Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 40,308 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
(* ========================================================================= *)
(* Properties of the lexicographic path order. *)
(* ========================================================================= *)
let ITLIST_ADD_1_POS = prove
(`!l. 0 < ITLIST (+) l 1`,
LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; ARITH] THEN
POP_ASSUM MP_TAC THEN ARITH_TAC);;
let FVT_FUN_EMPTY = prove
(`!f a args. MEM a args /\ (FVT(Fn f args) = {}) ==> (FVT a = {})`,
REWRITE_TAC[FVT; EXTENSION; NOT_IN_EMPTY; IN_LIST_UNION; MEM_MAP;
GSYM EX_MEM; o_THM] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Notion of an *element* being nonwellfounded: can start a dchain. *)
(* ------------------------------------------------------------------------- *)
let NONWF = new_definition
`NONWF(R) a <=> ?s:num->A. (s 0 = a) /\ (!n. R (s(SUC n)) (s n))`;;
let WF_NONWF = prove
(`WF(R) <=> !a. ~(NONWF(R) a)`,
REWRITE_TAC[WF_DCHAIN; NONWF] THEN MESON_TAC[]);;
let NONWF_SUCCESSOR = prove
(`!R a:A b. NONWF(R) b /\ R b a ==> NONWF(R) a`,
REPEAT GEN_TAC THEN REWRITE_TAC[NONWF] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `s:num->A` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `\n. if n = 0 then a:A else s(n - 1)` THEN
REWRITE_TAC[NOT_SUC] THEN GEN_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH] THEN
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (SUC n - 1 = SUC(n - 1))`]);;
let WF_NONWF = prove
(`WF(\x:A y. R x y /\ ~(NONWF(R) y))`,
REWRITE_TAC[WF_DCHAIN; NONWF] THEN
DISCH_THEN(X_CHOOSE_THEN `s:num->A` MP_TAC) THEN
REWRITE_TAC[FORALL_AND_THM] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `0`) THEN REWRITE_TAC[] THEN
EXISTS_TAC `s:num->A` THEN ASM_REWRITE_TAC[]);;
let NONWF_INDUCT = prove
(`(!a. ~(NONWF(R) a) /\ (!b. R b a ==> P(b)) ==> P(a))
==> !x. ~(NONWF(R) x) ==> P(x)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC(MATCH_MP(fst(EQ_IMP_RULE WF_IND)) WF_NONWF) THEN
REWRITE_TAC[] THEN ASM_MESON_TAC[NONWF_SUCCESSOR]);;
(* ------------------------------------------------------------------------- *)
(* General result on "minimal" infinite descending chains. *)
(* ------------------------------------------------------------------------- *)
let WF_MINIMAL_STEP = prove
(`!m:A->num a.
NONWF(R) a
==> ?b. NONWF(R) b /\ R b a /\
(!c. NONWF(R) c /\ R c a ==> m(b) <= m(c))`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC
`\n. ?c. NONWF(R) c /\ R c a /\ ((m:A->num)(c) = n)` num_WOP) THEN
MATCH_MP_TAC(TAUT `(b ==> c) /\ a ==> (a <=> b) ==> c`) THEN
REWRITE_TAC[] THEN CONJ_TAC THENL [MESON_TAC[NOT_LT]; ALL_TAC] THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[NONWF] THEN
DISCH_THEN(X_CHOOSE_THEN `s:num->A` STRIP_ASSUME_TAC) THEN
MAP_EVERY EXISTS_TAC [`(m:A->num) (s 1)`; `(s:num->A) 1`] THEN
ASM_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN EXISTS_TAC `\n. s(SUC n):A` THEN
ASM_REWRITE_TAC[ARITH] THEN ASM_MESON_TAC[num_CONV `1`]);;
let WF_MINIMAL_DCHAIN = prove
(`!m:A->num.
WF(R) <=> ~(?t. (!n. R (t(SUC n)) (t n)) /\
(!s. NONWF(R) s ==> m(t 0) <= m(s)) /\
(!n s. NONWF(R) s /\ R s (t n) ==> m(t(SUC n)) <= m(s)))`,
GEN_TAC THEN REWRITE_TAC[WF_DCHAIN] THEN AP_TERM_TAC THEN
EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_TAC THEN
MP_TAC(SPEC `\n. ?s. NONWF(R) s /\ ((m:A->num)(s) = n)` num_WOP) THEN
MATCH_MP_TAC(TAUT `a /\ (b ==> c) ==> (a <=> b) ==> c`) THEN CONJ_TAC THENL
[REWRITE_TAC[NONWF] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `n_0:num` MP_TAC) THEN REWRITE_TAC[] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) ASSUME_TAC) THEN
SUBGOAL_THEN `!s. NONWF R s ==> (m:A->num)(a) <= m(s)` ASSUME_TAC THENL
[ASM_MESON_TAC[NOT_LT]; ALL_TAC] THEN
MP_TAC(ISPECL
[`a:A`; `\b (n:num). @c. NONWF(R) c /\ R c b /\
!d. NONWF(R) d /\ R d b ==> (m:A->num)(c) <= m(d)`]
num_RECURSION) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:num->A` THEN REWRITE_TAC[] THEN
STRIP_TAC THEN
MATCH_MP_TAC(TAUT `!d. b /\ d /\ a /\ c ==> a /\ b /\ c`) THEN
EXISTS_TAC `(!n. NONWF R (t(SUC n):A))` THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[AND_FORALL_THM] THEN INDUCT_TAC THENL
[FIRST_ASSUM(SUBST1_TAC o SPEC `0`);
FIRST_ASSUM(SUBST1_TAC o SPEC `SUC n`)] THEN
CONV_TAC SELECT_CONV THEN
MATCH_MP_TAC WF_MINIMAL_STEP THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Simple subsequence lemma finitely partitioning an infinite sequence. *)
(* ------------------------------------------------------------------------- *)
let SEQUENCE_SUBSEQUENCE = prove
(`!P (x:num->A).
(!n. ?m. n < m /\ P(x m)) ==> ?f. subseq f /\ !n. P(x(f n))`,
REPEAT GEN_TAC THEN REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `st:num->num` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPECL [`st(0):num`; `\m:num p:num. st(m):num`] num_RECURSION) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `s:num->num` THEN REWRITE_TAC[] THEN
STRIP_TAC THEN CONJ_TAC THENL
[REWRITE_TAC[SUBSEQ_SUC] THEN ASM_MESON_TAC[];
INDUCT_TAC THEN ASM_MESON_TAC[]]);;
let SEQUENCE_PARTITION_LEMMA = prove
(`!x:num->A s. FINITE(s) /\ (!n. x(n) IN s)
==> ?a f. subseq f /\ (!n. x(f n) = a)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `?a:A. !n. ?m:num. n < m /\ (x m = a)` MP_TAC THENL
[SUBGOAL_THEN
`!s. FINITE s
==> (?n:num. !m. n < m ==> (x(m) IN s))
==> ?a:A. !n. ?m. n < m /\ (x m = a)`
(fun th -> ASM_MESON_TAC[th]) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
MATCH_MP_TAC FINITE_INDUCT THEN REWRITE_TAC[NOT_IN_EMPTY] THEN
CONJ_TAC THENL [MESON_TAC[LT]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`b:A`; `s:A->bool`] THEN
MATCH_MP_TAC(TAUT `(~a /\ c ==> b) ==> (a ==> b) ==> (c ==> b)`) THEN
REWRITE_TAC[IN_INSERT; NOT_EXISTS_THM; NOT_FORALL_THM; NOT_IMP] THEN
ASM_MESON_TAC[ARITH_RULE `(m + n < p:num ==> m < p /\ n < p)`];
ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN
MP_TAC(ISPEC `\x:A. x = a` SEQUENCE_SUBSEQUENCE) THEN ASM_SIMP_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Term size (used as auxiliary notion). *)
(* ------------------------------------------------------------------------- *)
let termsize_EXISTS = prove
(`?termsize.
(!x. termsize(V x) = 1) /\
(!f args. termsize(Fn f args) = ITLIST (+) (MAP termsize args) 1)`,
MP_TAC(ISPECL [`\x:num. 1`;
`\(f:num) (args:term list) (ns:num list). ITLIST (+) ns 1`;
`[]:num list`;
`\(t:term) (ts:term list) (n:num) (ns:num list). CONS n ns`]
term_raw_RECURSION) THEN
REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ITLIST; MAP]);;
let termsize = new_specification ["termsize"] termsize_EXISTS;;
(* ------------------------------------------------------------------------- *)
(* Lexical extension of a relation, forcing equivalent list lengths. *)
(* ------------------------------------------------------------------------- *)
let LEX_DEF = new_recursive_definition list_RECURSION
`(LEX(<<) [] l <=> F) /\
(LEX(<<) (CONS h t) l <=>
if l = [] then F
else if h << HD l then LENGTH t = LENGTH(TL l)
else (h = HD l) /\ LEX(<<) t (TL l))`;;
let LEX = prove
(`(LEX(<<) [] l <=> F) /\
(LEX(<<) (CONS h1 t1) [] <=> F) /\
(LEX(<<) (CONS h1 t1) (CONS h2 t2) <=>
if h1 << h2 then LENGTH t1 = LENGTH t2
else (h1 = h2) /\ LEX(<<) t1 t2)`,
REWRITE_TAC[LEX_DEF; NOT_CONS_NIL; HD; TL]);;
let LEX_LENGTH = prove
(`!l1 l2 R. LEX(R) l1 l2 ==> (LENGTH l1 = LENGTH l2)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LEX] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[LEX] THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[LENGTH] THEN
ASM_MESON_TAC[]);;
let MONO_LEX = prove
(`(!x:A y:A. R x y ==> S x y) ==> LEX R x y ==> LEX S x y`,
DISCH_TAC THEN SPEC_TAC(`y:A list`,`y:A list`) THEN
SPEC_TAC(`x:A list`,`x:A list`) THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[LEX] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LEX] THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
ASM_MESON_TAC[LEX_LENGTH]);;
monotonicity_theorems := MONO_LEX::(!monotonicity_theorems);;
let LEX_MAP = prove
(`!l1 l2. LEX (\x y. R (f x) (f y)) l1 l2 ==> LEX R (MAP f l1) (MAP f l2)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LEX; MAP] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[LEX; MAP] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH_MAP] THEN ASM_SIMP_TAC[]);;
let LEX_REFL = prove
(`!R l. (!x. MEM x l ==> ~(R x x)) ==> ~(LEX(R) l l)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LEX; MEM] THEN
COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Stronger variant of WF preservation under lexicographic extension. *)
(* ------------------------------------------------------------------------- *)
let LEX_LENGTH_CHAIN = prove
(`!lis R. (!n. LEX(R) (lis(SUC n)) (lis n))
==> !n. LENGTH(lis(n)) = LENGTH(lis(0))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[] THEN
ASM_MESON_TAC[LEX_LENGTH]);;
let WF_LEX_STRONG_INDUCT = prove
(`!n lis. (LENGTH(lis 0) = n)
==> ~((!n a:A. MEM a (lis n) ==> ~(NONWF(R) a)) /\
(!n. LEX(R) (lis(SUC n)) (lis n)))`,
INDUCT_TAC THENL
[REPEAT STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP LEX_LENGTH_CHAIN) THEN
UNDISCH_TAC `!n. LENGTH (lis n :(A)list) = LENGTH (lis 0)` THEN
ASM_REWRITE_TAC[LENGTH_EQ_NIL] THEN ASM_MESON_TAC[LEX];
ALL_TAC] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP LEX_LENGTH_CHAIN) THEN
FIRST_X_ASSUM SUBST1_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `?hd tl. !n:num. CONS (hd n :A) (tl n) = lis(n)` MP_TAC THENL
[EXISTS_TAC `\n:num. HD(lis n):A` THEN
EXISTS_TAC `\n:num. TL(lis n):A list` THEN
SUBGOAL_THEN `!n:num. ~(lis n :(A)list = [])` MP_TAC THENL
[ASM_MESON_TAC[LEX_LENGTH_CHAIN; LENGTH; NOT_SUC]; ALL_TAC] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `m:num` THEN
REWRITE_TAC[] THEN
SPEC_TAC(`(lis:num->(A)list) m`,`l:(A)list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[HD; TL]; ALL_TAC] THEN
DISCH_THEN(REPEAT_TCL CHOOSE_THEN
(fun th -> RULE_ASSUM_TAC(REWRITE_RULE[GSYM th]))) THEN
UNDISCH_TAC `!n:num a:A. MEM a (CONS (hd n) (tl n)) ==> ~NONWF R a` THEN
REWRITE_TAC[MEM; TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
STRIP_TAC THEN UNDISCH_TAC
`!n:num. LEX R (CONS (hd(SUC n):A) (tl(SUC n))) (CONS (hd n) (tl n))` THEN
REWRITE_TAC[LEX] THEN
UNDISCH_TAC `!m:num. LENGTH (CONS (hd m :A) (tl m)) = SUC n` THEN
REWRITE_TAC[LENGTH; SUC_INJ] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[TAUT `(if p then T else r) <=> p \/ ~p /\ r`] THEN
UNDISCH_TAC `!n:num a:A. MEM a (tl n) ==> ~NONWF R a` THEN
UNDISCH_TAC `!m. LENGTH ((tl:num->(A)list) m) = n` THEN
REWRITE_TAC[IMP_IMP] THEN
SPEC_TAC(`tl:num->(A)list`,`tl:num->(A)list`) THEN
ABBREV_TAC `h:A = hd 0` THEN
SUBGOAL_THEN `~(NONWF(R) (h:A))` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(fun th ->
UNDISCH_TAC `!n:num. ~NONWF R (hd n :A)` THEN
UNDISCH_TAC `hd 0 :A = h` THEN MP_TAC th) THEN
SPEC_TAC(`hd:num->A`,`hd:num->A`) THEN SPEC_TAC(`h:A`,`h:A`) THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC NONWF_INDUCT THEN X_GEN_TAC `h:A` THEN STRIP_TAC THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN STRIP_TAC THEN
X_GEN_TAC `hd:num->A` THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN `?m. R (hd(SUC m):A) (hd m)` MP_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `(hd:num->A) (SUC p)`) THEN ANTS_TAC THENL
[SUBGOAL_THEN `!n. n <= p ==> (hd n :A = h)`
(fun th -> ASM_MESON_TAC[th; LE_REFL]) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[LE_SUC_LT] THEN
ASM_MESON_TAC[LT_IMP_LE];
ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC `\n. hd(SUC p + n):A`) THEN
ASM_REWRITE_TAC[ADD_CLAUSES; NOT_IMP] THEN
DISCH_THEN(MP_TAC o SPEC `\n. tl(SUC p + n):A list`) THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `m:num` THEN
FIRST_ASSUM(MP_TAC o check (is_disj o concl) o SPEC `SUC(p + m)`) THEN
REWRITE_TAC[ADD_CLAUSES]);;
let WF_LEX_STRONG = prove
(`!R lis. ~((!n a:A. MEM a (lis n) ==> ~(NONWF(R) a)) /\
(!n. LEX(R) (lis(SUC n)) (lis n)))`,
MESON_TAC[WF_LEX_STRONG_INDUCT]);;
(* ------------------------------------------------------------------------- *)
(* Ad-hoc but useful lemma. *)
(* ------------------------------------------------------------------------- *)
let LEX_RESTRICT = prove
(`!P R l1 l2. LEX R l1 l2 /\
(!a. MEM a l1 ==> P(a)) /\ (!a. MEM a l2 ==> P(a))
==> LEX (\x y. P(x) /\ P(y) /\ R x y) l1 l2`,
GEN_TAC THEN GEN_TAC THEN REPEAT LIST_INDUCT_TAC THEN
REWRITE_TAC[LEX; MEM] THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Subterm relationship. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("subterm",(12,"right"));;
parse_as_infix("psubterm",(12,"right"));;
let subterm_RULES,subterm_INDUCT,subterm_CASES = new_inductive_definition
`(!t. t subterm t) /\
(!s a f args. s subterm a /\ MEM a args ==> s subterm (Fn f args))`;;
let psubterm = new_definition
`s psubterm t <=> s subterm t /\ ~(s = t)`;;
(* ------------------------------------------------------------------------- *)
(* A lemma we don't seem able to avoid. *)
(* ------------------------------------------------------------------------- *)
let DESCENDANT_SMALLER = prove
(`!f args s. MEM s args ==> termsize s < termsize (Fn f args)`,
GEN_TAC THEN REWRITE_TAC[termsize] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; MAP; ITLIST] THEN
ASM_MESON_TAC[ARITH_RULE `0 < b ==> a < a + b`;
ARITH_RULE `a < c ==> a < b + c`; ITLIST_ADD_1_POS]);;
let DESCENDANT_DISTINCT = prove
(`!f args. ~(MEM (Fn f args) args)`,
MESON_TAC[DESCENDANT_SMALLER; LT_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Trivial properties of subterm and psubterm relations. *)
(* ------------------------------------------------------------------------- *)
let SUBTERM_REFL = prove
(`!t. t subterm t`,
REWRITE_TAC[subterm_RULES]);;
let SUBTERM_TRANS = prove
(`!s t u. s subterm t /\ t subterm u ==> s subterm u`,
SUBGOAL_THEN `!t u. t subterm u ==> !s. s subterm t ==> s subterm u`
(fun th -> MESON_TAC[th]) THEN MATCH_MP_TAC subterm_INDUCT THEN
REWRITE_TAC[] THEN MESON_TAC[subterm_RULES]);;
let SUBTERM_ANTISYM = prove
(`!s t. s subterm t /\ t subterm s ==> (s = t)`,
MATCH_MP_TAC term_INDUCT THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THENL
[ONCE_REWRITE_TAC[subterm_CASES] THEN SIMP_TAC[term_DISTINCT]; ALL_TAC] THEN
REWRITE_TAC[GSYM ALL_MEM] THEN STRIP_TAC THEN GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ONCE_REWRITE_TAC[subterm_CASES] THEN REWRITE_TAC[term_INJ] THEN
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
ASM_MESON_TAC[subterm_RULES; SUBTERM_TRANS]);;
let SUBTERM_FVT = prove
(`!x t. x IN FVT(t) ==> V(x) subterm t`,
GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
SIMP_TAC[FVT; IN_SING; IN_LIST_UNION; SUBTERM_REFL] THEN
REWRITE_TAC[MEM_MAP; GSYM EX_MEM; GSYM ALL_MEM] THEN
MESON_TAC[subterm_RULES]);;
let PSUBTERM_ANTISYM = prove
(`!s t. ~(s psubterm t /\ t psubterm s)`,
REWRITE_TAC[psubterm] THEN MESON_TAC[SUBTERM_ANTISYM]);;
let SUBTERM_PSUBTERM_TRANS = prove
(`!s t u. s subterm t /\ t psubterm u ==> s psubterm u`,
REWRITE_TAC[psubterm] THEN MESON_TAC[SUBTERM_TRANS; SUBTERM_ANTISYM]);;
(* ------------------------------------------------------------------------- *)
(* Useful alternative characterization of psubterm. *)
(* ------------------------------------------------------------------------- *)
let PSUBTERM_CASES = prove
(`!s t. s psubterm t <=>
?f args u. (t = Fn f args) /\ MEM u args /\ s subterm u`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[REWRITE_TAC[psubterm] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
GEN_REWRITE_TAC LAND_CONV [subterm_CASES] THEN ASM_MESON_TAC[];
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `args:term list`; `a:term`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC SUBTERM_PSUBTERM_TRANS THEN
EXISTS_TAC `a:term` THEN ASM_REWRITE_TAC[psubterm] THEN
ASM_MESON_TAC[DESCENDANT_DISTINCT; subterm_RULES]]);;
(* ------------------------------------------------------------------------- *)
(* Stability of subterm relationships under instantiation. *)
(* ------------------------------------------------------------------------- *)
let SUBTERM_INSTANTIATION = prove
(`!i s t. s subterm t ==> (termsubst i s) subterm (termsubst i t)`,
GEN_TAC THEN MATCH_MP_TAC subterm_INDUCT THEN
REWRITE_TAC[termsubst; subterm_RULES] THEN
ASM_MESON_TAC[MEM_MAP; subterm_RULES]);;
let PSUBTERM_INSTANTIATION = prove
(`!i s t. s psubterm t ==> (termsubst i s) psubterm (termsubst i t)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[PSUBTERM_CASES] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num` THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`args:term list`; `u:term`] THEN STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`MAP (termsubst i) args`; `termsubst i u`] THEN
ASM_REWRITE_TAC[MEM_MAP; termsubst] THEN
ASM_MESON_TAC[SUBTERM_INSTANTIATION]);;
(* ------------------------------------------------------------------------- *)
(* Inductive definition of the LPO. *)
(* ------------------------------------------------------------------------- *)
let lpo_RULES,lpo_INDUCT,lpo_CASES = new_inductive_definition
`(!x s. x IN FVT(s) /\ ~(s = V x) ==> V x << s) /\
(!fs sargs ft targs si.
MEM si sargs /\ (Fn ft targs << si \/ (si = Fn ft targs))
==> Fn ft targs << Fn fs sargs) /\
(!fs ft sargs targs.
(fs > ft \/ (fs = ft) /\ LENGTH sargs > LENGTH targs) /\
ALL (\ti. ti << Fn fs sargs) targs
==> Fn ft targs << Fn fs sargs) /\
(!f sargs targs.
ALL (\ti. ti << Fn f sargs) targs /\ LEX(<<) targs sargs
==> Fn f targs << Fn f sargs)`;;
(* ------------------------------------------------------------------------- *)
(* Nicer cases theorem; essentially a recursive version of the definition. *)
(* ------------------------------------------------------------------------- *)
let LPO_CASES = prove
(`(!s x. (s << V x) <=> F) /\
(!x t. V x << t <=> x IN FVT(t) /\ ~(t = V x)) /\
(!f fargs g gargs.
Fn f fargs << Fn g gargs <=>
(?gi. MEM gi gargs /\
(Fn f fargs << gi \/ (Fn f fargs = gi))) \/
(!fi. MEM fi fargs ==> fi << Fn g gargs) /\
((f < g \/ (f = g) /\ (LENGTH fargs < LENGTH gargs)) \/
(f = g) /\ LEX(<<) fargs gargs))`,
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
GEN_REWRITE_TAC LAND_CONV [lpo_CASES] THEN
REWRITE_TAC[term_DISTINCT; term_INJ; FVT; IN_SING; GSYM ALL_MEM; GT] THEN
TRY(CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV))) THEN
REWRITE_TAC[TAUT `(a /\ b) /\ c <=> ~(a /\ b ==> ~c)`] THEN
SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* LPO does not introduce new variables. *)
(* ------------------------------------------------------------------------- *)
let LPO_FVT = prove
(`!s t. s << t ==> FVT(s) SUBSET FVT(t)`,
MATCH_MP_TAC lpo_INDUCT THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THENL
[ALL_TAC; SPEC_TAC(`Fn ft targs`,`t:term`); ALL_TAC; ALL_TAC] THEN
SIMP_TAC[FVT; SUBSET; IN_SING; IN_LIST_UNION;
GSYM EX_MEM; GSYM ALL_MEM; MEM_MAP] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* LPO is transitive (quite a tedious proof; follows Baader & Nipkow). *)
(* ------------------------------------------------------------------------- *)
let LPO_TRANS_INDUCT = prove
(`!n r s t.
(termsize r + termsize s + termsize t = n) /\ t << s /\ s << r
==> t << r`,
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
REPEAT GEN_TAC THEN DISJ_CASES_THEN MP_TAC (SPEC `t:term` term_CASES) THENL
[DISCH_THEN(X_CHOOSE_THEN `x:num` SUBST_ALL_TAC) THEN STRIP_TAC THEN
MATCH_MP_TAC(el 0 (CONJUNCTS lpo_RULES)) THEN CONJ_TAC THENL
[MP_TAC(MATCH_MP LPO_FVT (ASSUME `V x << s`)) THEN
MP_TAC(MATCH_MP LPO_FVT (ASSUME `s << r`)) THEN
REWRITE_TAC[FVT; SUBSET; IN_SING] THEN MESON_TAC[];
ASM_MESON_TAC[LPO_CASES]];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `h:num` (X_CHOOSE_THEN `ts:term list`
SUBST_ALL_TAC)) THEN
DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) MP_TAC) THEN
DISJ_CASES_THEN MP_TAC (SPEC `r:term` term_CASES) THENL
[ASM_MESON_TAC[LPO_CASES]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `rs:term list`
SUBST_ALL_TAC)) THEN
DISJ_CASES_THEN MP_TAC (SPEC `s:term` term_CASES) THENL
[ASM_MESON_TAC[LPO_CASES]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `g:num` (X_CHOOSE_THEN `ss:term list`
SUBST_ALL_TAC)) THEN STRIP_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[IMP_IMP]) THEN
ASM_CASES_TAC `?ri. MEM ri rs /\ (Fn g ss << ri \/ (Fn g ss = ri))` THENL
[FIRST_X_ASSUM(X_CHOOSE_THEN `ri:term`
(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN
MATCH_MP_TAC(el 1 (CONJUNCTS lpo_RULES)) THEN
EXISTS_TAC `ri:term` THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM DISJ_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
DISJ1_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `termsize ri + termsize(Fn g ss) + termsize (Fn h ts)` THEN
EXISTS_TAC `Fn g ss` THEN ASM_REWRITE_TAC[LT_ADD_RCANCEL] THEN
MATCH_MP_TAC DESCENDANT_SMALLER THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `!si. MEM si ss ==> si << Fn f rs` ASSUME_TAC THENL
[UNDISCH_TAC `Fn g ss << Fn f rs` THEN
GEN_REWRITE_TAC LAND_CONV [lpo_CASES] THEN
REWRITE_TAC[term_DISTINCT; term_INJ; GSYM ALL_MEM] THEN
ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_CASES_TAC `?si. MEM si ss /\ (Fn h ts << si \/ (Fn h ts = si))` THENL
[FIRST_X_ASSUM(X_CHOOSE_THEN `si:term`
(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN
FIRST_X_ASSUM DISJ_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_ASSUM(fun th -> MATCH_MP_TAC th THEN EXISTS_TAC
`termsize(Fn f rs) + termsize si + termsize (Fn h ts)`) THEN
EXISTS_TAC `si:term` THEN
ASM_SIMP_TAC[LT_ADD_LCANCEL; LT_ADD_RCANCEL] THEN
MATCH_MP_TAC DESCENDANT_SMALLER THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `!ti. MEM ti ts ==> ti << Fn g ss` ASSUME_TAC THENL
[UNDISCH_TAC `Fn h ts << Fn g ss` THEN
GEN_REWRITE_TAC LAND_CONV [lpo_CASES] THEN
REWRITE_TAC[term_DISTINCT; term_INJ; GSYM ALL_MEM] THEN
ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!ti. MEM ti ts ==> ti << Fn f rs` ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> MATCH_MP_TAC th THEN EXISTS_TAC
`termsize (Fn f rs) + termsize (Fn g ss) + termsize ti`) THEN
EXISTS_TAC `Fn g ss` THEN
ASM_SIMP_TAC[LT_ADD_LCANCEL; DESCENDANT_SMALLER]; ALL_TAC] THEN
UNDISCH_TAC `Fn h ts << Fn g ss` THEN UNDISCH_TAC `Fn g ss << Fn f rs` THEN
ONCE_REWRITE_TAC[LPO_CASES] THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN DISJ_CASES_TAC THENL
[ASM_MESON_TAC[LT_TRANS; LEX_LENGTH]; ALL_TAC] THEN
DISCH_THEN DISJ_CASES_TAC THENL
[ASM_MESON_TAC[LT_TRANS; LEX_LENGTH]; ALL_TAC] THEN
DISJ2_TAC THEN DISJ2_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN
SUBGOAL_THEN
`!r s t. MEM r rs /\ MEM s ss /\ MEM t ts /\
t << s /\ s << r ==> t << r`
MP_TAC THENL
[MAP_EVERY X_GEN_TAC [`a:term`; `b:term`; `c:term`] THEN STRIP_TAC THEN
FIRST_ASSUM(fun th -> MATCH_MP_TAC th THEN EXISTS_TAC
`termsize a + termsize b + termsize c`) THEN
EXISTS_TAC `b:term` THEN ASM_REWRITE_TAC[] THEN
REPEAT(MATCH_MP_TAC LT_ADD2 THEN CONJ_TAC) THEN
ASM_SIMP_TAC[DESCENDANT_SMALLER]; ALL_TAC] THEN
MAP_EVERY(fun s -> SPEC_TAC(s,s))
[`rs:term list`; `ss:term list`; `ts:term list`] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
REPEAT LIST_INDUCT_TAC THEN REWRITE_TAC[LEX; MEM] THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
TRY(ASM (GEN_MESON_TAC 0 15 1) [LEX_LENGTH]) THEN DISCH_TAC THEN
MATCH_MP_TAC(TAUT `(a1 /\ a2 ==> a3) /\ (b1 ==> b2 ==> b3)
==> a1 /\ b1 ==> a2 /\ b2 ==> a3 /\ b3`) THEN
SIMP_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[]);;
let LPO_TRANS = prove
(`!s t u. s << t /\ t << u ==> s << u`,
MESON_TAC[LPO_TRANS_INDUCT]);;
(* ------------------------------------------------------------------------- *)
(* LPO has the subterm property. *)
(* ------------------------------------------------------------------------- *)
let LPO_SUBTERM_LEMMA = prove
(`!f args a. MEM a args ==> a << Fn f args`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
ONCE_REWRITE_TAC[LPO_CASES] THEN CONJ_TAC THENL
[ALL_TAC; MESON_TAC[]] THEN
REWRITE_TAC[FVT; IN_LIST_UNION; GSYM EX_MEM; GSYM ALL_MEM; MEM_MAP] THEN
X_GEN_TAC `x:num` THEN DISCH_TAC THEN REWRITE_TAC[term_DISTINCT] THEN
EXISTS_TAC `FVT(V x)` THEN REWRITE_TAC[FVT; IN_SING] THEN
EXISTS_TAC `V x` THEN ASM_REWRITE_TAC[FVT]);;
let LPO_SUBTERM = prove
(`!s t. s subterm t ==> (s = t) \/ s << t`,
MATCH_MP_TAC subterm_INDUCT THEN REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[LPO_SUBTERM_LEMMA];
DISJ2_TAC THEN MATCH_MP_TAC LPO_TRANS THEN
EXISTS_TAC `a:term` THEN ASM_SIMP_TAC[LPO_SUBTERM_LEMMA]]);;
let LPO_PSUBTERM = prove
(`!s t. s psubterm t ==> s << t`,
REWRITE_TAC[psubterm] THEN MESON_TAC[LPO_SUBTERM]);;
(* ------------------------------------------------------------------------- *)
(* LPO is compatible with instantiation. *)
(* ------------------------------------------------------------------------- *)
let LPO_INSTANTIATION = prove
(`!i s t. s << t ==> termsubst i s << termsubst i t`,
GEN_TAC THEN MATCH_MP_TAC lpo_INDUCT THEN REPEAT CONJ_TAC THEN
REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THENL
[MATCH_MP_TAC LPO_PSUBTERM THEN MATCH_MP_TAC PSUBTERM_INSTANTIATION THEN
ASM_REWRITE_TAC[psubterm] THEN ASM_SIMP_TAC[SUBTERM_FVT];
REWRITE_TAC[termsubst] THEN
MATCH_MP_TAC(el 1 (CONJUNCTS lpo_RULES)) THEN
REWRITE_TAC[MEM_MAP] THEN ASM_MESON_TAC[termsubst];
REWRITE_TAC[termsubst] THEN
MATCH_MP_TAC(el 2 (CONJUNCTS lpo_RULES)) THEN
ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM ALL_MEM]) THEN
REWRITE_TAC[GSYM ALL_MEM; MEM_MAP; termsubst; LENGTH_MAP] THEN
ASM_MESON_TAC[];
REWRITE_TAC[termsubst] THEN
MATCH_MP_TAC(el 3 (CONJUNCTS lpo_RULES)) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[ALL_MAP; o_DEF] THEN
RULE_ASSUM_TAC(REWRITE_RULE[termsubst]) THEN ASM_SIMP_TAC[LEX_MAP]]);;
(* ------------------------------------------------------------------------- *)
(* LPO is a congruence. *)
(* ------------------------------------------------------------------------- *)
let LPO_CONGRUENCE = prove
(`!s t. s << t
==> Fn f (APPEND largs (CONS s rargs))
<< Fn f (APPEND largs (CONS t rargs))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC(last(CONJUNCTS lpo_RULES)) THEN
CONJ_TAC THENL
[REWRITE_TAC[GSYM ALL_MEM] THEN X_GEN_TAC `u:term` THEN DISCH_TAC THEN
ASM_CASES_TAC `u:term = s` THENL
[MATCH_MP_TAC LPO_TRANS THEN EXISTS_TAC `t:term` THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LPO_PSUBTERM THEN
ONCE_REWRITE_TAC[PSUBTERM_CASES] THEN
MAP_EVERY EXISTS_TAC
[`f:num`; `APPEND largs (CONS (t:term) rargs)`; `t:term`] THEN
ASM_REWRITE_TAC[MEM; SUBTERM_REFL; MEM_APPEND];
MATCH_MP_TAC LPO_PSUBTERM THEN ONCE_REWRITE_TAC[PSUBTERM_CASES] THEN
MAP_EVERY EXISTS_TAC
[`f:num`; `APPEND largs (CONS (t:term) rargs)`; `u:term`] THEN
REWRITE_TAC[SUBTERM_REFL] THEN
ASM_MESON_TAC[MEM; MEM_APPEND]];
SPEC_TAC(`largs:term list`,`largs:term list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LEX; APPEND] THEN
COND_CASES_TAC THEN REWRITE_TAC[LENGTH; LENGTH_APPEND]]);;
(* ------------------------------------------------------------------------- *)
(* LPO is irreflexive. *)
(* ------------------------------------------------------------------------- *)
let LPO_REFL = prove
(`!t. ~(t << t)`,
MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THEN REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[LPO_CASES] THEN REWRITE_TAC[] THEN
REWRITE_TAC[GSYM ALL_MEM; LT_REFL] THEN
ASM_SIMP_TAC[LEX_REFL] THEN
ASM_MESON_TAC[LPO_PSUBTERM; LPO_TRANS;
PSUBTERM_CASES; SUBTERM_REFL; DESCENDANT_SMALLER; LT_REFL]);;
(* ------------------------------------------------------------------------- *)
(* LPO is wellfounded over a finite signature. *)
(* ------------------------------------------------------------------------- *)
let LPO_WF = prove
(`!A. FINITE(A)
==> WF(\s t. functions_term(s) SUBSET A /\
functions_term(t) SUBSET A /\
s << t)`,
GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC(GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL WF_MINIMAL_DCHAIN)))) THEN
EXISTS_TAC `termsize` THEN REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `t:num->term`
(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC)) THEN
REWRITE_TAC[FORALL_AND_THM] THEN
DISCH_THEN(STRIP_ASSUME_TAC o CONJUNCT2) THEN
SUBGOAL_THEN
`!n:num. ?f args. (t(n) = Fn f args) /\
ALL (\t. ~(NONWF(\s t. functions_term(s) SUBSET A /\
functions_term(t) SUBSET A /\
s << t) t)) args`
MP_TAC THENL
[GEN_TAC THEN MP_TAC(SPEC `(t:num->term) n` term_CASES) THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[ASM_MESON_TAC[LPO_CASES]; ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `args:term list` THEN
DISCH_TAC THEN ASM_REWRITE_TAC[GSYM ALL_MEM] THEN
X_GEN_TAC `u:term` THEN DISCH_TAC THEN DISCH_TAC THEN
ASM_CASES_TAC `n = 0` THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `u:term`) THEN
ASM_REWRITE_TAC[] THEN UNDISCH_THEN `n = 0` SUBST_ALL_TAC THEN
ASM_SIMP_TAC[NOT_LE; DESCENDANT_SMALLER]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`n - 1`; `u:term`]) THEN
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (SUC(n - 1) = n)`] THEN
REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; NOT_LE] THEN REPEAT CONJ_TAC THENL
[UNDISCH_THEN
`!n:num. functions_term (t n) SUBSET A` (MP_TAC o SPEC `n:num`) THEN
ASM_REWRITE_TAC[functions_term; SUBSET; IN_LIST_UNION; IN_INSERT;
MEM_MAP; GSYM EX_MEM] THEN
ASM_MESON_TAC[];
MATCH_MP_TAC LPO_TRANS THEN EXISTS_TAC `(t:num->term)(n)` THEN
CONJ_TAC THENL
[ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LPO_PSUBTERM THEN
ONCE_REWRITE_TAC[PSUBTERM_CASES] THEN
MAP_EVERY EXISTS_TAC [`f:num`; `args:term list`; `u:term`] THEN
ASM_REWRITE_TAC[SUBTERM_REFL];
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV)
[MATCH_MP (ARITH_RULE `~(n = 0) ==> (n = SUC(n - 1))`) th]) THEN
ASM_REWRITE_TAC[]];
MATCH_MP_TAC DESCENDANT_SMALLER THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN
REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM; GSYM ALL_MEM] THEN
DISCH_THEN(X_CHOOSE_THEN `fn:num->num` (X_CHOOSE_THEN `args:num->term list`
STRIP_ASSUME_TAC)) THEN
SUBGOAL_THEN
`?far:num#num s. subseq s /\
(!n:num. fn(s n),LENGTH(args(s n):term list) = far)`
MP_TAC THENL
[MATCH_MP_TAC SEQUENCE_PARTITION_LEMMA THEN
EXISTS_TAC `A:num#num->bool` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `n:num` THEN
UNDISCH_TAC `!n:num. functions_term (t n) SUBSET A` THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[SUBSET] o SPEC `n:num`) THEN
DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[functions_term; IN_INSERT];
ALL_TAC] THEN
GEN_REWRITE_TAC LAND_CONV [EXISTS_PAIR_THM] THEN
REWRITE_TAC[PAIR_EQ; FORALL_AND_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `ar:num`
(X_CHOOSE_THEN `k:num->num` STRIP_ASSUME_TAC))) THEN
SUBGOAL_THEN `!m n. m <= n ==> t(n) << t(m) \/ (t(n) = t(m))`
ASSUME_TAC THENL
[SUBGOAL_THEN `!n d. t(n + d) << t(n) \/ (t(n + d) = t(n))`
(fun th -> MESON_TAC[th; LE_EXISTS]) THEN
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES] THEN
ASM_MESON_TAC[LPO_TRANS]; ALL_TAC] THEN
SUBGOAL_THEN `!m n. m < n ==> t(n) << t(m)` MP_TAC THENL
[REWRITE_TAC[GSYM LE_SUC_LT] THEN
ASM_MESON_TAC[LPO_TRANS]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o GEN `n:num` o
SPECL [`(k:num->num) n`; `k(SUC n):num`]) THEN
FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [SUBSEQ_SUC]) THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[LPO_CASES] THEN
REWRITE_TAC[LT_REFL] THEN
SUBGOAL_THEN `!a n:num. MEM a (args n) ==> functions_term a SUBSET A`
ASSUME_TAC THENL
[REPEAT GEN_TAC THEN
UNDISCH_THEN
`!n:num. functions_term (t n) SUBSET A`
(MP_TAC o SPEC `n:num`) THEN
ASM_REWRITE_TAC[functions_term; SUBSET; IN_LIST_UNION; IN_INSERT;
MEM_MAP; GSYM EX_MEM] THEN
ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`!n a. ~(MEM a (args ((k:num->num) n)) /\
(Fn f (args (k (SUC n))) << a \/ (Fn f (args (k (SUC n))) = a)))`
(fun th -> REWRITE_TAC[th])
THENL
[REPEAT GEN_TAC THEN REWRITE_TAC[DE_MORGAN_THM] THEN
MATCH_MP_TAC(TAUT `(a ==> b) ==> ~a \/ b`) THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [NONWF] o
C MATCH_MP (ASSUME
`MEM (a:term) (args((k:num->num) n))`)) THEN
REWRITE_TAC[NONWF; TAUT `~p ==> ~q /\ ~r <=> q \/ r ==> p`] THEN
DISCH_TAC THEN EXISTS_TAC
`\r:num. if r = 0 then a:term else t(k(SUC n) + r)` THEN
REWRITE_TAC[NOT_SUC] THEN X_GEN_TAC `m:num` THEN
COND_CASES_TAC THENL
[CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o SPECL [`k(SUC n):num`; `k(SUC n) + m`]) THEN
REWRITE_TAC[LE_ADD] THEN UNDISCH_TAC `!n:num. t(SUC n) << t n` THEN
DISCH_THEN(MP_TAC o SPEC `k(SUC n) + m`) THEN
REWRITE_TAC[ADD_CLAUSES] THEN
FIRST_X_ASSUM(MP_TAC o check (is_disj o concl)) THEN
ASM_REWRITE_TAC[] THEN MESON_TAC[LPO_TRANS]; ALL_TAC] THEN
ASM_MESON_TAC[ADD_CLAUSES];
ALL_TAC] THEN
REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`(\s t.
functions_term s SUBSET A /\
functions_term t SUBSET A /\
s << t)`; `\n:num. (args:num->term list)(k n)`]
WF_LEX_STRONG) THEN
ASM_REWRITE_TAC[] THEN
GEN_TAC THEN MATCH_MP_TAC LEX_RESTRICT THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[LT_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Converse subterm property (not really needed, in fact). *)
(* ------------------------------------------------------------------------- *)
let LPO_SUBTERM_NOT = prove
(`!t s. s subterm t ==> ~(t << s)`,
MESON_TAC[LPO_SUBTERM; LPO_TRANS; LPO_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Completeness on ground terms. *)
(* ------------------------------------------------------------------------- *)
let LEX_TOTAL = prove
(`!fargs gargs.
(LENGTH fargs = LENGTH gargs) /\
(!fi gi. MEM fi fargs /\ MEM gi gargs
==> fi << gi \/ gi << fi \/ (fi = gi))
==> LEX(<<) fargs gargs \/ LEX(<<) gargs fargs \/ (fargs = gargs)`,
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LEX; MEM; LENGTH; NOT_SUC] THEN
CONJ_TAC THENL [MESON_TAC[LENGTH_EQ_NIL]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`s:term`; `ss:term list`] THEN DISCH_TAC THEN
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LEX; MEM; LENGTH; NOT_SUC] THEN
MAP_EVERY X_GEN_TAC [`t:term`; `ts:term list`] THEN
DISCH_THEN(K ALL_TAC) THEN SIMP_TAC[SUC_INJ] THEN
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ts:term list`) THEN
ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
ASM_MESON_TAC[]);;
let LPO_GROUND_COMPLETE = prove
(`!s t. (FVT(s) = {}) /\ (FVT(t) = {}) ==> s << t \/ t << s \/ (s = t)`,
SUBGOAL_THEN
`!n s t. (termsize(s) + termsize(t) = n) /\ (FVT(s) = {}) /\ (FVT(t) = {})
==> s << t \/ t << s \/ (s = t)`
(fun th -> MESON_TAC[th]) THEN
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL
[REWRITE_TAC[FVT; EXTENSION; IN_SING; NOT_IN_EMPTY] THEN MESON_TAC[];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `fargs:term list`] THEN
DISCH_THEN(K ALL_TAC) THEN
MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL
[REWRITE_TAC[FVT; EXTENSION; IN_SING; NOT_IN_EMPTY] THEN MESON_TAC[];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`g:num`; `gargs:term list`] THEN
DISCH_THEN(K ALL_TAC) THEN STRIP_TAC THEN
SUBGOAL_THEN
`(!fi. MEM fi fargs
==> fi << Fn g gargs \/ Fn g gargs << fi \/ (fi = Fn g gargs)) /\
(!gi. MEM gi gargs
==> gi << Fn f fargs \/ Fn f fargs << gi \/ (gi = Fn f fargs)) /\
(!fi gi. MEM fi fargs /\ MEM gi gargs
==> fi << gi \/ gi << fi \/ (fi = gi))`
STRIP_ASSUME_TAC THENL
[UNDISCH_THEN `termsize (Fn f fargs) + termsize (Fn g gargs) = n`
(SUBST_ALL_TAC o SYM) THEN
RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM;
IMP_IMP]) THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> b /\ a /\ c /\ d`] THEN
REWRITE_TAC[UNWIND_THM1] THEN
ASM_SIMP_TAC[LT_ADD_LCANCEL; LT_ADD_RCANCEL; DESCENDANT_SMALLER;
ARITH_RULE `a + b < b + c <=> a < c`; LT_ADD2] THEN
ASM_MESON_TAC[FVT_FUN_EMPTY];
ALL_TAC] THEN
ONCE_REWRITE_TAC[LPO_CASES] THEN
SUBGOAL_THEN
`(?a. MEM a gargs /\ (Fn f fargs << a \/ (Fn f fargs = a))) \/
~(?a. MEM a gargs /\ (Fn f fargs << a \/ (Fn f fargs = a))) /\
(!a. MEM a gargs ==> a << Fn f fargs)`
DISJ_CASES_TAC THENL [ASM_MESON_TAC[]; ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`(?a. MEM a fargs /\ (Fn g gargs << a \/ (Fn g gargs = a))) \/
~(?a. MEM a fargs /\ (Fn g gargs << a \/ (Fn g gargs = a))) /\
(!a. MEM a fargs ==> a << Fn g gargs)`
DISJ_CASES_TAC THENL [ASM_MESON_TAC[]; ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[term_INJ] THEN
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(SPECL [`f:num`; `g:num`] LT_CASES) THEN
ASM_REWRITE_TAC[LT_REFL] THEN
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(SPECL [`LENGTH(fargs:term list)`; `LENGTH(gargs:term list)`] LT_CASES) THEN
ASM_REWRITE_TAC[LT_REFL] THEN
MATCH_MP_TAC LEX_TOTAL THEN ASM_SIMP_TAC[]);;
|