Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 8,224 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
(* ========================================================================= *)
(* Refinement of canonical model theorem to consider ground terms only. *)
(* ========================================================================= *)
let herbase_RULES,herbase_INDUCT,herbase_CASES = new_inductive_definition
`(~(?c. (c,0) IN fns) ==> herbase fns (V 0)) /\
(!f l. (f,LENGTH l) IN fns /\ ALL (herbase fns) l
==> herbase fns (Fn f l))`;;
(* ------------------------------------------------------------------------- *)
(* Canonical model based on the language of a set of formulas. *)
(* ------------------------------------------------------------------------- *)
let herbrand = new_definition
`herbrand (L:(num#num->bool)#(num#num->bool)) M <=>
(Dom M = herbase (FST L)) /\
(!f. Fun(M) f = Fn f)`;;
(* ------------------------------------------------------------------------- *)
(* Lemmas. *)
(* ------------------------------------------------------------------------- *)
let HERBRAND_INTERPRETATION = prove
(`!L M. herbrand L M ==> interpretation L M`,
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
SIMP_TAC[herbrand; interpretation] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
ASM_SIMP_TAC[herbase_RULES]);;
let HERBASE_FUNCTIONS = prove
(`!fns t. t IN herbase fns ==> (functions_term t) SUBSET fns`,
GEN_TAC THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC herbase_INDUCT THEN
REWRITE_TAC[functions_term; EMPTY_SUBSET] THEN
REWRITE_TAC[SUBSET; IN_INSERT; IN_LIST_UNION; GSYM ALL_MEM; GSYM EX_MEM;
MEM_MAP] THEN
MESON_TAC[]);;
let HERBASE_NONEMPTY = prove
(`!fns. ?t. t IN herbase fns`,
GEN_TAC THEN REWRITE_TAC[IN] THEN ONCE_REWRITE_TAC[herbase_CASES] THEN
MESON_TAC[ALL; LENGTH]);;
let HERBRAND_NONEMPTY = prove
(`!L M. herbrand L M ==> ~(Dom M = {})`,
SIMP_TAC[herbrand; Dom_DEF; EXTENSION; NOT_IN_EMPTY] THEN
REWRITE_TAC[NOT_FORALL_THM; HERBASE_NONEMPTY]);;
(* ------------------------------------------------------------------------- *)
(* Mappings between models and propositional valuations. *)
(* ------------------------------------------------------------------------- *)
let herbrand_of_prop = new_definition
`herbrand_of_prop (L:((num#num)->bool)#((num#num)->bool)) (d:form->bool) =
herbase(FST L),Fn,\p l. d(Atom p l)`;;
let PROP_OF_HERBRAND_OF_PROP = prove
(`!p l. prop_of_model (herbrand_of_prop L d) V (Atom p l) = d (Atom p l)`,
REWRITE_TAC[prop_of_model; herbrand_of_prop; holds; Pred_DEF] THEN
REPEAT GEN_TAC THEN REPEAT AP_TERM_TAC THEN
MATCH_MP_TAC MAP_EQ_DEGEN THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN
SPEC_TAC(`h:term`,`t:term`) THEN
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termval; Fun_DEF] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);;
let HOLDS_HERBRAND_OF_PROP = prove
(`!p. qfree p ==> (holds (herbrand_of_prop L d) V p <=> pholds d p)`,
GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN
REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN
SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[pholds; qfree; PROP_OF_HERBRAND_OF_PROP] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC);;
let HOLDS_HERBRAND_OF_PROP_GENERAL = prove
(`qfree p ==> (holds (herbrand_of_prop L d) v p <=> pholds d (formsubst v p))`,
DISCH_THEN(fun th -> MP_TAC th THEN
REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN
SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[formsubst; pholds; qfree; PROP_OF_HERBRAND_OF_PROP] THEN
REPEAT GEN_TAC THEN STRIP_TAC THENL
[ALL_TAC;
REPEAT GEN_TAC THEN STRIP_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN
REFL_TAC] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[prop_of_model; herbrand_of_prop; holds] THEN
REWRITE_TAC[Pred_DEF] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM] THEN SIMP_TAC[GSYM TERMSUBST_TERMVAL; Fun_DEF]);;
let HERBRAND_HERBRAND_OF_PROP = prove
(`!d. herbrand L (herbrand_of_prop L d)`,
REWRITE_TAC[herbrand; herbrand_of_prop; Dom_DEF; Fun_DEF; FUN_EQ_THM]);;
let INTERPRETATION_HERBRAND_OF_PROP = prove
(`!L d. interpretation L (herbrand_of_prop L d)`,
REWRITE_TAC[FORALL_PAIR_THM; interpretation; herbrand_of_prop; Fun_DEF;
Dom_DEF; IN; ETA_AX] THEN
MESON_TAC[herbase_RULES; IN]);;
(* ------------------------------------------------------------------------- *)
(* Same thing for satisfiability. *)
(* ------------------------------------------------------------------------- *)
let PSATISFIES_HERBRAND_INSTANCES = prove
(`(!p. p IN s ==> qfree p) /\
d psatisfies {formsubst v p | (!x. v x IN herbase(FST L)) /\ p IN s}
==> (herbrand_of_prop L d) satisfies s`,
REWRITE_TAC[satisfies; psatisfies; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
STRIP_TAC THEN
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
[herbrand_of_prop; Dom_DEF; valuation] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL[`formsubst v p`; `v:num->term`; `p:form`]) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
SUBGOAL_THEN `holds (herbrand_of_prop L d) V (formsubst v p)` MP_TAC THENL
[ASM_MESON_TAC[HOLDS_HERBRAND_OF_PROP; QFREE_FORMSUBST]; ALL_TAC] THEN
SUBGOAL_THEN `holds (herbrand_of_prop L d) V (formsubst v p) <=>
holds (herbrand_of_prop L d)
(termval (herbrand_of_prop L d) V o v)
p`
SUBST1_TAC THENL
[REWRITE_TAC[HOLDS_FORMSUBST] THEN
ASM_MESON_TAC[INTER_EMPTY; QFREE_BV_EMPTY];
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN
GEN_TAC THEN SPEC_TAC(`(v:num->term) x`,`t:term`) THEN
MATCH_MP_TAC TERMVAL_TRIV THEN
REWRITE_TAC[herbrand_of_prop; Fun_DEF]]);;
(* ------------------------------------------------------------------------- *)
(* Hence the Herbrand theorem. *)
(* ------------------------------------------------------------------------- *)
let SATISFIES_SUBSET = prove
(`!M s t. s SUBSET t /\ M satisfies t ==> M satisfies s`,
REWRITE_TAC[satisfies; SUBSET] THEN MESON_TAC[]);;
let HERBASE_SUBSET_TERMS = prove
(`!t. t IN herbase fns ==> t IN terms fns`,
REWRITE_TAC[IN] THEN MATCH_MP_TAC herbase_INDUCT THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[terms_RULES]);;
let HERBRAND_THEOREM = prove
(`!s. (!p. p IN s ==> qfree p)
==> ((?M:(term->bool)#(num->term list->term)#(num->term list->bool).
interpretation (language s) M /\ ~(Dom M = {}) /\
M satisfies s) <=>
(?d. d psatisfies
{formsubst v p | (!x. v x IN herbase(functions s)) /\
p IN s}))`,
GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN STRIP_TAC THENL
[FIRST_ASSUM(X_CHOOSE_TAC `v:num->term` o MATCH_MP VALUATION_EXISTS) THEN
EXISTS_TAC `prop_of_model M (v:num->term)` THEN
MATCH_MP_TAC SATISFIES_PSATISFIES THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; QFREE_FORMSUBST];
FIRST_ASSUM(MP_TAC o MATCH_MP SATISFIES_INSTANCES) THEN
DISCH_THEN(MP_TAC o SPEC `s:form->bool`) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ]
SATISFIES_SUBSET) THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; language] THEN
MESON_TAC[HERBASE_SUBSET_TERMS; SUBSET]];
EXISTS_TAC `herbrand_of_prop (language s) d` THEN REPEAT CONJ_TAC THENL
[REWRITE_TAC[INTERPRETATION_HERBRAND_OF_PROP];
REWRITE_TAC[herbrand_of_prop; Dom_DEF; language;
EXTENSION; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN] THEN MESON_TAC[herbase_RULES; ALL; LENGTH];
ASM_SIMP_TAC[PSATISFIES_HERBRAND_INSTANCES; language]]]);;
|