \/ q) ==> ~q) /\
(p /\ q ==> p) /\
(p /\ q ==> q) /\
(~ ~p ==> p)` in
let p_tm = concl pth_an1 and q_tm = concl pth_an2 in
let rec GCONJUNCTS th acc =
match (concl th) with
Comb(Const("~",_),Comb(Comb(Const("==>",_),p),q)) ->
GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_ni1))
(GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_ni2))
acc)
| Comb(Const("~",_),Comb(Comb(Const("\\/",_),p),q)) ->
GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_no1))
(GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_no2))
acc)
| Comb(Comb(Const("/\\",_),p),q) ->
GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_an1))
(GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_an2))
acc)
| Comb(Const("~",_),Comb(Const("~",_),p)) ->
GCONJUNCTS (PROVE_HYP th (INST [p,p_tm] pth_nn)) acc
| _ -> th::acc in
fun th -> GCONJUNCTS th [];;
(* ------------------------------------------------------------------------- *)
(* Generate fresh variable names (could just use genvars). *)
(* ------------------------------------------------------------------------- *)
let propvar i = mk_var("x"^string_of_int i,bool_ty);;
(* ------------------------------------------------------------------------- *)
(* Set up the basic definitional arrangement. *)
(* ------------------------------------------------------------------------- *)
let rec localdefs tm (n,defs,lfn) =
if is_neg tm then
let n1,v1,defs1,lfn1 = localdefs (rand tm) (n,defs,lfn) in
let tm' = mk_neg v1 in
try (n1,apply defs1 tm',defs1,lfn1) with Failure _ ->
let n2 = n1 + 1 in
let v2 = propvar n2 in
n2,v2,(tm' |-> v2) defs1,(v2 |-> tm) lfn1
else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then
let n1,v1,defs1,lfn1 = localdefs (lhand tm) (n,defs,lfn) in
let n2,v2,defs2,lfn2 = localdefs (rand tm) (n1,defs1,lfn1) in
let tm' = mk_comb(mk_comb(rator(rator tm),v1),v2) in
try (n2,apply defs2 tm',defs2,lfn2) with Failure _ ->
let n3 = n2 + 1 in
let v3 = propvar n3 in
n3,v3,(tm' |-> v3) defs2,(v3 |-> tm) lfn2
else try (n,apply defs tm,defs,lfn) with Failure _ ->
let n1 = n + 1 in
let v1 = propvar n1 in
n1,v1,(tm |-> v1) defs,(v1 |-> tm) lfn;;
(* ------------------------------------------------------------------------- *)
(* Just translate to fresh variables, but otherwise leave unchanged. *)
(* ------------------------------------------------------------------------- *)
let rec transvar (n,tm,vdefs,lfn) =
if is_neg tm then
let n1,tm1,vdefs1,lfn1 = transvar (n,rand tm,vdefs,lfn) in
n1,mk_comb(rator tm,tm1),vdefs1,lfn1
else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then
let n1,tm1,vdefs1,lfn1 = transvar (n,lhand tm,vdefs,lfn) in
let n2,tm2,vdefs2,lfn2 = transvar (n1,rand tm,vdefs1,lfn1) in
n2,mk_comb(mk_comb(rator(rator tm),tm1),tm2),vdefs2,lfn2
else try n,apply vdefs tm,vdefs,lfn with Failure _ ->
let n1 = n + 1 in
let v1 = propvar n1 in
n1,v1,(tm |-> v1) vdefs,(v1 |-> tm) lfn;;
(* ------------------------------------------------------------------------- *)
(* Flag to choose whether to exploit existing conjunctive structure. *)
(* ------------------------------------------------------------------------- *)
let exploit_conjunctive_structure = ref true;;
(* ------------------------------------------------------------------------- *)
(* Check if something is clausal (slightly stupid). *)
(* ------------------------------------------------------------------------- *)
let is_literal tm = is_var tm || is_neg tm && is_var(rand tm);;
let is_clausal tm =
let djs = disjuncts tm in
forall is_literal djs && list_mk_disj djs = tm;;
(* ------------------------------------------------------------------------- *)
(* Now do the definitional arrangement but not wastefully at the top. *)
(* ------------------------------------------------------------------------- *)
let definitionalize =
let transform_imp =
let pth = TAUT `(p ==> q) <=> ~p \/ q` in
let ptm = rand(concl pth) in
let p_tm = rand(lhand ptm) and q_tm = rand ptm in
fun th -> let ip,q = dest_comb(concl th) in
let p = rand ip in
EQ_MP (INST [p,p_tm; q,q_tm] pth) th
and transform_iff_1 =
let pth = UNDISCH(TAUT `(p <=> q) ==> (p \/ ~q)`) in
let ptm = concl pth in
let p_tm = lhand ptm and q_tm = rand(rand ptm) in
fun th -> let ip,q = dest_comb(concl th) in
let p = rand ip in
PROVE_HYP th (INST [p,p_tm; q,q_tm] pth)
and transform_iff_2 =
let pth = UNDISCH(TAUT `(p <=> q) ==> (~p \/ q)`) in
let ptm = concl pth in
let p_tm = rand(lhand ptm) and q_tm = rand ptm in
fun th -> let ip,q = dest_comb(concl th) in
let p = rand ip in
PROVE_HYP th (INST [p,p_tm; q,q_tm] pth) in
let definitionalize th (n,tops,defs,lfn) =
let t = concl th in
if is_clausal t then
let n',v,defs',lfn' = transvar (n,t,defs,lfn) in
(n',(v,th)::tops,defs',lfn')
else if is_neg t then
let n1,v1,defs1,lfn1 = localdefs (rand t) (n,defs,lfn) in
(n1,(mk_neg v1,th)::tops,defs1,lfn1)
else if is_disj t then
let n1,v1,defs1,lfn1 = localdefs (lhand t) (n,defs,lfn) in
let n2,v2,defs2,lfn2 = localdefs (rand t) (n1,defs1,lfn1) in
(n2,(mk_disj(v1,v2),th)::tops,defs2,lfn2)
else if is_imp t then
let n1,v1,defs1,lfn1 = localdefs (lhand t) (n,defs,lfn) in
let n2,v2,defs2,lfn2 = localdefs (rand t) (n1,defs1,lfn1) in
(n2,(mk_disj(mk_neg v1,v2),transform_imp th)::tops,defs2,lfn2)
else if is_iff t then
let n1,v1,defs1,lfn1 = localdefs (lhand t) (n,defs,lfn) in
let n2,v2,defs2,lfn2 = localdefs (rand t) (n1,defs1,lfn1) in
(n2,(mk_disj(v1,mk_neg v2),transform_iff_1 th)::
(mk_disj(mk_neg v1,v2),transform_iff_2 th)::tops,defs2,lfn2)
else
let n',v,defs',lfn' = localdefs t (n,defs,lfn) in
(n',(v,th)::tops,defs',lfn') in
definitionalize;;
(* SAT_PROVE is the main interface function.
Takes in a term t and returns thm or exception if not a taut *)
(* invokes minisatp, returns |- t or |- model ==> ~t *)
(* if minisatp proof log does not exist after minisatp call returns,
we will assume that minisatp discovered UNSAT during the read-in
phase and did not bother with a proof log.
In that case the problem is simple and can be delegated to TAUT *)
(* FIXME: I do not like the TAUT solution;
what is trivial for Minisat may not be so for TAUT *)
exception Sat_counterexample of thm;;
(* delete temporary files *)
(* if zChaff was used, also delete hard-wired trace filenames*)
let CLEANUP fname solvername =
let delete fname = try Sys.remove fname with Sys_error _ -> () in
(delete fname;
delete (fname^".cnf");
delete (fname^"."^solvername);
delete (fname^"."^solvername^".proof");
delete (fname^"."^solvername^".stats");
if solvername="zchaff" then
(delete(Filename.concat (!temp_path) "resolve_trace");
delete(Filename.concat (!temp_path) "zc2mso_trace"))
else ());;
let GEN_SAT_PROVE solver solvername =
let false_tm = `F`
and presimp_conv = GEN_REWRITE_CONV DEPTH_CONV
[NOT_CLAUSES; AND_CLAUSES; OR_CLAUSES; IMP_CLAUSES; EQ_CLAUSES]
and p_tm = `p:bool` and q_tm = `q:bool`
and pth_triv = TAUT `(~p <=> F) <=> p`
and pth_main = UNDISCH_ALL(TAUT `(~p <=> q) ==> (q ==> F) ==> p`) in
let triv_rule p th = EQ_MP(INST [p,p_tm] pth_triv) th
and main_rule p q sth th =
itlist PROVE_HYP [sth; DISCH_ALL th] (INST [p,p_tm; q,q_tm] pth_main) in
let invoke_minisat lfn mcth stm t rcv vc =
let nr = Array.length rcv in
let res = match invokeSat solver None t (Some vc) with
Some model ->
let model2 =
mapfilter (fun l -> let x = hd(frees l) in
let y = apply lfn x in
if is_var y then vsubst [y,x] l else fail())
model in
satCheck model2 stm
| None ->
(match parseMinisatProof nr ((!tmp_name)^"."^solvername^".proof") vc rcv with
Some (cl,sk,scl,srl,cc) ->
unsatProveResolve lfn mcth (cl,sk,srl) (* returns p |- F *)
| None -> UNDISCH(TAUT(mk_imp(stm,false_tm)))) in
res in
fun tm ->
let sth = presimp_conv (mk_neg tm) in
let stm = rand(concl sth) in
if stm = false_tm then triv_rule tm sth else
let th = ASSUME stm in
let ths = if !exploit_conjunctive_structure then GCONJUNCTS th
else [th] in
let n,tops,defs,lfn =
itlist definitionalize ths (-1,[],undefined,undefined) in
let defg = foldl (fun a t nv -> (t,nv)::a) [] defs in
let mdefs = filter (fun (r,_) -> not (is_var r)) defg in
let eqs = map (fun (r,l) -> mk_iff(l,r)) mdefs in
let clausify eq cls =
let fvs = frees eq and eth = (NNFC_CONV THENC CNF_CONV) eq in
let tth = INST (map (fun v -> apply lfn v,v) fvs) eth in
let xth = ADD_ASSUM stm (EQ_MP tth (REFL(apply lfn (lhand eq)))) in
zip (conjuncts(rand(concl eth))) (CONJUNCTS xth) @ cls in
let all_clauses = itlist clausify eqs tops in
let mcth = itlist (fun (c,th) m -> Termmap.add c th m) all_clauses
Termmap.empty in
let vc = n + 1 in
let rcv = Array.of_list (map fst all_clauses) in
let ntdcnf = list_mk_conj (map fst all_clauses) in
let th = invoke_minisat lfn mcth stm ntdcnf rcv vc in
(if not (!sat_debugging) then CLEANUP (!tmp_name) solvername else ();
if is_imp(concl th)
then raise (Sat_counterexample
(EQ_MP (AP_TERM (rator(concl th)) (SYM sth)) th))
else main_rule tm stm sth th);;
let SAT_PROVE = GEN_SAT_PROVE minisatp "minisatp";;
let ZSAT_PROVE = GEN_SAT_PROVE zchaff "zchaff";;
|