Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,190 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
(* open satTools dimacsTools SatSolvers minisatResolve
   satCommonTools minisatParse satScript def_cnf *)

(*
for interactive use:

   #load "str.cma";;
   #use "def_cnf.ml";;
   #use "satCommonTools.ml";;
   #use "dimacsTools.ml";;
   #use "SatSolvers.ml";;
   #use "satScript.ml";;
   #use "satTools.ml";;
   #use "minisatParse.ml";;
   #use "minisatResolve.ml";;
   #use "minisatProve.ml";;
   #use "taut.ml";;
*)
(* ------------------------------------------------------------------------- *)
(* Flag to (de-)activate debugging facilities.                               *)
(* ------------------------------------------------------------------------- *)

let sat_debugging = ref false;;

(* ------------------------------------------------------------------------- *)
(* Split up a theorem according to conjuncts, in a general sense.            *)
(* ------------------------------------------------------------------------- *)

let GCONJUNCTS =
  let [pth_ni1; pth_ni2; pth_no1; pth_no2; pth_an1; pth_an2; pth_nn] =
    (map UNDISCH_ALL o CONJUNCTS o TAUT)
    `(~(p ==> q) ==> p) /\
     (~(p ==> q) ==> ~q) /\
     (~(p \/ q) ==> ~p) /\
     (~(p \/ q) ==> ~q) /\
     (p /\ q ==> p) /\
     (p /\ q ==> q) /\
     (~ ~p ==> p)` in
  let p_tm = concl pth_an1 and q_tm = concl pth_an2 in
  let rec GCONJUNCTS th acc =
    match (concl th) with
      Comb(Const("~",_),Comb(Comb(Const("==>",_),p),q)) ->
       GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_ni1))
                  (GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_ni2))
                              acc)
    | Comb(Const("~",_),Comb(Comb(Const("\\/",_),p),q)) ->
       GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_no1))
                  (GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_no2))
                              acc)
    | Comb(Comb(Const("/\\",_),p),q) ->
       GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_an1))
                  (GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_an2))
                              acc)
    | Comb(Const("~",_),Comb(Const("~",_),p)) ->
          GCONJUNCTS (PROVE_HYP th (INST [p,p_tm] pth_nn)) acc
    | _ -> th::acc in
  fun th -> GCONJUNCTS th [];;

(* ------------------------------------------------------------------------- *)
(* Generate fresh variable names (could just use genvars).                   *)
(* ------------------------------------------------------------------------- *)

let propvar i = mk_var("x"^string_of_int i,bool_ty);;

(* ------------------------------------------------------------------------- *)
(* Set up the basic definitional arrangement.                                *)
(* ------------------------------------------------------------------------- *)

let rec localdefs tm (n,defs,lfn) =
  if is_neg tm then
    let n1,v1,defs1,lfn1 = localdefs (rand tm) (n,defs,lfn) in
    let tm' = mk_neg v1 in
    try (n1,apply defs1 tm',defs1,lfn1) with Failure _ ->
    let n2 = n1 + 1 in
    let v2 = propvar n2 in
    n2,v2,(tm' |-> v2) defs1,(v2 |-> tm) lfn1
  else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then
    let n1,v1,defs1,lfn1 = localdefs (lhand tm) (n,defs,lfn) in
    let n2,v2,defs2,lfn2 = localdefs (rand tm) (n1,defs1,lfn1) in
    let tm' = mk_comb(mk_comb(rator(rator tm),v1),v2) in
    try (n2,apply defs2 tm',defs2,lfn2) with Failure _ ->
    let n3 = n2 + 1 in
    let v3 = propvar n3 in
    n3,v3,(tm' |-> v3) defs2,(v3 |-> tm) lfn2
  else try (n,apply defs tm,defs,lfn) with Failure _ ->
       let n1 = n + 1 in
       let v1 = propvar n1 in
       n1,v1,(tm |-> v1) defs,(v1 |-> tm) lfn;;

(* ------------------------------------------------------------------------- *)
(* Just translate to fresh variables, but otherwise leave unchanged.         *)
(* ------------------------------------------------------------------------- *)

let rec transvar (n,tm,vdefs,lfn) =
  if is_neg tm then
    let n1,tm1,vdefs1,lfn1 = transvar (n,rand tm,vdefs,lfn) in
    n1,mk_comb(rator tm,tm1),vdefs1,lfn1
  else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then
    let n1,tm1,vdefs1,lfn1 = transvar (n,lhand tm,vdefs,lfn) in
    let n2,tm2,vdefs2,lfn2 = transvar (n1,rand tm,vdefs1,lfn1) in
    n2,mk_comb(mk_comb(rator(rator tm),tm1),tm2),vdefs2,lfn2
  else try n,apply vdefs tm,vdefs,lfn with Failure _ ->
       let n1 = n + 1 in
       let v1 = propvar n1 in
       n1,v1,(tm |-> v1) vdefs,(v1 |-> tm) lfn;;

(* ------------------------------------------------------------------------- *)
(* Flag to choose whether to exploit existing conjunctive structure.         *)
(* ------------------------------------------------------------------------- *)

let exploit_conjunctive_structure = ref true;;

(* ------------------------------------------------------------------------- *)
(* Check if something is clausal (slightly stupid).                          *)
(* ------------------------------------------------------------------------- *)

let is_literal tm = is_var tm || is_neg tm && is_var(rand tm);;

let is_clausal tm =
  let djs = disjuncts tm in
  forall is_literal djs && list_mk_disj djs = tm;;

(* ------------------------------------------------------------------------- *)
(* Now do the definitional arrangement but not wastefully at the top.        *)
(* ------------------------------------------------------------------------- *)

let definitionalize =
  let transform_imp =
    let pth = TAUT `(p ==> q) <=> ~p \/ q` in
    let ptm = rand(concl pth) in
    let p_tm = rand(lhand ptm) and q_tm = rand ptm in
    fun th -> let ip,q = dest_comb(concl th) in
              let p = rand ip in
              EQ_MP (INST [p,p_tm; q,q_tm] pth) th
  and transform_iff_1 =
    let pth = UNDISCH(TAUT `(p <=> q) ==> (p \/ ~q)`) in
    let ptm = concl pth in
    let p_tm = lhand ptm and q_tm = rand(rand ptm) in
    fun th -> let ip,q = dest_comb(concl th) in
              let p = rand ip in
              PROVE_HYP th (INST [p,p_tm; q,q_tm] pth)
  and transform_iff_2 =
    let pth = UNDISCH(TAUT `(p <=> q) ==> (~p \/ q)`) in
    let ptm = concl pth in
    let p_tm = rand(lhand ptm) and q_tm = rand ptm in
    fun th -> let ip,q = dest_comb(concl th) in
              let p = rand ip in
              PROVE_HYP th (INST [p,p_tm; q,q_tm] pth) in
  let definitionalize th (n,tops,defs,lfn) =
    let t = concl th in
    if is_clausal t then
      let n',v,defs',lfn' = transvar (n,t,defs,lfn) in
      (n',(v,th)::tops,defs',lfn')
    else if is_neg t then
       let n1,v1,defs1,lfn1 = localdefs (rand t) (n,defs,lfn) in
       (n1,(mk_neg v1,th)::tops,defs1,lfn1)
    else if is_disj t then
      let n1,v1,defs1,lfn1 = localdefs (lhand t) (n,defs,lfn) in
      let n2,v2,defs2,lfn2 = localdefs (rand t) (n1,defs1,lfn1) in
      (n2,(mk_disj(v1,v2),th)::tops,defs2,lfn2)
    else if is_imp t then
      let n1,v1,defs1,lfn1 = localdefs (lhand t) (n,defs,lfn) in
      let n2,v2,defs2,lfn2 = localdefs (rand t) (n1,defs1,lfn1) in
      (n2,(mk_disj(mk_neg v1,v2),transform_imp th)::tops,defs2,lfn2)
    else if is_iff t then
      let n1,v1,defs1,lfn1 = localdefs (lhand t) (n,defs,lfn) in
      let n2,v2,defs2,lfn2 = localdefs (rand t) (n1,defs1,lfn1) in
      (n2,(mk_disj(v1,mk_neg v2),transform_iff_1 th)::
          (mk_disj(mk_neg v1,v2),transform_iff_2 th)::tops,defs2,lfn2)
    else
      let n',v,defs',lfn' = localdefs t (n,defs,lfn) in
      (n',(v,th)::tops,defs',lfn') in
  definitionalize;;

(* SAT_PROVE is the main interface function.
   Takes in a term t and returns thm or exception if not a taut *)
(* invokes minisatp, returns |- t  or |- model ==> ~t *)

(* if minisatp proof log does not exist after minisatp call returns,
   we will assume that minisatp discovered UNSAT during the read-in
   phase and did not bother with a proof log.
   In that case the problem is simple and can be delegated to TAUT *)

(* FIXME: I do not like the TAUT solution;
   what is trivial for Minisat may not be so for TAUT *)

exception Sat_counterexample of thm;;

(* delete temporary files *)
(* if zChaff was used, also delete hard-wired trace filenames*)
let CLEANUP fname solvername =
  let delete fname = try Sys.remove fname with Sys_error _ -> () in
  (delete fname;
   delete (fname^".cnf");
   delete (fname^"."^solvername);
   delete (fname^"."^solvername^".proof");
   delete (fname^"."^solvername^".stats");
   if solvername="zchaff" then
     (delete(Filename.concat (!temp_path) "resolve_trace");
      delete(Filename.concat (!temp_path) "zc2mso_trace"))
   else ());;

let GEN_SAT_PROVE solver solvername =
  let false_tm = `F`
  and presimp_conv = GEN_REWRITE_CONV DEPTH_CONV
   [NOT_CLAUSES; AND_CLAUSES; OR_CLAUSES; IMP_CLAUSES; EQ_CLAUSES]
  and p_tm = `p:bool` and q_tm = `q:bool`
  and pth_triv = TAUT `(~p <=> F) <=> p`
  and pth_main = UNDISCH_ALL(TAUT `(~p <=> q) ==> (q ==> F) ==> p`) in
  let triv_rule p th = EQ_MP(INST [p,p_tm] pth_triv) th
  and main_rule p q sth th =
    itlist PROVE_HYP [sth; DISCH_ALL th] (INST [p,p_tm; q,q_tm] pth_main) in
  let invoke_minisat lfn mcth stm t rcv vc =
    let nr = Array.length rcv in
    let res = match invokeSat solver None t (Some vc) with
      Some model ->
        let model2 =
          mapfilter (fun l -> let x = hd(frees l) in
                              let y = apply lfn x in
                              if is_var y then vsubst [y,x] l else fail())
                    model in
          satCheck model2 stm
    | None ->
      (match parseMinisatProof nr ((!tmp_name)^"."^solvername^".proof") vc rcv with
         Some (cl,sk,scl,srl,cc) ->
            unsatProveResolve lfn mcth (cl,sk,srl) (* returns p |- F *)
      | None -> UNDISCH(TAUT(mk_imp(stm,false_tm)))) in
    res in
  fun tm ->
    let sth = presimp_conv (mk_neg tm) in
    let stm = rand(concl sth) in
    if stm = false_tm then triv_rule tm sth else
    let th = ASSUME stm in
    let ths = if !exploit_conjunctive_structure then GCONJUNCTS th
              else [th] in
    let n,tops,defs,lfn =
      itlist definitionalize ths (-1,[],undefined,undefined) in
    let defg = foldl (fun a t nv -> (t,nv)::a) [] defs in
    let mdefs = filter (fun (r,_) -> not (is_var r)) defg in
    let eqs = map (fun (r,l) -> mk_iff(l,r)) mdefs in
    let clausify eq cls =
      let fvs = frees eq and eth = (NNFC_CONV THENC CNF_CONV) eq in
      let tth = INST (map (fun v -> apply lfn v,v) fvs) eth in
      let xth = ADD_ASSUM stm (EQ_MP tth (REFL(apply lfn (lhand eq)))) in
      zip (conjuncts(rand(concl eth))) (CONJUNCTS xth) @ cls in
    let all_clauses = itlist clausify eqs tops in
    let mcth = itlist (fun (c,th) m -> Termmap.add c th m) all_clauses
                      Termmap.empty in
    let vc = n + 1 in
    let rcv = Array.of_list (map fst all_clauses) in
    let ntdcnf = list_mk_conj (map fst all_clauses) in
    let th = invoke_minisat lfn mcth stm ntdcnf rcv vc in
    (if not (!sat_debugging) then CLEANUP (!tmp_name) solvername else ();
    if is_imp(concl th)
    then raise (Sat_counterexample
      (EQ_MP (AP_TERM (rator(concl th)) (SYM sth)) th))
    else main_rule tm stm sth th);;

let SAT_PROVE = GEN_SAT_PROVE minisatp "minisatp";;

let ZSAT_PROVE = GEN_SAT_PROVE zchaff "zchaff";;