Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,224 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
(* ========================================================================= *)
(* Refinement of canonical model theorem to consider ground terms only.      *)
(* ========================================================================= *)

let herbase_RULES,herbase_INDUCT,herbase_CASES = new_inductive_definition
  `(~(?c. (c,0) IN fns) ==> herbase fns (V 0)) /\
   (!f l. (f,LENGTH l) IN fns /\ ALL (herbase fns) l
          ==> herbase fns (Fn f l))`;;

(* ------------------------------------------------------------------------- *)
(* Canonical model based on the language of a set of formulas.               *)
(* ------------------------------------------------------------------------- *)

let herbrand = new_definition
  `herbrand (L:(num#num->bool)#(num#num->bool)) M <=>
       (Dom M = herbase (FST L)) /\
       (!f. Fun(M) f = Fn f)`;;

(* ------------------------------------------------------------------------- *)
(* Lemmas.                                                                   *)
(* ------------------------------------------------------------------------- *)

let HERBRAND_INTERPRETATION = prove
 (`!L M. herbrand L M ==> interpretation L M`,
  GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
  SIMP_TAC[herbrand; interpretation] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
  ASM_SIMP_TAC[herbase_RULES]);;

let HERBASE_FUNCTIONS = prove
 (`!fns t. t IN herbase fns ==> (functions_term t) SUBSET fns`,
  GEN_TAC THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC herbase_INDUCT THEN
  REWRITE_TAC[functions_term; EMPTY_SUBSET] THEN
  REWRITE_TAC[SUBSET; IN_INSERT; IN_LIST_UNION; GSYM ALL_MEM; GSYM EX_MEM;
              MEM_MAP] THEN
  MESON_TAC[]);;

let HERBASE_NONEMPTY = prove
 (`!fns. ?t. t IN herbase fns`,
  GEN_TAC THEN REWRITE_TAC[IN] THEN ONCE_REWRITE_TAC[herbase_CASES] THEN
  MESON_TAC[ALL; LENGTH]);;

let HERBRAND_NONEMPTY = prove
 (`!L M. herbrand L M ==> ~(Dom M = {})`,
  SIMP_TAC[herbrand; Dom_DEF; EXTENSION; NOT_IN_EMPTY] THEN
  REWRITE_TAC[NOT_FORALL_THM; HERBASE_NONEMPTY]);;

(* ------------------------------------------------------------------------- *)
(* Mappings between models and propositional valuations.                     *)
(* ------------------------------------------------------------------------- *)

let herbrand_of_prop = new_definition
  `herbrand_of_prop (L:((num#num)->bool)#((num#num)->bool)) (d:form->bool) =
   herbase(FST L),Fn,\p l. d(Atom p l)`;;

let PROP_OF_HERBRAND_OF_PROP = prove
 (`!p l. prop_of_model (herbrand_of_prop L d) V (Atom p l) = d (Atom p l)`,
  REWRITE_TAC[prop_of_model; herbrand_of_prop; holds; Pred_DEF] THEN
  REPEAT GEN_TAC THEN REPEAT AP_TERM_TAC THEN
  MATCH_MP_TAC MAP_EQ_DEGEN THEN
  SPEC_TAC(`l:term list`,`l:term list`) THEN
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN
  SPEC_TAC(`h:term`,`t:term`) THEN
  MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[termval; Fun_DEF] THEN
  REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
  MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);;

let HOLDS_HERBRAND_OF_PROP = prove
 (`!p. qfree p ==> (holds (herbrand_of_prop L d) V p <=> pholds d p)`,
  GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN
   REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN
  SPEC_TAC(`p:form`,`p:form`) THEN
  MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[pholds; qfree; PROP_OF_HERBRAND_OF_PROP] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC);;

let HOLDS_HERBRAND_OF_PROP_GENERAL = prove
 (`qfree p ==> (holds (herbrand_of_prop L d) v p <=> pholds d (formsubst v p))`,
  DISCH_THEN(fun th -> MP_TAC th THEN
   REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN
  SPEC_TAC(`p:form`,`p:form`) THEN
  MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[formsubst; pholds; qfree; PROP_OF_HERBRAND_OF_PROP] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THENL
   [ALL_TAC;
    REPEAT GEN_TAC THEN STRIP_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN
    REFL_TAC] THEN
  REPEAT GEN_TAC THEN REWRITE_TAC[prop_of_model; herbrand_of_prop; holds] THEN
  REWRITE_TAC[Pred_DEF] THEN
  AP_TERM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[FUN_EQ_THM] THEN SIMP_TAC[GSYM TERMSUBST_TERMVAL; Fun_DEF]);;

let HERBRAND_HERBRAND_OF_PROP = prove
 (`!d. herbrand L (herbrand_of_prop L d)`,
  REWRITE_TAC[herbrand; herbrand_of_prop; Dom_DEF; Fun_DEF; FUN_EQ_THM]);;

let INTERPRETATION_HERBRAND_OF_PROP = prove
 (`!L d. interpretation L (herbrand_of_prop L d)`,
  REWRITE_TAC[FORALL_PAIR_THM; interpretation; herbrand_of_prop; Fun_DEF;
              Dom_DEF; IN; ETA_AX] THEN
  MESON_TAC[herbase_RULES; IN]);;

(* ------------------------------------------------------------------------- *)
(* Same thing for satisfiability.                                            *)
(* ------------------------------------------------------------------------- *)

let PSATISFIES_HERBRAND_INSTANCES = prove
 (`(!p. p IN s ==> qfree p) /\
   d psatisfies {formsubst v p | (!x. v x IN herbase(FST L)) /\ p IN s}
   ==> (herbrand_of_prop L d) satisfies s`,
  REWRITE_TAC[satisfies; psatisfies; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
  STRIP_TAC THEN
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
   [herbrand_of_prop; Dom_DEF; valuation] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPECL[`formsubst v p`; `v:num->term`; `p:form`]) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  SUBGOAL_THEN `holds (herbrand_of_prop L d) V (formsubst v p)` MP_TAC THENL
   [ASM_MESON_TAC[HOLDS_HERBRAND_OF_PROP; QFREE_FORMSUBST]; ALL_TAC] THEN
  SUBGOAL_THEN `holds (herbrand_of_prop L d) V (formsubst v p) <=>
                holds (herbrand_of_prop L d)
                      (termval (herbrand_of_prop L d) V o v)
                      p`
  SUBST1_TAC THENL
   [REWRITE_TAC[HOLDS_FORMSUBST] THEN
    ASM_MESON_TAC[INTER_EMPTY; QFREE_BV_EMPTY];
    MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
    AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN
    GEN_TAC THEN SPEC_TAC(`(v:num->term) x`,`t:term`) THEN
    MATCH_MP_TAC TERMVAL_TRIV THEN
    REWRITE_TAC[herbrand_of_prop; Fun_DEF]]);;

(* ------------------------------------------------------------------------- *)
(* Hence the Herbrand theorem.                                               *)
(* ------------------------------------------------------------------------- *)

let SATISFIES_SUBSET = prove
 (`!M s t. s SUBSET t /\ M satisfies t ==> M satisfies s`,
  REWRITE_TAC[satisfies; SUBSET] THEN MESON_TAC[]);;

let HERBASE_SUBSET_TERMS = prove
 (`!t. t IN herbase fns ==> t IN terms fns`,
  REWRITE_TAC[IN] THEN MATCH_MP_TAC herbase_INDUCT THEN
  CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[terms_RULES]);;

let HERBRAND_THEOREM = prove
 (`!s. (!p. p IN s ==> qfree p)
       ==> ((?M:(term->bool)#(num->term list->term)#(num->term list->bool).
                 interpretation (language s) M /\ ~(Dom M = {}) /\
                 M satisfies s) <=>
            (?d. d psatisfies
                 {formsubst v p | (!x. v x IN herbase(functions s)) /\
                                  p IN s}))`,
  GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN STRIP_TAC THENL
   [FIRST_ASSUM(X_CHOOSE_TAC `v:num->term` o MATCH_MP VALUATION_EXISTS) THEN
    EXISTS_TAC `prop_of_model M (v:num->term)` THEN
    MATCH_MP_TAC SATISFIES_PSATISFIES THEN ASM_REWRITE_TAC[] THEN
    CONJ_TAC THENL
     [ASM_SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; QFREE_FORMSUBST];
      FIRST_ASSUM(MP_TAC o MATCH_MP SATISFIES_INSTANCES) THEN
      DISCH_THEN(MP_TAC o SPEC `s:form->bool`) THEN ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ]
                   SATISFIES_SUBSET) THEN
      REWRITE_TAC[SUBSET; IN_ELIM_THM; language] THEN
      MESON_TAC[HERBASE_SUBSET_TERMS; SUBSET]];
    EXISTS_TAC `herbrand_of_prop (language s) d` THEN REPEAT CONJ_TAC THENL
     [REWRITE_TAC[INTERPRETATION_HERBRAND_OF_PROP];
      REWRITE_TAC[herbrand_of_prop; Dom_DEF; language;
                  EXTENSION; NOT_IN_EMPTY] THEN
      REWRITE_TAC[IN] THEN MESON_TAC[herbase_RULES; ALL; LENGTH];
      ASM_SIMP_TAC[PSATISFIES_HERBRAND_INSTANCES; language]]]);;