Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 40,308 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
(* ========================================================================= *)
(* Properties of the lexicographic path order.                               *)
(* ========================================================================= *)

let ITLIST_ADD_1_POS = prove
 (`!l. 0 < ITLIST (+) l 1`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; ARITH] THEN
  POP_ASSUM MP_TAC THEN ARITH_TAC);;

let FVT_FUN_EMPTY = prove
 (`!f a args. MEM a args /\ (FVT(Fn f args) = {}) ==> (FVT a = {})`,
  REWRITE_TAC[FVT; EXTENSION; NOT_IN_EMPTY; IN_LIST_UNION; MEM_MAP;
              GSYM EX_MEM; o_THM] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Notion of an *element* being nonwellfounded: can start a dchain.          *)
(* ------------------------------------------------------------------------- *)

let NONWF = new_definition
  `NONWF(R) a <=> ?s:num->A. (s 0 = a) /\ (!n. R (s(SUC n)) (s n))`;;

let WF_NONWF = prove
 (`WF(R) <=> !a. ~(NONWF(R) a)`,
  REWRITE_TAC[WF_DCHAIN; NONWF] THEN MESON_TAC[]);;

let NONWF_SUCCESSOR = prove
 (`!R a:A b. NONWF(R) b /\ R b a ==> NONWF(R) a`,
  REPEAT GEN_TAC THEN REWRITE_TAC[NONWF] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `s:num->A` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `\n. if n = 0 then a:A else s(n - 1)` THEN
  REWRITE_TAC[NOT_SUC] THEN GEN_TAC THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH] THEN
  ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (SUC n - 1 = SUC(n - 1))`]);;

let WF_NONWF = prove
 (`WF(\x:A y. R x y /\ ~(NONWF(R) y))`,
  REWRITE_TAC[WF_DCHAIN; NONWF] THEN
  DISCH_THEN(X_CHOOSE_THEN `s:num->A` MP_TAC) THEN
  REWRITE_TAC[FORALL_AND_THM] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(MP_TAC o SPEC `0`) THEN REWRITE_TAC[] THEN
  EXISTS_TAC `s:num->A` THEN ASM_REWRITE_TAC[]);;

let NONWF_INDUCT = prove
 (`(!a. ~(NONWF(R) a) /\ (!b. R b a ==> P(b)) ==> P(a))
   ==> !x. ~(NONWF(R) x) ==> P(x)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MATCH_MP_TAC(MATCH_MP(fst(EQ_IMP_RULE WF_IND)) WF_NONWF) THEN
  REWRITE_TAC[] THEN ASM_MESON_TAC[NONWF_SUCCESSOR]);;

(* ------------------------------------------------------------------------- *)
(* General result on "minimal" infinite descending chains.                   *)
(* ------------------------------------------------------------------------- *)

let WF_MINIMAL_STEP = prove
 (`!m:A->num a.
        NONWF(R) a
        ==> ?b. NONWF(R) b /\ R b a /\
                (!c. NONWF(R) c /\ R c a ==> m(b) <= m(c))`,
  REPEAT STRIP_TAC THEN MP_TAC(SPEC
   `\n. ?c. NONWF(R) c /\ R c a /\ ((m:A->num)(c) = n)` num_WOP) THEN
  MATCH_MP_TAC(TAUT `(b ==> c) /\ a ==> (a <=> b) ==> c`) THEN
  REWRITE_TAC[] THEN CONJ_TAC THENL [MESON_TAC[NOT_LT]; ALL_TAC] THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[NONWF] THEN
  DISCH_THEN(X_CHOOSE_THEN `s:num->A` STRIP_ASSUME_TAC) THEN
  MAP_EVERY EXISTS_TAC [`(m:A->num) (s 1)`; `(s:num->A) 1`] THEN
  ASM_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN EXISTS_TAC `\n. s(SUC n):A` THEN
  ASM_REWRITE_TAC[ARITH] THEN ASM_MESON_TAC[num_CONV `1`]);;

let WF_MINIMAL_DCHAIN = prove
 (`!m:A->num.
     WF(R) <=> ~(?t. (!n. R (t(SUC n)) (t n)) /\
                     (!s. NONWF(R) s ==> m(t 0) <= m(s)) /\
                     (!n s. NONWF(R) s /\ R s (t n) ==> m(t(SUC n)) <= m(s)))`,
  GEN_TAC THEN REWRITE_TAC[WF_DCHAIN] THEN AP_TERM_TAC THEN
  EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_TAC THEN
  MP_TAC(SPEC `\n. ?s. NONWF(R) s /\ ((m:A->num)(s) = n)` num_WOP) THEN
  MATCH_MP_TAC(TAUT `a /\ (b ==> c) ==> (a <=> b) ==> c`) THEN CONJ_TAC THENL
   [REWRITE_TAC[NONWF] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `n_0:num` MP_TAC) THEN REWRITE_TAC[] THEN
  DISCH_THEN(CONJUNCTS_THEN2
   (X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) ASSUME_TAC) THEN
  SUBGOAL_THEN `!s. NONWF R s ==> (m:A->num)(a) <= m(s)` ASSUME_TAC THENL
   [ASM_MESON_TAC[NOT_LT]; ALL_TAC] THEN
  MP_TAC(ISPECL
   [`a:A`; `\b (n:num). @c. NONWF(R) c /\ R c b /\
                            !d. NONWF(R) d /\ R d b ==> (m:A->num)(c) <= m(d)`]
   num_RECURSION) THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:num->A` THEN REWRITE_TAC[] THEN
  STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `!d. b /\ d /\ a /\ c ==> a /\ b /\ c`) THEN
  EXISTS_TAC `(!n. NONWF R (t(SUC n):A))` THEN
  CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  REWRITE_TAC[AND_FORALL_THM] THEN INDUCT_TAC THENL
   [FIRST_ASSUM(SUBST1_TAC o SPEC `0`);
    FIRST_ASSUM(SUBST1_TAC o SPEC `SUC n`)] THEN
  CONV_TAC SELECT_CONV THEN
  MATCH_MP_TAC WF_MINIMAL_STEP THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Simple subsequence lemma finitely partitioning an infinite sequence.      *)
(* ------------------------------------------------------------------------- *)

let SEQUENCE_SUBSEQUENCE = prove
 (`!P (x:num->A).
        (!n. ?m. n < m /\ P(x m)) ==> ?f. subseq f /\ !n. P(x(f n))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM] THEN
  DISCH_THEN(X_CHOOSE_THEN `st:num->num` STRIP_ASSUME_TAC) THEN
  MP_TAC(ISPECL [`st(0):num`; `\m:num p:num. st(m):num`] num_RECURSION) THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `s:num->num` THEN REWRITE_TAC[] THEN
  STRIP_TAC THEN CONJ_TAC THENL
   [REWRITE_TAC[SUBSEQ_SUC] THEN ASM_MESON_TAC[];
    INDUCT_TAC THEN ASM_MESON_TAC[]]);;

let SEQUENCE_PARTITION_LEMMA = prove
 (`!x:num->A s. FINITE(s) /\ (!n. x(n) IN s)
                ==> ?a f. subseq f /\ (!n. x(f n) = a)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN `?a:A. !n. ?m:num. n < m /\ (x m = a)` MP_TAC THENL
   [SUBGOAL_THEN
     `!s. FINITE s
          ==> (?n:num. !m. n < m ==> (x(m) IN s))
              ==> ?a:A. !n. ?m. n < m /\ (x m = a)`
     (fun th -> ASM_MESON_TAC[th]) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
    MATCH_MP_TAC FINITE_INDUCT THEN REWRITE_TAC[NOT_IN_EMPTY] THEN
    CONJ_TAC THENL [MESON_TAC[LT]; ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`b:A`; `s:A->bool`] THEN
    MATCH_MP_TAC(TAUT `(~a /\ c ==> b) ==> (a ==> b) ==> (c ==> b)`) THEN
    REWRITE_TAC[IN_INSERT; NOT_EXISTS_THM; NOT_FORALL_THM; NOT_IMP] THEN
    ASM_MESON_TAC[ARITH_RULE `(m + n < p:num ==> m < p /\ n < p)`];
    ALL_TAC] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN
  MP_TAC(ISPEC `\x:A. x = a` SEQUENCE_SUBSEQUENCE) THEN ASM_SIMP_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Term size (used as auxiliary notion).                                     *)
(* ------------------------------------------------------------------------- *)

let termsize_EXISTS = prove
 (`?termsize.
     (!x. termsize(V x) = 1) /\
     (!f args. termsize(Fn f args) = ITLIST (+) (MAP termsize args) 1)`,
  MP_TAC(ISPECL [`\x:num. 1`;
                 `\(f:num) (args:term list) (ns:num list). ITLIST (+) ns 1`;
                 `[]:num list`;
                 `\(t:term) (ts:term list) (n:num) (ns:num list). CONS n ns`]
                term_raw_RECURSION) THEN
  REWRITE_TAC[] THEN
  ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN
  GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ITLIST; MAP]);;

let termsize = new_specification ["termsize"] termsize_EXISTS;;

(* ------------------------------------------------------------------------- *)
(* Lexical extension of a relation, forcing equivalent list lengths.         *)
(* ------------------------------------------------------------------------- *)

let LEX_DEF = new_recursive_definition list_RECURSION
  `(LEX(<<) [] l <=> F) /\
   (LEX(<<) (CONS h t) l <=>
        if l = [] then F
        else if h << HD l then LENGTH t = LENGTH(TL l)
        else (h = HD l) /\ LEX(<<) t (TL l))`;;

let LEX = prove
 (`(LEX(<<) [] l <=> F) /\
   (LEX(<<) (CONS h1 t1) [] <=> F) /\
   (LEX(<<) (CONS h1 t1) (CONS h2 t2) <=>
        if h1 << h2 then LENGTH t1 = LENGTH t2
        else (h1 = h2) /\ LEX(<<) t1 t2)`,
  REWRITE_TAC[LEX_DEF; NOT_CONS_NIL; HD; TL]);;

let LEX_LENGTH = prove
 (`!l1 l2 R. LEX(R) l1 l2 ==> (LENGTH l1 = LENGTH l2)`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[LEX] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[LEX] THEN
  GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[LENGTH] THEN
  ASM_MESON_TAC[]);;

let MONO_LEX = prove
 (`(!x:A y:A. R x y ==> S x y) ==> LEX R x y ==> LEX S x y`,
  DISCH_TAC THEN SPEC_TAC(`y:A list`,`y:A list`) THEN
  SPEC_TAC(`x:A list`,`x:A list`) THEN LIST_INDUCT_TAC THEN
  REWRITE_TAC[LEX] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LEX] THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
  ASM_MESON_TAC[LEX_LENGTH]);;

monotonicity_theorems := MONO_LEX::(!monotonicity_theorems);;

let LEX_MAP = prove
 (`!l1 l2. LEX (\x y. R (f x) (f y)) l1 l2 ==> LEX R (MAP f l1) (MAP f l2)`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[LEX; MAP] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[LEX; MAP] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH_MAP] THEN ASM_SIMP_TAC[]);;

let LEX_REFL = prove
 (`!R l. (!x. MEM x l ==> ~(R x x)) ==> ~(LEX(R) l l)`,
  GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LEX; MEM] THEN
  COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Stronger variant of WF preservation under lexicographic extension.        *)
(* ------------------------------------------------------------------------- *)

let LEX_LENGTH_CHAIN = prove
 (`!lis R. (!n. LEX(R) (lis(SUC n)) (lis n))
           ==> !n. LENGTH(lis(n)) = LENGTH(lis(0))`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[] THEN
  ASM_MESON_TAC[LEX_LENGTH]);;

let WF_LEX_STRONG_INDUCT = prove
 (`!n lis. (LENGTH(lis 0) = n)
           ==> ~((!n a:A. MEM a (lis n) ==> ~(NONWF(R) a)) /\
                 (!n. LEX(R) (lis(SUC n)) (lis n)))`,
  INDUCT_TAC THENL
   [REPEAT STRIP_TAC THEN
    FIRST_ASSUM(ASSUME_TAC o MATCH_MP LEX_LENGTH_CHAIN) THEN
    UNDISCH_TAC `!n. LENGTH (lis n :(A)list) = LENGTH (lis 0)` THEN
    ASM_REWRITE_TAC[LENGTH_EQ_NIL] THEN ASM_MESON_TAC[LEX];
    ALL_TAC] THEN
  REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP LEX_LENGTH_CHAIN) THEN
  FIRST_X_ASSUM SUBST1_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN `?hd tl. !n:num. CONS (hd n :A) (tl n) = lis(n)` MP_TAC THENL
   [EXISTS_TAC `\n:num. HD(lis n):A` THEN
    EXISTS_TAC `\n:num. TL(lis n):A list` THEN
    SUBGOAL_THEN `!n:num. ~(lis n :(A)list = [])` MP_TAC THENL
     [ASM_MESON_TAC[LEX_LENGTH_CHAIN; LENGTH; NOT_SUC]; ALL_TAC] THEN
    MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `m:num` THEN
    REWRITE_TAC[] THEN
    SPEC_TAC(`(lis:num->(A)list) m`,`l:(A)list`) THEN
    LIST_INDUCT_TAC THEN REWRITE_TAC[HD; TL]; ALL_TAC] THEN
  DISCH_THEN(REPEAT_TCL CHOOSE_THEN
   (fun th -> RULE_ASSUM_TAC(REWRITE_RULE[GSYM th]))) THEN
  UNDISCH_TAC `!n:num a:A. MEM a (CONS (hd n) (tl n)) ==> ~NONWF R a` THEN
  REWRITE_TAC[MEM; TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
  SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
  STRIP_TAC THEN UNDISCH_TAC
   `!n:num. LEX R (CONS (hd(SUC n):A) (tl(SUC n))) (CONS (hd n) (tl n))` THEN
  REWRITE_TAC[LEX] THEN
  UNDISCH_TAC `!m:num. LENGTH (CONS (hd m :A) (tl m)) = SUC n` THEN
  REWRITE_TAC[LENGTH; SUC_INJ] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[TAUT `(if p then T else r) <=> p \/ ~p /\ r`] THEN
  UNDISCH_TAC `!n:num a:A. MEM a (tl n) ==> ~NONWF R a` THEN
  UNDISCH_TAC `!m. LENGTH ((tl:num->(A)list) m) = n` THEN
  REWRITE_TAC[IMP_IMP] THEN
  SPEC_TAC(`tl:num->(A)list`,`tl:num->(A)list`) THEN
  ABBREV_TAC `h:A = hd 0` THEN
  SUBGOAL_THEN `~(NONWF(R) (h:A))` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(fun th ->
   UNDISCH_TAC `!n:num. ~NONWF R (hd n :A)` THEN
   UNDISCH_TAC `hd 0 :A = h` THEN MP_TAC th) THEN
  SPEC_TAC(`hd:num->A`,`hd:num->A`) THEN SPEC_TAC(`h:A`,`h:A`) THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC NONWF_INDUCT THEN X_GEN_TAC `h:A` THEN STRIP_TAC THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN STRIP_TAC THEN
  X_GEN_TAC `hd:num->A` THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `?m. R (hd(SUC m):A) (hd m)` MP_TAC THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN
  DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `(hd:num->A) (SUC p)`) THEN ANTS_TAC THENL
   [SUBGOAL_THEN `!n. n <= p ==> (hd n :A = h)`
     (fun th -> ASM_MESON_TAC[th; LE_REFL]) THEN
    INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[LE_SUC_LT] THEN
    ASM_MESON_TAC[LT_IMP_LE];
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o SPEC `\n. hd(SUC p + n):A`) THEN
  ASM_REWRITE_TAC[ADD_CLAUSES; NOT_IMP] THEN
  DISCH_THEN(MP_TAC o SPEC `\n. tl(SUC p + n):A list`) THEN
  ASM_REWRITE_TAC[] THEN X_GEN_TAC `m:num` THEN
  FIRST_ASSUM(MP_TAC o check (is_disj o concl) o SPEC `SUC(p + m)`) THEN
  REWRITE_TAC[ADD_CLAUSES]);;

let WF_LEX_STRONG = prove
 (`!R lis. ~((!n a:A. MEM a (lis n) ==> ~(NONWF(R) a)) /\
             (!n. LEX(R) (lis(SUC n)) (lis n)))`,
  MESON_TAC[WF_LEX_STRONG_INDUCT]);;

(* ------------------------------------------------------------------------- *)
(* Ad-hoc but useful lemma.                                                  *)
(* ------------------------------------------------------------------------- *)

let LEX_RESTRICT = prove
 (`!P R l1 l2. LEX R l1 l2 /\
               (!a. MEM a l1 ==> P(a)) /\ (!a. MEM a l2 ==> P(a))
               ==> LEX (\x y. P(x) /\ P(y) /\ R x y) l1 l2`,
  GEN_TAC THEN GEN_TAC THEN REPEAT LIST_INDUCT_TAC THEN
  REWRITE_TAC[LEX; MEM] THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
  ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Subterm relationship.                                                     *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("subterm",(12,"right"));;
parse_as_infix("psubterm",(12,"right"));;

let subterm_RULES,subterm_INDUCT,subterm_CASES = new_inductive_definition
  `(!t. t subterm t) /\
   (!s a f args. s subterm a /\ MEM a args ==> s subterm (Fn f args))`;;

let psubterm = new_definition
  `s psubterm t <=> s subterm t /\ ~(s = t)`;;

(* ------------------------------------------------------------------------- *)
(* A lemma we don't seem able to avoid.                                      *)
(* ------------------------------------------------------------------------- *)

let DESCENDANT_SMALLER = prove
 (`!f args s. MEM s args ==> termsize s < termsize (Fn f args)`,
  GEN_TAC THEN REWRITE_TAC[termsize] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; MAP; ITLIST] THEN
  ASM_MESON_TAC[ARITH_RULE `0 < b ==> a < a + b`;
                ARITH_RULE `a < c ==> a < b + c`; ITLIST_ADD_1_POS]);;

let DESCENDANT_DISTINCT = prove
 (`!f args. ~(MEM (Fn f args) args)`,
  MESON_TAC[DESCENDANT_SMALLER; LT_REFL]);;

(* ------------------------------------------------------------------------- *)
(* Trivial properties of subterm and psubterm relations.                     *)
(* ------------------------------------------------------------------------- *)

let SUBTERM_REFL = prove
 (`!t. t subterm t`,
  REWRITE_TAC[subterm_RULES]);;

let SUBTERM_TRANS = prove
 (`!s t u. s subterm t /\ t subterm u ==> s subterm u`,
  SUBGOAL_THEN `!t u. t subterm u ==> !s. s subterm t ==> s subterm u`
   (fun th -> MESON_TAC[th]) THEN MATCH_MP_TAC subterm_INDUCT THEN
  REWRITE_TAC[] THEN MESON_TAC[subterm_RULES]);;

let SUBTERM_ANTISYM = prove
 (`!s t. s subterm t /\ t subterm s ==> (s = t)`,
  MATCH_MP_TAC term_INDUCT THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THENL
   [ONCE_REWRITE_TAC[subterm_CASES] THEN SIMP_TAC[term_DISTINCT]; ALL_TAC] THEN
  REWRITE_TAC[GSYM ALL_MEM] THEN STRIP_TAC THEN GEN_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  ONCE_REWRITE_TAC[subterm_CASES] THEN REWRITE_TAC[term_INJ] THEN
  CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
  ASM_MESON_TAC[subterm_RULES; SUBTERM_TRANS]);;

let SUBTERM_FVT = prove
 (`!x t. x IN FVT(t) ==> V(x) subterm t`,
  GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
  SIMP_TAC[FVT; IN_SING; IN_LIST_UNION; SUBTERM_REFL] THEN
  REWRITE_TAC[MEM_MAP; GSYM EX_MEM; GSYM ALL_MEM] THEN
  MESON_TAC[subterm_RULES]);;

let PSUBTERM_ANTISYM = prove
 (`!s t. ~(s psubterm t /\ t psubterm s)`,
  REWRITE_TAC[psubterm] THEN MESON_TAC[SUBTERM_ANTISYM]);;

let SUBTERM_PSUBTERM_TRANS = prove
 (`!s t u. s subterm t /\ t psubterm u ==> s psubterm u`,
  REWRITE_TAC[psubterm] THEN MESON_TAC[SUBTERM_TRANS; SUBTERM_ANTISYM]);;

(* ------------------------------------------------------------------------- *)
(* Useful alternative characterization of psubterm.                          *)
(* ------------------------------------------------------------------------- *)

let PSUBTERM_CASES = prove
 (`!s t. s psubterm t <=>
         ?f args u. (t = Fn f args) /\ MEM u args /\ s subterm u`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [REWRITE_TAC[psubterm] THEN
    DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
    GEN_REWRITE_TAC LAND_CONV [subterm_CASES] THEN ASM_MESON_TAC[];
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`f:num`; `args:term list`; `a:term`] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC SUBTERM_PSUBTERM_TRANS THEN
    EXISTS_TAC `a:term` THEN ASM_REWRITE_TAC[psubterm] THEN
    ASM_MESON_TAC[DESCENDANT_DISTINCT; subterm_RULES]]);;

(* ------------------------------------------------------------------------- *)
(* Stability of subterm relationships under instantiation.                   *)
(* ------------------------------------------------------------------------- *)

let SUBTERM_INSTANTIATION = prove
 (`!i s t. s subterm t ==> (termsubst i s) subterm (termsubst i t)`,
  GEN_TAC THEN MATCH_MP_TAC subterm_INDUCT THEN
  REWRITE_TAC[termsubst; subterm_RULES] THEN
  ASM_MESON_TAC[MEM_MAP; subterm_RULES]);;

let PSUBTERM_INSTANTIATION = prove
 (`!i s t. s psubterm t ==> (termsubst i s) psubterm (termsubst i t)`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[PSUBTERM_CASES] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num` THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`args:term list`; `u:term`] THEN STRIP_TAC THEN
  MAP_EVERY EXISTS_TAC [`MAP (termsubst i) args`; `termsubst i u`] THEN
  ASM_REWRITE_TAC[MEM_MAP; termsubst] THEN
  ASM_MESON_TAC[SUBTERM_INSTANTIATION]);;

(* ------------------------------------------------------------------------- *)
(* Inductive definition of the LPO.                                          *)
(* ------------------------------------------------------------------------- *)

let lpo_RULES,lpo_INDUCT,lpo_CASES = new_inductive_definition
  `(!x s. x IN FVT(s) /\ ~(s = V x) ==> V x << s) /\
   (!fs sargs ft targs si.
          MEM si sargs /\ (Fn ft targs << si \/ (si = Fn ft targs))
          ==> Fn ft targs << Fn fs sargs) /\
   (!fs ft sargs targs.
          (fs > ft \/ (fs = ft) /\ LENGTH sargs > LENGTH targs) /\
          ALL (\ti. ti << Fn fs sargs) targs
          ==> Fn ft targs << Fn fs sargs) /\
   (!f sargs targs.
          ALL (\ti. ti << Fn f sargs) targs /\ LEX(<<) targs sargs
          ==> Fn f targs << Fn f sargs)`;;

(* ------------------------------------------------------------------------- *)
(* Nicer cases theorem; essentially a recursive version of the definition.   *)
(* ------------------------------------------------------------------------- *)

let LPO_CASES = prove
 (`(!s x. (s << V x) <=> F) /\
   (!x t. V x << t <=> x IN FVT(t) /\ ~(t = V x)) /\
   (!f fargs g gargs.
          Fn f fargs << Fn g gargs <=>
                (?gi. MEM gi gargs /\
                      (Fn f fargs << gi \/ (Fn f fargs = gi))) \/
                (!fi. MEM fi fargs ==> fi << Fn g gargs) /\
                ((f < g \/ (f = g) /\ (LENGTH fargs < LENGTH gargs)) \/
                 (f = g) /\ LEX(<<) fargs gargs))`,
  REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC LAND_CONV [lpo_CASES] THEN
  REWRITE_TAC[term_DISTINCT; term_INJ; FVT; IN_SING; GSYM ALL_MEM; GT] THEN
  TRY(CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV))) THEN
  REWRITE_TAC[TAUT `(a /\ b) /\ c <=> ~(a /\ b ==> ~c)`] THEN
  SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN
  REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* LPO does not introduce new variables.                                     *)
(* ------------------------------------------------------------------------- *)

let LPO_FVT = prove
 (`!s t. s << t ==> FVT(s) SUBSET FVT(t)`,
  MATCH_MP_TAC lpo_INDUCT THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THENL
   [ALL_TAC; SPEC_TAC(`Fn ft targs`,`t:term`); ALL_TAC; ALL_TAC] THEN
  SIMP_TAC[FVT; SUBSET; IN_SING; IN_LIST_UNION;
           GSYM EX_MEM; GSYM ALL_MEM; MEM_MAP] THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* LPO is transitive (quite a tedious proof; follows Baader & Nipkow).       *)
(* ------------------------------------------------------------------------- *)

let LPO_TRANS_INDUCT = prove
 (`!n r s t.
        (termsize r + termsize s + termsize t = n) /\ t << s /\ s << r
        ==> t << r`,
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  REPEAT GEN_TAC THEN DISJ_CASES_THEN MP_TAC (SPEC `t:term` term_CASES) THENL
   [DISCH_THEN(X_CHOOSE_THEN `x:num` SUBST_ALL_TAC) THEN STRIP_TAC THEN
    MATCH_MP_TAC(el 0 (CONJUNCTS lpo_RULES)) THEN CONJ_TAC THENL
     [MP_TAC(MATCH_MP LPO_FVT (ASSUME `V x << s`)) THEN
      MP_TAC(MATCH_MP LPO_FVT (ASSUME `s << r`)) THEN
      REWRITE_TAC[FVT; SUBSET; IN_SING] THEN MESON_TAC[];
      ASM_MESON_TAC[LPO_CASES]];
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `h:num` (X_CHOOSE_THEN `ts:term list`
    SUBST_ALL_TAC)) THEN
  DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) MP_TAC) THEN
  DISJ_CASES_THEN MP_TAC (SPEC `r:term` term_CASES) THENL
   [ASM_MESON_TAC[LPO_CASES]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `rs:term list`
    SUBST_ALL_TAC)) THEN
  DISJ_CASES_THEN MP_TAC (SPEC `s:term` term_CASES) THENL
   [ASM_MESON_TAC[LPO_CASES]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `g:num` (X_CHOOSE_THEN `ss:term list`
    SUBST_ALL_TAC)) THEN STRIP_TAC THEN
  RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM]) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[IMP_IMP]) THEN
  ASM_CASES_TAC `?ri. MEM ri rs /\ (Fn g ss << ri \/ (Fn g ss = ri))` THENL
   [FIRST_X_ASSUM(X_CHOOSE_THEN `ri:term`
     (REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN
    MATCH_MP_TAC(el 1 (CONJUNCTS lpo_RULES)) THEN
    EXISTS_TAC `ri:term` THEN ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM DISJ_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
    DISJ1_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    EXISTS_TAC `termsize ri + termsize(Fn g ss) + termsize (Fn h ts)` THEN
    EXISTS_TAC `Fn g ss` THEN ASM_REWRITE_TAC[LT_ADD_RCANCEL] THEN
    MATCH_MP_TAC DESCENDANT_SMALLER THEN ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `!si. MEM si ss ==> si << Fn f rs` ASSUME_TAC THENL
   [UNDISCH_TAC `Fn g ss << Fn f rs` THEN
    GEN_REWRITE_TAC LAND_CONV [lpo_CASES] THEN
    REWRITE_TAC[term_DISTINCT; term_INJ; GSYM ALL_MEM] THEN
    ASM_MESON_TAC[]; ALL_TAC] THEN
  ASM_CASES_TAC `?si. MEM si ss /\ (Fn h ts << si \/ (Fn h ts = si))` THENL
   [FIRST_X_ASSUM(X_CHOOSE_THEN `si:term`
     (REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN
    FIRST_X_ASSUM DISJ_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
    FIRST_ASSUM(fun th -> MATCH_MP_TAC th THEN EXISTS_TAC
      `termsize(Fn f rs) + termsize si + termsize (Fn h ts)`) THEN
    EXISTS_TAC `si:term` THEN
    ASM_SIMP_TAC[LT_ADD_LCANCEL; LT_ADD_RCANCEL] THEN
    MATCH_MP_TAC DESCENDANT_SMALLER THEN ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `!ti. MEM ti ts ==> ti << Fn g ss` ASSUME_TAC THENL
   [UNDISCH_TAC `Fn h ts << Fn g ss` THEN
    GEN_REWRITE_TAC LAND_CONV [lpo_CASES] THEN
    REWRITE_TAC[term_DISTINCT; term_INJ; GSYM ALL_MEM] THEN
    ASM_MESON_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `!ti. MEM ti ts ==> ti << Fn f rs` ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> MATCH_MP_TAC th THEN EXISTS_TAC
     `termsize (Fn f rs) + termsize (Fn g ss) + termsize ti`) THEN
    EXISTS_TAC `Fn g ss` THEN
    ASM_SIMP_TAC[LT_ADD_LCANCEL; DESCENDANT_SMALLER]; ALL_TAC] THEN
  UNDISCH_TAC `Fn h ts << Fn g ss` THEN UNDISCH_TAC `Fn g ss << Fn f rs` THEN
  ONCE_REWRITE_TAC[LPO_CASES] THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN DISJ_CASES_TAC THENL
   [ASM_MESON_TAC[LT_TRANS; LEX_LENGTH]; ALL_TAC] THEN
  DISCH_THEN DISJ_CASES_TAC THENL
   [ASM_MESON_TAC[LT_TRANS; LEX_LENGTH]; ALL_TAC] THEN
  DISJ2_TAC THEN DISJ2_TAC THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN
  SUBGOAL_THEN
   `!r s t. MEM r rs /\ MEM s ss /\ MEM t ts /\
            t << s /\ s << r ==> t << r`
  MP_TAC THENL
   [MAP_EVERY X_GEN_TAC [`a:term`; `b:term`; `c:term`] THEN STRIP_TAC THEN
    FIRST_ASSUM(fun th -> MATCH_MP_TAC th THEN EXISTS_TAC
     `termsize a + termsize b + termsize c`) THEN
    EXISTS_TAC `b:term` THEN ASM_REWRITE_TAC[] THEN
    REPEAT(MATCH_MP_TAC LT_ADD2 THEN CONJ_TAC) THEN
    ASM_SIMP_TAC[DESCENDANT_SMALLER]; ALL_TAC] THEN
  MAP_EVERY(fun s -> SPEC_TAC(s,s))
   [`rs:term list`; `ss:term list`; `ts:term list`] THEN
  POP_ASSUM_LIST(K ALL_TAC) THEN
  REPEAT LIST_INDUCT_TAC THEN REWRITE_TAC[LEX; MEM] THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
  TRY(ASM (GEN_MESON_TAC 0 15 1) [LEX_LENGTH]) THEN DISCH_TAC THEN
  MATCH_MP_TAC(TAUT `(a1 /\ a2 ==> a3) /\ (b1 ==> b2 ==> b3)
                     ==> a1 /\ b1 ==> a2 /\ b2 ==> a3 /\ b3`) THEN
  SIMP_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[]);;

let LPO_TRANS = prove
 (`!s t u. s << t /\ t << u ==> s << u`,
  MESON_TAC[LPO_TRANS_INDUCT]);;

(* ------------------------------------------------------------------------- *)
(* LPO has the subterm property.                                             *)
(* ------------------------------------------------------------------------- *)

let LPO_SUBTERM_LEMMA = prove
 (`!f args a. MEM a args ==> a << Fn f args`,
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
  ONCE_REWRITE_TAC[LPO_CASES] THEN CONJ_TAC THENL
   [ALL_TAC; MESON_TAC[]] THEN
  REWRITE_TAC[FVT; IN_LIST_UNION; GSYM EX_MEM; GSYM ALL_MEM; MEM_MAP] THEN
  X_GEN_TAC `x:num` THEN DISCH_TAC THEN REWRITE_TAC[term_DISTINCT] THEN
  EXISTS_TAC `FVT(V x)` THEN REWRITE_TAC[FVT; IN_SING] THEN
  EXISTS_TAC `V x` THEN ASM_REWRITE_TAC[FVT]);;

let LPO_SUBTERM = prove
 (`!s t. s subterm t ==> (s = t) \/ s << t`,
  MATCH_MP_TAC subterm_INDUCT THEN REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL
   [ASM_MESON_TAC[LPO_SUBTERM_LEMMA];
    DISJ2_TAC THEN MATCH_MP_TAC LPO_TRANS THEN
    EXISTS_TAC `a:term` THEN ASM_SIMP_TAC[LPO_SUBTERM_LEMMA]]);;

let LPO_PSUBTERM = prove
 (`!s t. s psubterm t ==> s << t`,
  REWRITE_TAC[psubterm] THEN MESON_TAC[LPO_SUBTERM]);;

(* ------------------------------------------------------------------------- *)
(* LPO is compatible with instantiation.                                     *)
(* ------------------------------------------------------------------------- *)

let LPO_INSTANTIATION = prove
 (`!i s t. s << t ==> termsubst i s << termsubst i t`,
  GEN_TAC THEN MATCH_MP_TAC lpo_INDUCT THEN REPEAT CONJ_TAC THEN
  REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THENL
   [MATCH_MP_TAC LPO_PSUBTERM THEN MATCH_MP_TAC PSUBTERM_INSTANTIATION THEN
    ASM_REWRITE_TAC[psubterm] THEN ASM_SIMP_TAC[SUBTERM_FVT];
    REWRITE_TAC[termsubst] THEN
    MATCH_MP_TAC(el 1 (CONJUNCTS lpo_RULES)) THEN
    REWRITE_TAC[MEM_MAP] THEN ASM_MESON_TAC[termsubst];
    REWRITE_TAC[termsubst] THEN
    MATCH_MP_TAC(el 2 (CONJUNCTS lpo_RULES)) THEN
    ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM ALL_MEM]) THEN
    REWRITE_TAC[GSYM ALL_MEM; MEM_MAP; termsubst; LENGTH_MAP] THEN
    ASM_MESON_TAC[];
    REWRITE_TAC[termsubst] THEN
    MATCH_MP_TAC(el 3 (CONJUNCTS lpo_RULES)) THEN
    ASM_REWRITE_TAC[] THEN REWRITE_TAC[ALL_MAP; o_DEF] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[termsubst]) THEN ASM_SIMP_TAC[LEX_MAP]]);;

(* ------------------------------------------------------------------------- *)
(* LPO is a congruence.                                                      *)
(* ------------------------------------------------------------------------- *)

let LPO_CONGRUENCE = prove
 (`!s t. s << t
         ==> Fn f (APPEND largs (CONS s rargs))
              << Fn f (APPEND largs (CONS t rargs))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC(last(CONJUNCTS lpo_RULES)) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[GSYM ALL_MEM] THEN X_GEN_TAC `u:term` THEN DISCH_TAC THEN
    ASM_CASES_TAC `u:term = s` THENL
     [MATCH_MP_TAC LPO_TRANS THEN EXISTS_TAC `t:term` THEN
      ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LPO_PSUBTERM THEN
      ONCE_REWRITE_TAC[PSUBTERM_CASES] THEN
      MAP_EVERY EXISTS_TAC
       [`f:num`; `APPEND largs (CONS (t:term) rargs)`; `t:term`] THEN
      ASM_REWRITE_TAC[MEM; SUBTERM_REFL; MEM_APPEND];
      MATCH_MP_TAC LPO_PSUBTERM THEN ONCE_REWRITE_TAC[PSUBTERM_CASES] THEN
      MAP_EVERY EXISTS_TAC
       [`f:num`; `APPEND largs (CONS (t:term) rargs)`; `u:term`] THEN
      REWRITE_TAC[SUBTERM_REFL] THEN
      ASM_MESON_TAC[MEM; MEM_APPEND]];
    SPEC_TAC(`largs:term list`,`largs:term list`) THEN
    LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LEX; APPEND] THEN
    COND_CASES_TAC THEN REWRITE_TAC[LENGTH; LENGTH_APPEND]]);;

(* ------------------------------------------------------------------------- *)
(* LPO is irreflexive.                                                       *)
(* ------------------------------------------------------------------------- *)

let LPO_REFL = prove
 (`!t. ~(t << t)`,
  MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THEN REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[LPO_CASES] THEN REWRITE_TAC[] THEN
  REWRITE_TAC[GSYM ALL_MEM; LT_REFL] THEN
  ASM_SIMP_TAC[LEX_REFL] THEN
  ASM_MESON_TAC[LPO_PSUBTERM; LPO_TRANS;
    PSUBTERM_CASES; SUBTERM_REFL; DESCENDANT_SMALLER; LT_REFL]);;

(* ------------------------------------------------------------------------- *)
(* LPO is wellfounded over a finite signature.                               *)
(* ------------------------------------------------------------------------- *)

let LPO_WF = prove
 (`!A. FINITE(A)
       ==> WF(\s t. functions_term(s) SUBSET A /\
                    functions_term(t) SUBSET A /\
                    s << t)`,
  GEN_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC(GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL WF_MINIMAL_DCHAIN)))) THEN
  EXISTS_TAC `termsize` THEN REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `t:num->term`
   (CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC)) THEN
  REWRITE_TAC[FORALL_AND_THM] THEN
  DISCH_THEN(STRIP_ASSUME_TAC o CONJUNCT2) THEN
  SUBGOAL_THEN
    `!n:num. ?f args. (t(n) = Fn f args) /\
                      ALL (\t. ~(NONWF(\s t. functions_term(s) SUBSET A /\
                                             functions_term(t) SUBSET A /\
                                             s << t) t)) args`
  MP_TAC THENL
   [GEN_TAC THEN MP_TAC(SPEC `(t:num->term) n` term_CASES) THEN
    DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
     [ASM_MESON_TAC[LPO_CASES]; ALL_TAC] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num` THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `args:term list` THEN
    DISCH_TAC THEN ASM_REWRITE_TAC[GSYM ALL_MEM] THEN
    X_GEN_TAC `u:term` THEN DISCH_TAC THEN DISCH_TAC THEN
    ASM_CASES_TAC `n = 0` THENL
     [FIRST_X_ASSUM(MP_TAC o SPEC `u:term`) THEN
      ASM_REWRITE_TAC[] THEN UNDISCH_THEN `n = 0` SUBST_ALL_TAC THEN
      ASM_SIMP_TAC[NOT_LE; DESCENDANT_SMALLER]; ALL_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`n - 1`; `u:term`]) THEN
    ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (SUC(n - 1) = n)`] THEN
    REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; NOT_LE] THEN REPEAT CONJ_TAC THENL
     [UNDISCH_THEN
       `!n:num. functions_term (t n) SUBSET A` (MP_TAC o SPEC `n:num`) THEN
      ASM_REWRITE_TAC[functions_term; SUBSET; IN_LIST_UNION; IN_INSERT;
                      MEM_MAP; GSYM EX_MEM] THEN
      ASM_MESON_TAC[];
      MATCH_MP_TAC LPO_TRANS THEN EXISTS_TAC `(t:num->term)(n)` THEN
      CONJ_TAC THENL
       [ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LPO_PSUBTERM THEN
        ONCE_REWRITE_TAC[PSUBTERM_CASES] THEN
        MAP_EVERY EXISTS_TAC [`f:num`; `args:term list`; `u:term`] THEN
        ASM_REWRITE_TAC[SUBTERM_REFL];
        FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV)
         [MATCH_MP (ARITH_RULE `~(n = 0) ==> (n = SUC(n - 1))`) th]) THEN
        ASM_REWRITE_TAC[]];
      MATCH_MP_TAC DESCENDANT_SMALLER THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN
  REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM; GSYM ALL_MEM] THEN
  DISCH_THEN(X_CHOOSE_THEN `fn:num->num` (X_CHOOSE_THEN `args:num->term list`
    STRIP_ASSUME_TAC)) THEN
  SUBGOAL_THEN
   `?far:num#num s. subseq s /\
                    (!n:num. fn(s n),LENGTH(args(s n):term list) = far)`
  MP_TAC THENL
   [MATCH_MP_TAC SEQUENCE_PARTITION_LEMMA THEN
    EXISTS_TAC `A:num#num->bool` THEN ASM_REWRITE_TAC[] THEN
    X_GEN_TAC `n:num` THEN
    UNDISCH_TAC `!n:num. functions_term (t n) SUBSET A` THEN
    DISCH_THEN(MP_TAC o REWRITE_RULE[SUBSET] o SPEC `n:num`) THEN
    DISCH_THEN MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[functions_term; IN_INSERT];
    ALL_TAC] THEN
  GEN_REWRITE_TAC LAND_CONV [EXISTS_PAIR_THM] THEN
  REWRITE_TAC[PAIR_EQ; FORALL_AND_THM] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `ar:num`
   (X_CHOOSE_THEN `k:num->num` STRIP_ASSUME_TAC))) THEN
  SUBGOAL_THEN `!m n. m <= n ==> t(n) << t(m) \/ (t(n) = t(m))`
  ASSUME_TAC THENL
   [SUBGOAL_THEN `!n d. t(n + d) << t(n) \/ (t(n + d) = t(n))`
     (fun th -> MESON_TAC[th; LE_EXISTS]) THEN
    GEN_TAC THEN  INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES] THEN
    ASM_MESON_TAC[LPO_TRANS]; ALL_TAC] THEN
  SUBGOAL_THEN `!m n. m < n ==> t(n) << t(m)` MP_TAC THENL
   [REWRITE_TAC[GSYM LE_SUC_LT] THEN
    ASM_MESON_TAC[LPO_TRANS]; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o GEN `n:num` o
    SPECL [`(k:num->num) n`; `k(SUC n):num`]) THEN
  FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [SUBSEQ_SUC]) THEN
  ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[LPO_CASES] THEN
  REWRITE_TAC[LT_REFL] THEN
  SUBGOAL_THEN `!a n:num. MEM a (args n) ==> functions_term a SUBSET A`
  ASSUME_TAC THENL
   [REPEAT GEN_TAC THEN
    UNDISCH_THEN
         `!n:num. functions_term (t n) SUBSET A`
         (MP_TAC o SPEC `n:num`) THEN
    ASM_REWRITE_TAC[functions_term; SUBSET; IN_LIST_UNION; IN_INSERT;
                    MEM_MAP; GSYM EX_MEM] THEN
    ASM_MESON_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN
   `!n a. ~(MEM a (args ((k:num->num) n)) /\
            (Fn f (args (k (SUC n))) << a \/ (Fn f (args (k (SUC n))) = a)))`
   (fun th -> REWRITE_TAC[th])
  THENL
   [REPEAT GEN_TAC THEN REWRITE_TAC[DE_MORGAN_THM] THEN
    MATCH_MP_TAC(TAUT `(a ==> b) ==> ~a \/ b`) THEN DISCH_TAC THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [NONWF] o
              C MATCH_MP (ASSUME
     `MEM (a:term) (args((k:num->num) n))`)) THEN
    REWRITE_TAC[NONWF; TAUT `~p ==> ~q /\ ~r <=> q \/ r ==> p`] THEN
    DISCH_TAC THEN EXISTS_TAC
     `\r:num. if r = 0 then a:term else t(k(SUC n) + r)` THEN
    REWRITE_TAC[NOT_SUC] THEN X_GEN_TAC `m:num` THEN
    COND_CASES_TAC THENL
     [CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
      CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
      FIRST_ASSUM(MP_TAC o SPECL [`k(SUC n):num`; `k(SUC n) + m`]) THEN
      REWRITE_TAC[LE_ADD] THEN UNDISCH_TAC `!n:num. t(SUC n) << t n` THEN
      DISCH_THEN(MP_TAC o SPEC `k(SUC n) + m`) THEN
      REWRITE_TAC[ADD_CLAUSES] THEN
      FIRST_X_ASSUM(MP_TAC o check (is_disj o concl)) THEN
      ASM_REWRITE_TAC[] THEN MESON_TAC[LPO_TRANS]; ALL_TAC] THEN
    ASM_MESON_TAC[ADD_CLAUSES];
    ALL_TAC] THEN
  REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN
  MP_TAC(ISPECL [`(\s t.
                     functions_term s SUBSET A /\
                     functions_term t SUBSET A /\
                     s << t)`; `\n:num. (args:num->term list)(k n)`]
    WF_LEX_STRONG) THEN
  ASM_REWRITE_TAC[] THEN
  GEN_TAC THEN MATCH_MP_TAC LEX_RESTRICT THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[LT_REFL]);;

(* ------------------------------------------------------------------------- *)
(* Converse subterm property (not really needed, in fact).                   *)
(* ------------------------------------------------------------------------- *)

let LPO_SUBTERM_NOT = prove
 (`!t s. s subterm t ==> ~(t << s)`,
  MESON_TAC[LPO_SUBTERM; LPO_TRANS; LPO_REFL]);;

(* ------------------------------------------------------------------------- *)
(* Completeness on ground terms.                                             *)
(* ------------------------------------------------------------------------- *)

let LEX_TOTAL = prove
 (`!fargs gargs.
        (LENGTH fargs = LENGTH gargs) /\
        (!fi gi. MEM fi fargs /\ MEM gi gargs
                 ==> fi << gi \/ gi << fi \/ (fi = gi))
        ==> LEX(<<) fargs gargs \/ LEX(<<) gargs fargs \/ (fargs = gargs)`,
  MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LEX; MEM; LENGTH; NOT_SUC] THEN
  CONJ_TAC THENL [MESON_TAC[LENGTH_EQ_NIL]; ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`s:term`; `ss:term list`] THEN DISCH_TAC THEN
  MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LEX; MEM; LENGTH; NOT_SUC] THEN
  MAP_EVERY X_GEN_TAC [`t:term`; `ts:term list`] THEN
  DISCH_THEN(K ALL_TAC) THEN SIMP_TAC[SUC_INJ] THEN
  STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ts:term list`) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
  ASM_MESON_TAC[]);;

let LPO_GROUND_COMPLETE = prove
 (`!s t. (FVT(s) = {}) /\ (FVT(t) = {}) ==> s << t \/ t << s \/ (s = t)`,
  SUBGOAL_THEN
    `!n s t. (termsize(s) + termsize(t) = n) /\ (FVT(s) = {}) /\ (FVT(t) = {})
             ==> s << t \/ t << s \/ (s = t)`
    (fun th -> MESON_TAC[th]) THEN
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL
   [REWRITE_TAC[FVT; EXTENSION; IN_SING; NOT_IN_EMPTY] THEN MESON_TAC[];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`f:num`; `fargs:term list`] THEN
  DISCH_THEN(K ALL_TAC) THEN
  MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL
   [REWRITE_TAC[FVT; EXTENSION; IN_SING; NOT_IN_EMPTY] THEN MESON_TAC[];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`g:num`; `gargs:term list`] THEN
  DISCH_THEN(K ALL_TAC) THEN STRIP_TAC THEN
  SUBGOAL_THEN
   `(!fi. MEM fi fargs
          ==> fi << Fn g gargs \/ Fn g gargs << fi \/ (fi = Fn g gargs)) /\
    (!gi. MEM gi gargs
          ==> gi << Fn f fargs \/ Fn f fargs << gi \/ (gi = Fn f fargs)) /\
    (!fi gi. MEM fi fargs /\ MEM gi gargs
          ==> fi << gi \/ gi << fi \/ (fi = gi))`
  STRIP_ASSUME_TAC THENL
   [UNDISCH_THEN `termsize (Fn f fargs) + termsize (Fn g gargs) = n`
        (SUBST_ALL_TAC o SYM) THEN
    RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM;
                  IMP_IMP]) THEN
    REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> b /\ a /\ c /\ d`] THEN
    REWRITE_TAC[UNWIND_THM1] THEN
    ASM_SIMP_TAC[LT_ADD_LCANCEL; LT_ADD_RCANCEL; DESCENDANT_SMALLER;
                 ARITH_RULE `a + b < b + c <=> a < c`; LT_ADD2] THEN
    ASM_MESON_TAC[FVT_FUN_EMPTY];
    ALL_TAC] THEN
  ONCE_REWRITE_TAC[LPO_CASES] THEN
  SUBGOAL_THEN
   `(?a. MEM a gargs /\ (Fn f fargs << a \/ (Fn f fargs = a))) \/
    ~(?a. MEM a gargs /\ (Fn f fargs << a \/ (Fn f fargs = a))) /\
    (!a. MEM a gargs ==> a << Fn f fargs)`
  DISJ_CASES_TAC THENL [ASM_MESON_TAC[]; ASM_REWRITE_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN
   `(?a. MEM a fargs /\ (Fn g gargs << a \/ (Fn g gargs = a))) \/
    ~(?a. MEM a fargs /\ (Fn g gargs << a \/ (Fn g gargs = a))) /\
    (!a. MEM a fargs ==> a << Fn g gargs)`
  DISJ_CASES_TAC THENL [ASM_MESON_TAC[]; ASM_REWRITE_TAC[]; ALL_TAC] THEN
  ASM_REWRITE_TAC[term_INJ] THEN
  REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
   (SPECL [`f:num`; `g:num`] LT_CASES) THEN
  ASM_REWRITE_TAC[LT_REFL] THEN
  REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
   (SPECL [`LENGTH(fargs:term list)`; `LENGTH(gargs:term list)`] LT_CASES) THEN
  ASM_REWRITE_TAC[LT_REFL] THEN
  MATCH_MP_TAC LEX_TOTAL THEN ASM_SIMP_TAC[]);;