Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 73,217 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 |
(* ========================================================================= *)
(* Properties of real polynomials (not canonically represented). *)
(* ========================================================================= *)
needs "Library/analysis.ml";;
prioritize_real();;
parse_as_infix("++",(16,"right"));;
parse_as_infix("**",(20,"right"));;
parse_as_infix("##",(20,"right"));;
parse_as_infix("divides",(14,"right"));;
parse_as_infix("exp",(22,"right"));;
do_list override_interface
["++",`poly_add:real list->real list->real list`;
"**",`poly_mul:real list->real list->real list`;
"##",`poly_cmul:real->real list->real list`;
"neg",`poly_neg:real list->real list`;
"exp",`poly_exp:real list -> num -> real list`;
"diff",`poly_diff:real list->real list`];;
overload_interface ("divides",`poly_divides:real list->real list->bool`);;
(* ------------------------------------------------------------------------- *)
(* Application of polynomial as a real function. *)
(* ------------------------------------------------------------------------- *)
let poly = new_recursive_definition list_RECURSION
`(poly [] x = &0) /\
(poly (CONS h t) x = h + x * poly t x)`;;
let POLY_CONST = prove
(`!c x. poly [c] x = c`,
REWRITE_TAC[poly] THEN REAL_ARITH_TAC);;
let POLY_X = prove
(`!c x. poly [&0; &1] x = x`,
REWRITE_TAC[poly] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Arithmetic operations on polynomials. *)
(* ------------------------------------------------------------------------- *)
let poly_add = new_recursive_definition list_RECURSION
`([] ++ l2 = l2) /\
((CONS h t) ++ l2 =
(if l2 = [] then CONS h t
else CONS (h + HD l2) (t ++ TL l2)))`;;
let poly_cmul = new_recursive_definition list_RECURSION
`(c ## [] = []) /\
(c ## (CONS h t) = CONS (c * h) (c ## t))`;;
let poly_neg = new_definition
`neg = (##) (--(&1))`;;
let poly_mul = new_recursive_definition list_RECURSION
`([] ** l2 = []) /\
((CONS h t) ** l2 =
(if t = [] then h ## l2
else (h ## l2) ++ CONS (&0) (t ** l2)))`;;
let poly_exp = new_recursive_definition num_RECURSION
`(p exp 0 = [&1]) /\
(p exp (SUC n) = p ** p exp n)`;;
(* ------------------------------------------------------------------------- *)
(* Differentiation of polynomials (needs an auxiliary function). *)
(* ------------------------------------------------------------------------- *)
let poly_diff_aux = new_recursive_definition list_RECURSION
`(poly_diff_aux n [] = []) /\
(poly_diff_aux n (CONS h t) = CONS (&n * h) (poly_diff_aux (SUC n) t))`;;
let poly_diff = new_definition
`diff l = (if l = [] then [] else (poly_diff_aux 1 (TL l)))`;;
(* ------------------------------------------------------------------------- *)
(* Lengths. *)
(* ------------------------------------------------------------------------- *)
let LENGTH_POLY_DIFF_AUX = prove
(`!l n. LENGTH(poly_diff_aux n l) = LENGTH l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LENGTH; poly_diff_aux]);;
let LENGTH_POLY_DIFF = prove
(`!l. LENGTH(poly_diff l) = PRE(LENGTH l)`,
LIST_INDUCT_TAC THEN
SIMP_TAC[poly_diff; LENGTH; LENGTH_POLY_DIFF_AUX; NOT_CONS_NIL; TL; PRE]);;
(* ------------------------------------------------------------------------- *)
(* Useful clausifications. *)
(* ------------------------------------------------------------------------- *)
let POLY_ADD_CLAUSES = prove
(`([] ++ p2 = p2) /\
(p1 ++ [] = p1) /\
((CONS h1 t1) ++ (CONS h2 t2) = CONS (h1 + h2) (t1 ++ t2))`,
REWRITE_TAC[poly_add; NOT_CONS_NIL; HD; TL] THEN
SPEC_TAC(`p1:real list`,`p1:real list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly_add]);;
let POLY_CMUL_CLAUSES = prove
(`(c ## [] = []) /\
(c ## (CONS h t) = CONS (c * h) (c ## t))`,
REWRITE_TAC[poly_cmul]);;
let POLY_NEG_CLAUSES = prove
(`(neg [] = []) /\
(neg (CONS h t) = CONS (--h) (neg t))`,
REWRITE_TAC[poly_neg; POLY_CMUL_CLAUSES; REAL_MUL_LNEG; REAL_MUL_LID]);;
let POLY_MUL_CLAUSES = prove
(`([] ** p2 = []) /\
([h1] ** p2 = h1 ## p2) /\
((CONS h1 (CONS k1 t1)) ** p2 = h1 ## p2 ++ CONS (&0) (CONS k1 t1 ** p2))`,
REWRITE_TAC[poly_mul; NOT_CONS_NIL]);;
let POLY_DIFF_CLAUSES = prove
(`(diff [] = []) /\
(diff [c] = []) /\
(diff (CONS h t) = poly_diff_aux 1 t)`,
REWRITE_TAC[poly_diff; NOT_CONS_NIL; HD; TL; poly_diff_aux]);;
(* ------------------------------------------------------------------------- *)
(* Various natural consequences of syntactic definitions. *)
(* ------------------------------------------------------------------------- *)
let POLY_ADD = prove
(`!p1 p2 x. poly (p1 ++ p2) x = poly p1 x + poly p2 x`,
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_add; poly; REAL_ADD_LID] THEN
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[NOT_CONS_NIL; HD; TL; poly; REAL_ADD_RID] THEN
REAL_ARITH_TAC);;
let POLY_CMUL = prove
(`!p c x. poly (c ## p) x = c * poly p x`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly; poly_cmul] THEN
REAL_ARITH_TAC);;
let POLY_NEG = prove
(`!p x. poly (neg p) x = --(poly p x)`,
REWRITE_TAC[poly_neg; POLY_CMUL] THEN
REAL_ARITH_TAC);;
let POLY_MUL = prove
(`!x p1 p2. poly (p1 ** p2) x = poly p1 x * poly p2 x`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[poly_mul; poly; REAL_MUL_LZERO; POLY_CMUL; POLY_ADD] THEN
SPEC_TAC(`h:real`,`h:real`) THEN
SPEC_TAC(`t:real list`,`t:real list`) THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC[poly_mul; POLY_CMUL; POLY_ADD; poly; POLY_CMUL;
REAL_MUL_RZERO; REAL_ADD_RID; NOT_CONS_NIL] THEN
ASM_REWRITE_TAC[POLY_ADD; POLY_CMUL; poly] THEN
REAL_ARITH_TAC);;
let POLY_EXP = prove
(`!p n x. poly (p exp n) x = (poly p x) pow n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[poly_exp; real_pow; POLY_MUL] THEN
REWRITE_TAC[poly] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* The derivative is a bit more complicated. *)
(* ------------------------------------------------------------------------- *)
let POLY_DIFF_LEMMA = prove
(`!l n x. ((\x. (x pow (SUC n)) * poly l x) diffl
((x pow n) * poly (poly_diff_aux (SUC n) l) x))(x)`,
LIST_INDUCT_TAC THEN
REWRITE_TAC[poly; poly_diff_aux; REAL_MUL_RZERO; DIFF_CONST] THEN
MAP_EVERY X_GEN_TAC [`n:num`; `x:real`] THEN
REWRITE_TAC[REAL_LDISTRIB; REAL_MUL_ASSOC] THEN
ONCE_REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[REAL_MUL_SYM] (CONJUNCT2 pow))] THEN
POP_ASSUM(MP_TAC o SPECL [`SUC n`; `x:real`]) THEN
SUBGOAL_THEN `(((\x. (x pow (SUC n)) * h)) diffl
((x pow n) * &(SUC n) * h))(x)`
(fun th -> DISCH_THEN(MP_TAC o CONJ th)) THENL
[REWRITE_TAC[REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MP_TAC(SPEC `\x. x pow (SUC n)` DIFF_CMUL) THEN BETA_TAC THEN
DISCH_THEN MATCH_MP_TAC THEN
MP_TAC(SPEC `SUC n` DIFF_POW) THEN REWRITE_TAC[SUC_SUB1] THEN
DISCH_THEN(MATCH_ACCEPT_TAC o ONCE_REWRITE_RULE[REAL_MUL_SYM]);
DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA_TAC THEN
REWRITE_TAC[REAL_MUL_ASSOC]]);;
let POLY_DIFF = prove
(`!l x. ((\x. poly l x) diffl (poly (diff l) x))(x)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[POLY_DIFF_CLAUSES] THEN
ONCE_REWRITE_TAC[SYM(ETA_CONV `\x. poly l x`)] THEN
REWRITE_TAC[poly; DIFF_CONST] THEN
MAP_EVERY X_GEN_TAC [`x:real`] THEN
MP_TAC(SPECL [`t:(real)list`; `0`; `x:real`] POLY_DIFF_LEMMA) THEN
REWRITE_TAC[SYM(num_CONV `1`)] THEN REWRITE_TAC[pow; REAL_MUL_LID] THEN
REWRITE_TAC[POW_1] THEN
DISCH_THEN(MP_TAC o CONJ (SPECL [`h:real`; `x:real`] DIFF_CONST)) THEN
DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA_TAC THEN
REWRITE_TAC[REAL_ADD_LID]);;
(* ------------------------------------------------------------------------- *)
(* Trivial consequences. *)
(* ------------------------------------------------------------------------- *)
let POLY_DIFFERENTIABLE = prove
(`!l x. (\x. poly l x) differentiable x`,
REPEAT GEN_TAC THEN REWRITE_TAC[differentiable] THEN
EXISTS_TAC `poly (diff l) x` THEN
REWRITE_TAC[POLY_DIFF]);;
let POLY_CONT = prove
(`!l x. (\x. poly l x) contl x`,
REPEAT GEN_TAC THEN MATCH_MP_TAC DIFF_CONT THEN
EXISTS_TAC `poly (diff l) x` THEN
MATCH_ACCEPT_TAC POLY_DIFF);;
let POLY_IVT_POS = prove
(`!p a b. a < b /\ poly p a < &0 /\ poly p b > &0
==> ?x. a < x /\ x < b /\ (poly p x = &0)`,
REWRITE_TAC[real_gt] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`\x. poly p x`; `a:real`; `b:real`; `&0`] IVT) THEN
REWRITE_TAC[POLY_CONT] THEN
EVERY_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_LT_IMP_LE th]) THEN
DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[REAL_LT_LE] THEN
CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN
FIRST_ASSUM SUBST_ALL_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[REAL_LT_REFL]) THEN
FIRST_ASSUM CONTR_TAC);;
let POLY_IVT_NEG = prove
(`!p a b. a < b /\ poly p a > &0 /\ poly p b < &0
==> ?x. a < x /\ x < b /\ (poly p x = &0)`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `poly_neg p` POLY_IVT_POS) THEN
REWRITE_TAC[POLY_NEG;
REAL_ARITH `(--x < &0 <=> x > &0) /\ (--x > &0 <=> x < &0)`] THEN
DISCH_THEN(MP_TAC o SPECL [`a:real`; `b:real`]) THEN
ASM_REWRITE_TAC[REAL_ARITH `(--x = &0) <=> (x = &0)`]);;
let POLY_MVT = prove
(`!p a b. a < b ==>
?x. a < x /\ x < b /\
(poly p b - poly p a = (b - a) * poly (diff p) x)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`poly p`; `a:real`; `b:real`] MVT) THEN
ASM_REWRITE_TAC[CONV_RULE(DEPTH_CONV ETA_CONV) (SPEC_ALL POLY_CONT);
CONV_RULE(DEPTH_CONV ETA_CONV) (SPEC_ALL POLY_DIFFERENTIABLE)] THEN
DISCH_THEN(X_CHOOSE_THEN `l:real` MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[] THEN
AP_TERM_TAC THEN MATCH_MP_TAC DIFF_UNIQ THEN
EXISTS_TAC `poly p` THEN EXISTS_TAC `x:real` THEN
ASM_REWRITE_TAC[CONV_RULE(DEPTH_CONV ETA_CONV) (SPEC_ALL POLY_DIFF)]);;
let POLY_MVT_ADD = prove
(`!p a x. ?y. abs(y) <= abs(x) /\
(poly p (a + x) = poly p a + x * poly (diff p) (a + y))`,
REPEAT GEN_TAC THEN
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC `x:real` REAL_LT_NEGTOTAL) THENL
[EXISTS_TAC `&0` THEN
ASM_REWRITE_TAC[REAL_LE_REFL; REAL_ADD_RID; REAL_MUL_LZERO];
MP_TAC(SPECL [`p:real list`; `a:real`; `a + x`] POLY_MVT) THEN
ASM_REWRITE_TAC[REAL_LT_ADDR] THEN
DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN
REWRITE_TAC[REAL_ARITH `(x - y = ((a + b) - a) * z) <=>
(x = y + b * z)`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[REAL_EQ_ADD_LCANCEL] THEN
EXISTS_TAC `z - a` THEN REWRITE_TAC[REAL_ARITH `x + (y - x) = y`] THEN
MAP_EVERY UNDISCH_TAC [`&0 < x`; `a < z`; `z < a + x`] THEN
REAL_ARITH_TAC;
MP_TAC(SPECL [`p:real list`; `a + x`; `a:real`] POLY_MVT) THEN
ASM_REWRITE_TAC[REAL_ARITH `a + x < a <=> &0 < --x`] THEN
DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN
REWRITE_TAC[REAL_ARITH `(x - y = (a - (a + b)) * z) <=>
(x = y + b * --z)`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[REAL_EQ_ADD_LCANCEL] THEN
EXISTS_TAC `z - a` THEN REWRITE_TAC[REAL_ARITH `x + (y - x) = y`] THEN
MAP_EVERY UNDISCH_TAC [`&0 < --x`; `a + x < z`; `z < a`] THEN
REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Lemmas. *)
(* ------------------------------------------------------------------------- *)
let POLY_ADD_RZERO = prove
(`!p. poly (p ++ []) = poly p`,
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; poly; REAL_ADD_RID]);;
let POLY_MUL_ASSOC = prove
(`!p q r. poly (p ** (q ** r)) = poly ((p ** q) ** r)`,
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; REAL_MUL_ASSOC]);;
let POLY_EXP_ADD = prove
(`!d n p. poly(p exp (n + d)) = poly(p exp n ** p exp d)`,
REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[POLY_MUL; ADD_CLAUSES; poly_exp; poly] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Lemmas for derivatives. *)
(* ------------------------------------------------------------------------- *)
let POLY_DIFF_AUX_ADD = prove
(`!p1 p2 n. poly (poly_diff_aux n (p1 ++ p2)) =
poly (poly_diff_aux n p1 ++ poly_diff_aux n p2)`,
REPEAT(LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff_aux; poly_add]) THEN
ASM_REWRITE_TAC[poly_diff_aux; FUN_EQ_THM; poly; NOT_CONS_NIL; HD; TL] THEN
REAL_ARITH_TAC);;
let POLY_DIFF_AUX_CMUL = prove
(`!p c n. poly (poly_diff_aux n (c ## p)) =
poly (c ## poly_diff_aux n p)`,
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[FUN_EQ_THM; poly; poly_diff_aux; poly_cmul; REAL_MUL_AC]);;
let POLY_DIFF_AUX_NEG = prove
(`!p n. poly (poly_diff_aux n (neg p)) =
poly (neg (poly_diff_aux n p))`,
REWRITE_TAC[poly_neg; POLY_DIFF_AUX_CMUL]);;
let POLY_DIFF_AUX_MUL_LEMMA = prove
(`!p n. poly (poly_diff_aux (SUC n) p) = poly (poly_diff_aux n p ++ p)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff_aux; poly_add; NOT_CONS_NIL] THEN
ASM_REWRITE_TAC[HD; TL; poly; FUN_EQ_THM] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_ADD_RDISTRIB; REAL_MUL_LID]);;
(* ------------------------------------------------------------------------- *)
(* Final results for derivatives. *)
(* ------------------------------------------------------------------------- *)
let POLY_DIFF_ADD = prove
(`!p1 p2. poly (diff (p1 ++ p2)) =
poly (diff p1 ++ diff p2)`,
REPEAT LIST_INDUCT_TAC THEN
REWRITE_TAC[poly_add; poly_diff; NOT_CONS_NIL; POLY_ADD_RZERO] THEN
ASM_REWRITE_TAC[HD; TL; POLY_DIFF_AUX_ADD]);;
let POLY_DIFF_CMUL = prove
(`!p c. poly (diff (c ## p)) = poly (c ## diff p)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff; poly_cmul] THEN
REWRITE_TAC[NOT_CONS_NIL; HD; TL; POLY_DIFF_AUX_CMUL]);;
let POLY_DIFF_NEG = prove
(`!p. poly (diff (neg p)) = poly (neg (diff p))`,
REWRITE_TAC[poly_neg; POLY_DIFF_CMUL]);;
let POLY_DIFF_MUL_LEMMA = prove
(`!t h. poly (diff (CONS h t)) =
poly (CONS (&0) (diff t) ++ t)`,
REWRITE_TAC[poly_diff; NOT_CONS_NIL] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff_aux; NOT_CONS_NIL; HD; TL] THENL
[REWRITE_TAC[FUN_EQ_THM; poly; poly_add; REAL_MUL_RZERO; REAL_ADD_LID];
REWRITE_TAC[FUN_EQ_THM; poly; POLY_DIFF_AUX_MUL_LEMMA; POLY_ADD] THEN
REAL_ARITH_TAC]);;
let POLY_DIFF_MUL = prove
(`!p1 p2. poly (diff (p1 ** p2)) =
poly (p1 ** diff p2 ++ diff p1 ** p2)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_mul] THENL
[REWRITE_TAC[poly_diff; poly_add; poly_mul]; ALL_TAC] THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[POLY_DIFF_CLAUSES] THEN
REWRITE_TAC[poly_add; poly_mul; POLY_ADD_RZERO; POLY_DIFF_CMUL];
ALL_TAC] THEN
REWRITE_TAC[FUN_EQ_THM; POLY_DIFF_ADD; POLY_ADD] THEN
REWRITE_TAC[poly; POLY_ADD; POLY_DIFF_MUL_LEMMA; POLY_MUL] THEN
ASM_REWRITE_TAC[POLY_DIFF_CMUL; POLY_ADD; POLY_MUL] THEN
REAL_ARITH_TAC);;
let POLY_DIFF_EXP = prove
(`!p n. poly (diff (p exp (SUC n))) =
poly ((&(SUC n) ## (p exp n)) ** diff p)`,
GEN_TAC THEN INDUCT_TAC THEN ONCE_REWRITE_TAC[poly_exp] THENL
[REWRITE_TAC[poly_exp; POLY_DIFF_MUL] THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_ADD; POLY_CMUL] THEN
REWRITE_TAC[poly; POLY_DIFF_CLAUSES; ADD1; ADD_CLAUSES] THEN
REAL_ARITH_TAC;
REWRITE_TAC[POLY_DIFF_MUL] THEN
ASM_REWRITE_TAC[POLY_MUL; POLY_ADD; FUN_EQ_THM; POLY_CMUL] THEN
REWRITE_TAC[poly_exp; POLY_MUL] THEN
REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN
REAL_ARITH_TAC]);;
let POLY_DIFF_EXP_PRIME = prove
(`!n a. poly (diff ([--a; &1] exp (SUC n))) =
poly (&(SUC n) ## ([--a; &1] exp n))`,
REPEAT GEN_TAC THEN REWRITE_TAC[POLY_DIFF_EXP] THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN
REWRITE_TAC[poly_diff; poly_diff_aux; TL; NOT_CONS_NIL] THEN
REWRITE_TAC[poly] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Key property that f(a) = 0 ==> (x - a) divides p(x). Very delicate! *)
(* ------------------------------------------------------------------------- *)
let POLY_LINEAR_REM = prove
(`!t h. ?q r. CONS h t = [r] ++ [--a; &1] ** q`,
LIST_INDUCT_TAC THEN REWRITE_TAC[] THENL
[GEN_TAC THEN EXISTS_TAC `[]:real list` THEN
EXISTS_TAC `h:real` THEN
REWRITE_TAC[poly_add; poly_mul; poly_cmul; NOT_CONS_NIL] THEN
REWRITE_TAC[HD; TL; REAL_ADD_RID];
X_GEN_TAC `k:real` THEN POP_ASSUM(STRIP_ASSUME_TAC o SPEC `h:real`) THEN
EXISTS_TAC `CONS (r:real) q` THEN EXISTS_TAC `r * a + k` THEN
ASM_REWRITE_TAC[POLY_ADD_CLAUSES; POLY_MUL_CLAUSES; poly_cmul] THEN
REWRITE_TAC[CONS_11] THEN CONJ_TAC THENL
[REAL_ARITH_TAC; ALL_TAC] THEN
SPEC_TAC(`q:real list`,`q:real list`) THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC[POLY_ADD_CLAUSES; POLY_MUL_CLAUSES; poly_cmul] THEN
REWRITE_TAC[REAL_ADD_RID; REAL_MUL_LID] THEN
REWRITE_TAC[REAL_ADD_AC]]);;
let POLY_LINEAR_DIVIDES = prove
(`!a p. (poly p a = &0) <=> (p = []) \/ ?q. p = [--a; &1] ** q`,
GEN_TAC THEN LIST_INDUCT_TAC THENL
[REWRITE_TAC[poly]; ALL_TAC] THEN
EQ_TAC THEN STRIP_TAC THENL
[DISJ2_TAC THEN STRIP_ASSUME_TAC(SPEC_ALL POLY_LINEAR_REM) THEN
EXISTS_TAC `q:real list` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `r = &0` SUBST_ALL_TAC THENL
[UNDISCH_TAC `poly (CONS h t) a = &0` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[POLY_ADD; POLY_MUL] THEN
REWRITE_TAC[poly; REAL_MUL_RZERO; REAL_ADD_RID; REAL_MUL_RID] THEN
REWRITE_TAC[REAL_ARITH `--a + a = &0`] THEN REAL_ARITH_TAC;
REWRITE_TAC[poly_mul] THEN REWRITE_TAC[NOT_CONS_NIL] THEN
SPEC_TAC(`q:real list`,`q:real list`) THEN LIST_INDUCT_TAC THENL
[REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL; HD; TL; REAL_ADD_LID];
REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL; HD; TL; REAL_ADD_LID]]];
ASM_REWRITE_TAC[] THEN REWRITE_TAC[poly];
ASM_REWRITE_TAC[] THEN REWRITE_TAC[poly] THEN
REWRITE_TAC[POLY_MUL] THEN REWRITE_TAC[poly] THEN
REWRITE_TAC[poly; REAL_MUL_RZERO; REAL_ADD_RID; REAL_MUL_RID] THEN
REWRITE_TAC[REAL_ARITH `--a + a = &0`] THEN REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Thanks to the finesse of the above, we can use length rather than degree. *)
(* ------------------------------------------------------------------------- *)
let POLY_LENGTH_MUL = prove
(`!q. LENGTH([--a; &1] ** q) = SUC(LENGTH q)`,
let lemma = prove
(`!p h k a. LENGTH (k ## p ++ CONS h (a ## p)) = SUC(LENGTH p)`,
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[poly_cmul; POLY_ADD_CLAUSES; LENGTH]) in
REWRITE_TAC[poly_mul; NOT_CONS_NIL; lemma]);;
(* ------------------------------------------------------------------------- *)
(* Thus a nontrivial polynomial of degree n has no more than n roots. *)
(* ------------------------------------------------------------------------- *)
let POLY_ROOTS_INDEX_LEMMA = prove
(`!n. !p. ~(poly p = poly []) /\ (LENGTH p = n)
==> ?i. !x. (poly p (x) = &0) ==> ?m. m <= n /\ (x = i m)`,
INDUCT_TAC THENL
[REWRITE_TAC[LENGTH_EQ_NIL] THEN MESON_TAC[];
REPEAT STRIP_TAC THEN ASM_CASES_TAC `?a. poly p a = &0` THENL
[UNDISCH_TAC `?a. poly p a = &0` THEN DISCH_THEN(CHOOSE_THEN MP_TAC) THEN
GEN_REWRITE_TAC LAND_CONV [POLY_LINEAR_DIVIDES] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `q:real list` SUBST_ALL_TAC) THEN
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
UNDISCH_TAC `~(poly ([-- a; &1] ** q) = poly [])` THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[POLY_LENGTH_MUL; SUC_INJ] THEN
DISCH_TAC THEN ASM_CASES_TAC `poly q = poly []` THENL
[ASM_REWRITE_TAC[POLY_MUL; poly; REAL_MUL_RZERO; FUN_EQ_THM];
DISCH_THEN(K ALL_TAC)] THEN
DISCH_THEN(MP_TAC o SPEC `q:real list`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_TAC `i:num->real`) THEN
EXISTS_TAC `\m. if m = SUC n then (a:real) else i m` THEN
REWRITE_TAC[POLY_MUL; LE; REAL_ENTIRE] THEN
X_GEN_TAC `x:real` THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[DISCH_THEN(fun th -> EXISTS_TAC `SUC n` THEN MP_TAC th) THEN
REWRITE_TAC[poly] THEN REAL_ARITH_TAC;
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `m:num <= n` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC];
UNDISCH_TAC `~(?a. poly p a = &0)` THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[]]]);;
let POLY_ROOTS_INDEX_LENGTH = prove
(`!p. ~(poly p = poly [])
==> ?i. !x. (poly p(x) = &0) ==> ?n. n <= LENGTH p /\ (x = i n)`,
MESON_TAC[POLY_ROOTS_INDEX_LEMMA]);;
let POLY_ROOTS_FINITE_LEMMA = prove
(`!p. ~(poly p = poly [])
==> ?N i. !x. (poly p(x) = &0) ==> ?n:num. n < N /\ (x = i n)`,
MESON_TAC[POLY_ROOTS_INDEX_LENGTH; LT_SUC_LE]);;
let FINITE_LEMMA = prove
(`!i N P. (!x. P x ==> ?n:num. n < N /\ (x = i n))
==> ?a. !x. P x ==> x < a`,
GEN_TAC THEN ONCE_REWRITE_TAC[RIGHT_IMP_EXISTS_THM] THEN INDUCT_TAC THENL
[REWRITE_TAC[LT] THEN MESON_TAC[]; ALL_TAC] THEN
X_GEN_TAC `P:real->bool` THEN
POP_ASSUM(MP_TAC o SPEC `\z. P z /\ ~(z = (i:num->real) N)`) THEN
DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN
EXISTS_TAC `abs(a) + abs(i(N:num)) + &1` THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[LT] THEN
MP_TAC(REAL_ARITH `!x v. x < abs(v) + abs(x) + &1`) THEN
MP_TAC(REAL_ARITH `!u v x. x < v ==> x < abs(v) + abs(u) + &1`) THEN
MESON_TAC[]);;
let POLY_ROOTS_FINITE = prove
(`!p. ~(poly p = poly []) <=>
?N i. !x. (poly p(x) = &0) ==> ?n:num. n < N /\ (x = i n)`,
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE_LEMMA] THEN
REWRITE_TAC[FUN_EQ_THM; LEFT_IMP_EXISTS_THM; NOT_FORALL_THM; poly] THEN
MP_TAC(GENL [`i:num->real`; `N:num`]
(SPECL [`i:num->real`; `N:num`; `\x. poly p x = &0`] FINITE_LEMMA)) THEN
REWRITE_TAC[] THEN MESON_TAC[REAL_LT_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Hence get entirety and cancellation for polynomials. *)
(* ------------------------------------------------------------------------- *)
let POLY_ENTIRE_LEMMA = prove
(`!p q. ~(poly p = poly []) /\ ~(poly q = poly [])
==> ~(poly (p ** q) = poly [])`,
REPEAT GEN_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE] THEN
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `N2:num` (X_CHOOSE_TAC `i2:num->real`)) THEN
DISCH_THEN(X_CHOOSE_THEN `N1:num` (X_CHOOSE_TAC `i1:num->real`)) THEN
EXISTS_TAC `N1 + N2:num` THEN
EXISTS_TAC `\n:num. if n < N1 then i1(n):real else i2(n - N1)` THEN
X_GEN_TAC `x:real` THEN REWRITE_TAC[REAL_ENTIRE; POLY_MUL] THEN
DISCH_THEN(DISJ_CASES_THEN (ANTE_RES_THEN (X_CHOOSE_TAC `n:num`))) THENL
[EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN ARITH_TAC;
EXISTS_TAC `N1 + n:num` THEN ASM_REWRITE_TAC[LT_ADD_LCANCEL] THEN
REWRITE_TAC[ARITH_RULE `~(m + n < m:num)`] THEN
AP_TERM_TAC THEN ARITH_TAC]);;
let POLY_ENTIRE = prove
(`!p q. (poly (p ** q) = poly []) <=>
(poly p = poly []) \/ (poly q = poly [])`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[MESON_TAC[POLY_ENTIRE_LEMMA];
REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_MUL_LZERO; poly]]);;
let POLY_MUL_LCANCEL = prove
(`!p q r. (poly (p ** q) = poly (p ** r)) <=>
(poly p = poly []) \/ (poly q = poly r)`,
let lemma1 = prove
(`!p q. (poly (p ++ neg q) = poly []) <=> (poly p = poly q)`,
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_NEG; poly] THEN
REWRITE_TAC[REAL_ARITH `(p + --q = &0) <=> (p = q)`]) in
let lemma2 = prove
(`!p q r. poly (p ** q ++ neg(p ** r)) = poly (p ** (q ++ neg(r)))`,
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_NEG; POLY_MUL] THEN
REAL_ARITH_TAC) in
ONCE_REWRITE_TAC[GSYM lemma1] THEN
REWRITE_TAC[lemma2; POLY_ENTIRE] THEN
REWRITE_TAC[lemma1]);;
let POLY_EXP_EQ_0 = prove
(`!p n. (poly (p exp n) = poly []) <=> (poly p = poly []) /\ ~(n = 0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN
REWRITE_TAC[LEFT_AND_FORALL_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
REWRITE_TAC[poly_exp; poly; REAL_MUL_RZERO; REAL_ADD_RID;
REAL_OF_NUM_EQ; ARITH; NOT_SUC] THEN
ASM_REWRITE_TAC[POLY_MUL; poly; REAL_ENTIRE] THEN
CONV_TAC TAUT);;
let POLY_PRIME_EQ_0 = prove
(`!a. ~(poly [a ; &1] = poly [])`,
GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN
DISCH_THEN(MP_TAC o SPEC `&1 - a`) THEN
REAL_ARITH_TAC);;
let POLY_EXP_PRIME_EQ_0 = prove
(`!a n. ~(poly ([a ; &1] exp n) = poly [])`,
MESON_TAC[POLY_EXP_EQ_0; POLY_PRIME_EQ_0]);;
(* ------------------------------------------------------------------------- *)
(* Can also prove a more "constructive" notion of polynomial being trivial. *)
(* ------------------------------------------------------------------------- *)
let POLY_ZERO_LEMMA = prove
(`!h t. (poly (CONS h t) = poly []) ==> (h = &0) /\ (poly t = poly [])`,
let lemma = REWRITE_RULE[FUN_EQ_THM; poly] POLY_ROOTS_FINITE in
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN
ASM_CASES_TAC `h = &0` THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[REAL_ADD_LID];
DISCH_THEN(MP_TAC o SPEC `&0`) THEN
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC] THEN
CONV_TAC CONTRAPOS_CONV THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[lemma]) THEN
DISCH_THEN(X_CHOOSE_THEN `N:num` (X_CHOOSE_TAC `i:num->real`)) THEN
MP_TAC(SPECL [`i:num->real`; `N:num`; `\x. poly t x = &0`] FINITE_LEMMA) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN
DISCH_THEN(MP_TAC o SPEC `abs(a) + &1`) THEN
REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM] THEN CONJ_TAC THENL
[REAL_ARITH_TAC;
DISCH_THEN(MP_TAC o MATCH_MP (ASSUME `!x. (poly t x = &0) ==> x < a`)) THEN
REAL_ARITH_TAC]);;
let POLY_ZERO = prove
(`!p. (poly p = poly []) <=> ALL (\c. c = &0) p`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o MATCH_MP POLY_ZERO_LEMMA) THEN ASM_REWRITE_TAC[];
POP_ASSUM(SUBST1_TAC o SYM) THEN STRIP_TAC THEN
ASM_REWRITE_TAC[FUN_EQ_THM; poly] THEN REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Useful triviality. *)
(* ------------------------------------------------------------------------- *)
let POLY_DIFF_AUX_ISZERO = prove
(`!p n. ALL (\c. c = &0) (poly_diff_aux (SUC n) p) <=>
ALL (\c. c = &0) p`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC
[ALL; poly_diff_aux; REAL_ENTIRE; REAL_OF_NUM_EQ; NOT_SUC]);;
let POLY_DIFF_ISZERO = prove
(`!p. (poly (diff p) = poly []) ==> ?h. poly p = poly [h]`,
REWRITE_TAC[POLY_ZERO] THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[POLY_DIFF_CLAUSES; ALL] THENL
[EXISTS_TAC `&0` THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN REAL_ARITH_TAC;
REWRITE_TAC[num_CONV `1`; POLY_DIFF_AUX_ISZERO] THEN
REWRITE_TAC[GSYM POLY_ZERO] THEN DISCH_TAC THEN
EXISTS_TAC `h:real` THEN ASM_REWRITE_TAC[poly; FUN_EQ_THM]]);;
let POLY_DIFF_ZERO = prove
(`!p. (poly p = poly []) ==> (poly (diff p) = poly [])`,
REWRITE_TAC[POLY_ZERO] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff; NOT_CONS_NIL] THEN
REWRITE_TAC[ALL; TL] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SPEC_TAC(`1`,`n:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
SPEC_TAC(`t:real list`,`t:real list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; poly_diff_aux] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RZERO] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;
let POLY_DIFF_WELLDEF = prove
(`!p q. (poly p = poly q) ==> (poly (diff p) = poly (diff q))`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `p ++ neg(q)` POLY_DIFF_ZERO) THEN
REWRITE_TAC[FUN_EQ_THM; POLY_DIFF_ADD; POLY_DIFF_NEG; POLY_ADD] THEN
ASM_REWRITE_TAC[POLY_NEG; poly; REAL_ARITH `a + --a = &0`] THEN
REWRITE_TAC[REAL_ARITH `(a + --b = &0) <=> (a = b)`]);;
(* ------------------------------------------------------------------------- *)
(* Basics of divisibility. *)
(* ------------------------------------------------------------------------- *)
let divides = new_definition
`p1 divides p2 <=> ?q. poly p2 = poly (p1 ** q)`;;
let POLY_PRIMES = prove
(`!a p q. [a; &1] divides (p ** q) <=>
[a; &1] divides p \/ [a; &1] divides q`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides; POLY_MUL; FUN_EQ_THM; poly] THEN
REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_RID; REAL_MUL_RID] THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `r:real list` (MP_TAC o SPEC `--a`)) THEN
REWRITE_TAC[REAL_ENTIRE; GSYM real_sub; REAL_SUB_REFL; REAL_MUL_LZERO] THEN
DISCH_THEN DISJ_CASES_TAC THENL [DISJ1_TAC; DISJ2_TAC] THEN
(POP_ASSUM(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN
REWRITE_TAC[REAL_NEG_NEG] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC
(X_CHOOSE_THEN `s:real list` SUBST_ALL_TAC)) THENL
[EXISTS_TAC `[]:real list` THEN REWRITE_TAC[poly; REAL_MUL_RZERO];
EXISTS_TAC `s:real list` THEN GEN_TAC THEN
REWRITE_TAC[POLY_MUL; poly] THEN REAL_ARITH_TAC]);
DISCH_THEN(DISJ_CASES_THEN(X_CHOOSE_TAC `s:real list`)) THEN
ASM_REWRITE_TAC[] THENL
[EXISTS_TAC `s ** q`; EXISTS_TAC `p ** s`] THEN
GEN_TAC THEN REWRITE_TAC[POLY_MUL] THEN REAL_ARITH_TAC]);;
let POLY_DIVIDES_REFL = prove
(`!p. p divides p`,
GEN_TAC THEN REWRITE_TAC[divides] THEN EXISTS_TAC `[&1]` THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly] THEN REAL_ARITH_TAC);;
let POLY_DIVIDES_TRANS = prove
(`!p q r. p divides q /\ q divides r ==> p divides r`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `s:real list` ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `t:real list` ASSUME_TAC) THEN
EXISTS_TAC `t ** s` THEN
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; REAL_MUL_ASSOC]);;
let POLY_DIVIDES_EXP = prove
(`!p m n. m <= n ==> (p exp m) divides (p exp n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN
REWRITE_TAC[ADD_CLAUSES; POLY_DIVIDES_REFL] THEN
MATCH_MP_TAC POLY_DIVIDES_TRANS THEN
EXISTS_TAC `p exp (m + d)` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[divides] THEN EXISTS_TAC `p:real list` THEN
REWRITE_TAC[poly_exp; FUN_EQ_THM; POLY_MUL] THEN
REAL_ARITH_TAC);;
let POLY_EXP_DIVIDES = prove
(`!p q m n. (p exp n) divides q /\ m <= n ==> (p exp m) divides q`,
MESON_TAC[POLY_DIVIDES_TRANS; POLY_DIVIDES_EXP]);;
let POLY_DIVIDES_ADD = prove
(`!p q r. p divides q /\ p divides r ==> p divides (q ++ r)`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `s:real list` ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `t:real list` ASSUME_TAC) THEN
EXISTS_TAC `t ++ s` THEN
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_MUL] THEN
REAL_ARITH_TAC);;
let POLY_DIVIDES_SUB = prove
(`!p q r. p divides q /\ p divides (q ++ r) ==> p divides r`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `s:real list` ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `t:real list` ASSUME_TAC) THEN
EXISTS_TAC `s ++ neg(t)` THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_MUL; POLY_NEG] THEN
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
REWRITE_TAC[REAL_ADD_LDISTRIB; REAL_MUL_RNEG] THEN
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let POLY_DIVIDES_SUB2 = prove
(`!p q r. p divides r /\ p divides (q ++ r) ==> p divides q`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC POLY_DIVIDES_SUB THEN
EXISTS_TAC `r:real list` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `p divides (q ++ r)` THEN
REWRITE_TAC[divides; POLY_ADD; FUN_EQ_THM; POLY_MUL] THEN
DISCH_THEN(X_CHOOSE_TAC `s:real list`) THEN
EXISTS_TAC `s:real list` THEN
X_GEN_TAC `x:real` THEN POP_ASSUM(MP_TAC o SPEC `x:real`) THEN
REAL_ARITH_TAC);;
let POLY_DIVIDES_ZERO = prove
(`!p q. (poly p = poly []) ==> q divides p`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[divides] THEN
EXISTS_TAC `[]:real list` THEN
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; REAL_MUL_RZERO]);;
(* ------------------------------------------------------------------------- *)
(* At last, we can consider the order of a root. *)
(* ------------------------------------------------------------------------- *)
let POLY_ORDER_EXISTS = prove
(`!a d. !p. (LENGTH p = d) /\ ~(poly p = poly [])
==> ?n. ([--a; &1] exp n) divides p /\
~(([--a; &1] exp (SUC n)) divides p)`,
GEN_TAC THEN
(STRIP_ASSUME_TAC o prove_recursive_functions_exist num_RECURSION)
`(!p q. mulexp 0 p q = q) /\
(!p q n. mulexp (SUC n) p q = p ** (mulexp n p q))` THEN
SUBGOAL_THEN
`!d. !p. (LENGTH p = d) /\ ~(poly p = poly [])
==> ?n q. (p = mulexp (n:num) [--a; &1] q) /\
~(poly q a = &0)`
MP_TAC THENL
[INDUCT_TAC THENL
[REWRITE_TAC[LENGTH_EQ_NIL] THEN MESON_TAC[]; ALL_TAC] THEN
X_GEN_TAC `p:real list` THEN
ASM_CASES_TAC `poly p a = &0` THENL
[STRIP_TAC THEN UNDISCH_TAC `poly p a = &0` THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `q:real list` SUBST_ALL_TAC) THEN
UNDISCH_TAC
`!p. (LENGTH p = d) /\ ~(poly p = poly [])
==> ?n q. (p = mulexp (n:num) [--a; &1] q) /\
~(poly q a = &0)` THEN
DISCH_THEN(MP_TAC o SPEC `q:real list`) THEN
RULE_ASSUM_TAC(REWRITE_RULE[POLY_LENGTH_MUL; POLY_ENTIRE;
DE_MORGAN_THM; SUC_INJ]) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `n:num`
(X_CHOOSE_THEN `s:real list` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `SUC n` THEN EXISTS_TAC `s:real list` THEN
ASM_REWRITE_TAC[];
STRIP_TAC THEN EXISTS_TAC `0` THEN EXISTS_TAC `p:real list` THEN
ASM_REWRITE_TAC[]];
DISCH_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `n:num`
(X_CHOOSE_THEN `s:real list` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[divides] THEN CONJ_TAC THENL
[EXISTS_TAC `s:real list` THEN
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[poly_exp; FUN_EQ_THM; POLY_MUL; poly] THEN
REAL_ARITH_TAC;
DISCH_THEN(X_CHOOSE_THEN `r:real list` MP_TAC) THEN
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[] THENL
[UNDISCH_TAC `~(poly s a = &0)` THEN CONV_TAC CONTRAPOS_CONV THEN
REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[poly; poly_exp; POLY_MUL] THEN REAL_ARITH_TAC;
REWRITE_TAC[] THEN ONCE_ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[poly_exp] THEN
REWRITE_TAC[GSYM POLY_MUL_ASSOC; POLY_MUL_LCANCEL] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THENL
[REWRITE_TAC[FUN_EQ_THM] THEN
DISCH_THEN(MP_TAC o SPEC `a + &1`) THEN
REWRITE_TAC[poly] THEN REAL_ARITH_TAC;
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[]]]]]);;
let POLY_ORDER = prove
(`!p a. ~(poly p = poly [])
==> ?!n. ([--a; &1] exp n) divides p /\
~(([--a; &1] exp (SUC n)) divides p)`,
MESON_TAC[POLY_ORDER_EXISTS; POLY_EXP_DIVIDES; LE_SUC_LT; LT_CASES]);;
(* ------------------------------------------------------------------------- *)
(* Definition of order. *)
(* ------------------------------------------------------------------------- *)
let order = new_definition
`order a p = @n. ([--a; &1] exp n) divides p /\
~(([--a; &1] exp (SUC n)) divides p)`;;
let ORDER = prove
(`!p a n. ([--a; &1] exp n) divides p /\
~(([--a; &1] exp (SUC n)) divides p) <=>
(n = order a p) /\
~(poly p = poly [])`,
REPEAT GEN_TAC THEN REWRITE_TAC[order] THEN
EQ_TAC THEN STRIP_TAC THENL
[SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL
[FIRST_ASSUM(UNDISCH_TAC o check is_neg o concl) THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[divides] THEN
DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `[]:real list` THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; REAL_MUL_RZERO];
ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[]];
ONCE_ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV] THEN
ASM_MESON_TAC[POLY_ORDER]);;
let ORDER_THM = prove
(`!p a. ~(poly p = poly [])
==> ([--a; &1] exp (order a p)) divides p /\
~(([--a; &1] exp (SUC(order a p))) divides p)`,
MESON_TAC[ORDER]);;
let ORDER_UNIQUE = prove
(`!p a n. ~(poly p = poly []) /\
([--a; &1] exp n) divides p /\
~(([--a; &1] exp (SUC n)) divides p)
==> (n = order a p)`,
MESON_TAC[ORDER]);;
let ORDER_POLY = prove
(`!p q a. (poly p = poly q) ==> (order a p = order a q)`,
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[order; divides; FUN_EQ_THM; POLY_MUL]);;
let ORDER_ROOT = prove
(`!p a. (poly p a = &0) <=> (poly p = poly []) \/ ~(order a p = 0)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN
ASM_REWRITE_TAC[poly] THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN
ASM_CASES_TAC `p:real list = []` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `q:real list` SUBST_ALL_TAC) THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `a:real` o MATCH_MP ORDER_THM) THEN
ASM_REWRITE_TAC[poly_exp; DE_MORGAN_THM] THEN DISJ2_TAC THEN
REWRITE_TAC[divides] THEN EXISTS_TAC `q:real list` THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly] THEN REAL_ARITH_TAC;
DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `a:real` o MATCH_MP ORDER_THM) THEN
UNDISCH_TAC `~(order a p = 0)` THEN
SPEC_TAC(`order a p`,`n:num`) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[poly_exp; NOT_SUC] THEN
DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `s:real list` SUBST1_TAC) THEN
REWRITE_TAC[POLY_MUL; poly] THEN REAL_ARITH_TAC]);;
let ORDER_DIVIDES = prove
(`!p a n. ([--a; &1] exp n) divides p <=>
(poly p = poly []) \/ n <= order a p`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN
ASM_REWRITE_TAC[] THENL
[ASM_REWRITE_TAC[divides] THEN EXISTS_TAC `[]:real list` THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; REAL_MUL_RZERO];
ASM_MESON_TAC[ORDER_THM; POLY_EXP_DIVIDES; NOT_LE; LE_SUC_LT]]);;
let ORDER_DECOMP = prove
(`!p a. ~(poly p = poly [])
==> ?q. (poly p = poly (([--a; &1] exp (order a p)) ** q)) /\
~([--a; &1] divides q)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORDER_THM) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC o SPEC `a:real`) THEN
DISCH_THEN(X_CHOOSE_TAC `q:real list` o REWRITE_RULE[divides]) THEN
EXISTS_TAC `q:real list` THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_TAC `r: real list` o REWRITE_RULE[divides]) THEN
UNDISCH_TAC `~([-- a; &1] exp SUC (order a p) divides p)` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[divides] THEN
EXISTS_TAC `r:real list` THEN
ASM_REWRITE_TAC[POLY_MUL; FUN_EQ_THM; poly_exp] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Important composition properties of orders. *)
(* ------------------------------------------------------------------------- *)
let ORDER_MUL = prove
(`!a p q. ~(poly (p ** q) = poly []) ==>
(order a (p ** q) = order a p + order a q)`,
REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
REWRITE_TAC[POLY_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN
SUBGOAL_THEN `(order a p + order a q = order a (p ** q)) /\
~(poly (p ** q) = poly [])`
MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
REWRITE_TAC[GSYM ORDER] THEN CONJ_TAC THENL
[MP_TAC(CONJUNCT1 (SPEC `a:real`
(MATCH_MP ORDER_THM (ASSUME `~(poly p = poly [])`)))) THEN
DISCH_THEN(X_CHOOSE_TAC `r: real list` o REWRITE_RULE[divides]) THEN
MP_TAC(CONJUNCT1 (SPEC `a:real`
(MATCH_MP ORDER_THM (ASSUME `~(poly q = poly [])`)))) THEN
DISCH_THEN(X_CHOOSE_TAC `s: real list` o REWRITE_RULE[divides]) THEN
REWRITE_TAC[divides; FUN_EQ_THM] THEN EXISTS_TAC `s ** r` THEN
ASM_REWRITE_TAC[POLY_MUL; POLY_EXP_ADD] THEN REAL_ARITH_TAC;
X_CHOOSE_THEN `r: real list` STRIP_ASSUME_TAC
(SPEC `a:real` (MATCH_MP ORDER_DECOMP (ASSUME `~(poly p = poly [])`))) THEN
X_CHOOSE_THEN `s: real list` STRIP_ASSUME_TAC
(SPEC `a:real` (MATCH_MP ORDER_DECOMP (ASSUME `~(poly q = poly [])`))) THEN
ASM_REWRITE_TAC[divides; FUN_EQ_THM; POLY_EXP_ADD; POLY_MUL; poly_exp] THEN
DISCH_THEN(X_CHOOSE_THEN `t:real list` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `[--a; &1] divides (r ** s)` MP_TAC THENL
[ALL_TAC; ASM_REWRITE_TAC[POLY_PRIMES]] THEN
REWRITE_TAC[divides] THEN EXISTS_TAC `t:real list` THEN
SUBGOAL_THEN `poly ([-- a; &1] exp (order a p) ** r ** s) =
poly ([-- a; &1] exp (order a p) ** ([-- a; &1] ** t))`
MP_TAC THENL
[ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN
SUBGOAL_THEN `poly ([-- a; &1] exp (order a q) **
[-- a; &1] exp (order a p) ** r ** s) =
poly ([-- a; &1] exp (order a q) **
[-- a; &1] exp (order a p) **
[-- a; &1] ** t)`
MP_TAC THENL
[ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_ADD] THEN
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
REWRITE_TAC[REAL_MUL_AC]]);;
let ORDER_DIFF = prove
(`!p a. ~(poly (diff p) = poly []) /\
~(order a p = 0)
==> (order a p = SUC (order a (diff p)))`,
REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN `~(poly p = poly [])` MP_TAC THENL
[ASM_MESON_TAC[POLY_DIFF_ZERO]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `q:real list` MP_TAC o
SPEC `a:real` o MATCH_MP ORDER_DECOMP) THEN
SPEC_TAC(`order a p`,`n:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; SUC_INJ] THEN
STRIP_TAC THEN MATCH_MP_TAC ORDER_UNIQUE THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `!r. r divides (diff p) <=>
r divides (diff ([-- a; &1] exp SUC n ** q))`
(fun th -> REWRITE_TAC[th]) THENL
[GEN_TAC THEN REWRITE_TAC[divides] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP POLY_DIFF_WELLDEF th]);
ALL_TAC] THEN
CONJ_TAC THENL
[REWRITE_TAC[divides; FUN_EQ_THM] THEN
EXISTS_TAC `[--a; &1] ** (diff q) ++ &(SUC n) ## q` THEN
REWRITE_TAC[POLY_DIFF_MUL; POLY_DIFF_EXP_PRIME;
POLY_ADD; POLY_MUL; POLY_CMUL] THEN
REWRITE_TAC[poly_exp; POLY_MUL] THEN REAL_ARITH_TAC;
REWRITE_TAC[FUN_EQ_THM; divides; POLY_DIFF_MUL; POLY_DIFF_EXP_PRIME;
POLY_ADD; POLY_MUL; POLY_CMUL] THEN
DISCH_THEN(X_CHOOSE_THEN `r:real list` ASSUME_TAC) THEN
UNDISCH_TAC `~([-- a; &1] divides q)` THEN
REWRITE_TAC[divides] THEN
EXISTS_TAC `inv(&(SUC n)) ## (r ++ neg(diff q))` THEN
SUBGOAL_THEN
`poly ([--a; &1] exp n ** q) =
poly ([--a; &1] exp n ** ([-- a; &1] ** (inv (&(SUC n)) ##
(r ++ neg (diff q)))))`
MP_TAC THENL
[ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN
REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:real` THEN
SUBGOAL_THEN
`!a b. (&(SUC n) * a = &(SUC n) * b) ==> (a = b)`
MATCH_MP_TAC THENL
[REWRITE_TAC[REAL_EQ_MUL_LCANCEL; REAL_OF_NUM_EQ; NOT_SUC]; ALL_TAC] THEN
REWRITE_TAC[POLY_MUL; POLY_CMUL] THEN
SUBGOAL_THEN `!a b c. &(SUC n) * a * b * inv(&(SUC n)) * c =
a * b * c`
(fun th -> REWRITE_TAC[th]) THENL
[REPEAT GEN_TAC THEN
GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN
GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN
MATCH_MP_TAC REAL_MUL_RINV THEN
REWRITE_TAC[REAL_OF_NUM_EQ; NOT_SUC]; ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o SPEC `x:real`) THEN
REWRITE_TAC[poly_exp; POLY_MUL; POLY_ADD; POLY_NEG] THEN
REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *)
(* ------------------------------------------------------------------------- *)
let POLY_SQUAREFREE_DECOMP_ORDER = prove
(`!p q d e r s.
~(poly (diff p) = poly []) /\
(poly p = poly (q ** d)) /\
(poly (diff p) = poly (e ** d)) /\
(poly d = poly (r ** p ++ s ** diff p))
==> !a. order a q = (if order a p = 0 then 0 else 1)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `order a p = order a q + order a d` MP_TAC THENL
[MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `order a (q ** d)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC ORDER_POLY THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC ORDER_MUL THEN
FIRST_ASSUM(fun th ->
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [SYM th]) THEN
ASM_MESON_TAC[POLY_DIFF_ZERO]]; ALL_TAC] THEN
ASM_CASES_TAC `order a p = 0` THEN ASM_REWRITE_TAC[] THENL
[ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `order a (diff p) =
order a e + order a d` MP_TAC THENL
[MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `order a (e ** d)` THEN
CONJ_TAC THENL
[ASM_MESON_TAC[ORDER_POLY]; ASM_MESON_TAC[ORDER_MUL]]; ALL_TAC] THEN
SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL
[ASM_MESON_TAC[POLY_DIFF_ZERO]; ALL_TAC] THEN
MP_TAC(SPECL [`p:real list`; `a:real`] ORDER_DIFF) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC(AP_TERM `PRE` th)) THEN
REWRITE_TAC[PRE] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN
SUBGOAL_THEN `order a (diff p) <= order a d` MP_TAC THENL
[SUBGOAL_THEN `([--a; &1] exp (order a (diff p))) divides d`
MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[POLY_ENTIRE; ORDER_DIVIDES]] THEN
SUBGOAL_THEN
`([--a; &1] exp (order a (diff p))) divides p /\
([--a; &1] exp (order a (diff p))) divides (diff p)`
MP_TAC THENL
[REWRITE_TAC[ORDER_DIVIDES; LE_REFL] THEN DISJ2_TAC THEN
REWRITE_TAC[ASSUME `order a (diff p) = PRE (order a p)`] THEN
ARITH_TAC;
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN REWRITE_TAC[divides] THEN
REWRITE_TAC[ASSUME `poly d = poly (r ** p ++ s ** diff p)`] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `f:real list` ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `g:real list` ASSUME_TAC) THEN
EXISTS_TAC `r ** g ++ s ** f` THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_ADD] THEN ARITH_TAC];
ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Define being "squarefree" --- NB with respect to real roots only. *)
(* ------------------------------------------------------------------------- *)
let rsquarefree = new_definition
`rsquarefree p <=> ~(poly p = poly []) /\
!a. (order a p = 0) \/ (order a p = 1)`;;
(* ------------------------------------------------------------------------- *)
(* Standard squarefree criterion and rephasing of squarefree decomposition. *)
(* ------------------------------------------------------------------------- *)
let RSQUAREFREE_ROOTS = prove
(`!p. rsquarefree p <=> !a. ~((poly p a = &0) /\ (poly (diff p) a = &0))`,
GEN_TAC THEN REWRITE_TAC[rsquarefree] THEN
ASM_CASES_TAC `poly p = poly []` THEN ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM(SUBST1_TAC o MATCH_MP POLY_DIFF_ZERO) THEN
ASM_REWRITE_TAC[poly; NOT_FORALL_THM];
ASM_CASES_TAC `poly(diff p) = poly []` THEN ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM(X_CHOOSE_THEN `h:real` MP_TAC o
MATCH_MP POLY_DIFF_ISZERO) THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP ORDER_POLY th]) THEN
UNDISCH_TAC `~(poly p = poly [])` THEN ASM_REWRITE_TAC[poly] THEN
REWRITE_TAC[FUN_EQ_THM; poly; REAL_MUL_RZERO; REAL_ADD_RID] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `a:real` THEN DISJ1_TAC THEN
MP_TAC(SPECL [`[h:real]`; `a:real`] ORDER_ROOT) THEN
ASM_REWRITE_TAC[FUN_EQ_THM; poly; REAL_MUL_RZERO; REAL_ADD_RID];
ASM_REWRITE_TAC[ORDER_ROOT; DE_MORGAN_THM; num_CONV `1`] THEN
ASM_MESON_TAC[ORDER_DIFF; SUC_INJ]]]);;
let RSQUAREFREE_DECOMP = prove
(`!p a. rsquarefree p /\ (poly p a = &0)
==> ?q. (poly p = poly ([--a; &1] ** q)) /\
~(poly q a = &0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[rsquarefree] THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP ORDER_DECOMP) THEN
DISCH_THEN(X_CHOOSE_THEN `q:real list` MP_TAC o SPEC `a:real`) THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ORDER_ROOT]) THEN
FIRST_ASSUM(DISJ_CASES_TAC o SPEC `a:real`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[ARITH] THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
EXISTS_TAC `q:real list` THEN CONJ_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN GEN_TAC THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV) [num_CONV `1`] THEN
REWRITE_TAC[poly_exp; POLY_MUL] THEN
REWRITE_TAC[poly] THEN REAL_ARITH_TAC;
DISCH_TAC THEN UNDISCH_TAC `~([-- a; &1] divides q)` THEN
REWRITE_TAC[divides] THEN
UNDISCH_TAC `poly q a = &0` THEN
GEN_REWRITE_TAC LAND_CONV [POLY_LINEAR_DIVIDES] THEN
ASM_CASES_TAC `q:real list = []` THEN ASM_REWRITE_TAC[] THENL
[EXISTS_TAC `[] : real list` THEN REWRITE_TAC[FUN_EQ_THM] THEN
REWRITE_TAC[POLY_MUL; poly; REAL_MUL_RZERO];
MESON_TAC[]]]);;
let POLY_SQUAREFREE_DECOMP = prove
(`!p q d e r s.
~(poly (diff p) = poly []) /\
(poly p = poly (q ** d)) /\
(poly (diff p) = poly (e ** d)) /\
(poly d = poly (r ** p ++ s ** diff p))
==> rsquarefree q /\ (!a. (poly q a = &0) <=> (poly p a = &0))`,
REPEAT GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN
ASSUME_TAC(MATCH_MP POLY_SQUAREFREE_DECOMP_ORDER th)) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL
[ASM_MESON_TAC[POLY_DIFF_ZERO]; ALL_TAC] THEN
DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN
UNDISCH_TAC `~(poly p = poly [])` THEN
DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC th) THEN
DISCH_THEN(fun th -> ASM_REWRITE_TAC[] THEN ASSUME_TAC th) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[POLY_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN
UNDISCH_TAC `poly p = poly (q ** d)` THEN
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
ASM_REWRITE_TAC[rsquarefree; ORDER_ROOT] THEN
CONJ_TAC THEN GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH]);;
(* ------------------------------------------------------------------------- *)
(* Normalization of a polynomial. *)
(* ------------------------------------------------------------------------- *)
let normalize = new_recursive_definition list_RECURSION
`(normalize [] = []) /\
(normalize (CONS h t) =
if normalize t = [] then if h = &0 then [] else [h]
else CONS h (normalize t))`;;
let POLY_NORMALIZE = prove
(`!p. poly (normalize p) = poly p`,
LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; poly] THEN
ASM_CASES_TAC `h = &0` THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[poly; FUN_EQ_THM] THEN
UNDISCH_TAC `poly (normalize t) = poly t` THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[poly] THEN
REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_LID]);;
(* ------------------------------------------------------------------------- *)
(* The degree of a polynomial. *)
(* ------------------------------------------------------------------------- *)
let degree = new_definition
`degree p = PRE(LENGTH(normalize p))`;;
let DEGREE_ZERO = prove
(`!p. (poly p = poly []) ==> (degree p = 0)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[degree] THEN
SUBGOAL_THEN `normalize p = []` SUBST1_TAC THENL
[POP_ASSUM MP_TAC THEN SPEC_TAC(`p:real list`,`p:real list`) THEN
REWRITE_TAC[POLY_ZERO] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; ALL] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `normalize t = []` (fun th -> REWRITE_TAC[th]) THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
REWRITE_TAC[LENGTH; PRE]]);;
(* ------------------------------------------------------------------------- *)
(* Tidier versions of finiteness of roots. *)
(* ------------------------------------------------------------------------- *)
let POLY_ROOTS_FINITE_SET = prove
(`!p. ~(poly p = poly []) ==> FINITE { x | poly p x = &0}`,
GEN_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE] THEN
DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `i:num->real` ASSUME_TAC) THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{x:real | ?n:num. n < N /\ (x = i n)}` THEN
CONJ_TAC THENL
[SPEC_TAC(`N:num`,`N:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
INDUCT_TAC THENL
[SUBGOAL_THEN `{x:real | ?n. n < 0 /\ (x = i n)} = {}`
(fun th -> REWRITE_TAC[th; FINITE_RULES]) THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LT];
SUBGOAL_THEN `{x:real | ?n. n < SUC N /\ (x = i n)} =
(i N) INSERT {x:real | ?n. n < N /\ (x = i n)}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; LT] THEN MESON_TAC[];
MATCH_MP_TAC(CONJUNCT2 FINITE_RULES) THEN ASM_REWRITE_TAC[]]];
ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM]]);;
(* ------------------------------------------------------------------------- *)
(* Crude bound for polynomial. *)
(* ------------------------------------------------------------------------- *)
let POLY_MONO = prove
(`!x k p. abs(x) <= k ==> abs(poly p x) <= poly (MAP abs p) k`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
DISCH_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[poly; REAL_LE_REFL; MAP; REAL_ABS_0] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `abs(h) + abs(x * poly t x)` THEN
REWRITE_TAC[REAL_ABS_TRIANGLE; REAL_LE_LADD] THEN
REWRITE_TAC[REAL_ABS_MUL] THEN
MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_ABS_POS]);;
(* ------------------------------------------------------------------------- *)
(* Conversions to perform operations if coefficients are rational constants. *)
(* ------------------------------------------------------------------------- *)
let POLY_DIFF_CONV =
let aux_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_diff_aux]
and aux_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_diff_aux]
and diff_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_DIFF_CLAUSES))
and diff_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_DIFF_CLAUSES)] in
let rec POLY_DIFF_AUX_CONV tm =
(aux_conv0 ORELSEC
(aux_conv1 THENC
LAND_CONV REAL_RAT_MUL_CONV THENC
RAND_CONV (LAND_CONV NUM_SUC_CONV THENC POLY_DIFF_AUX_CONV))) tm in
diff_conv0 ORELSEC
(diff_conv1 THENC POLY_DIFF_AUX_CONV);;
let POLY_CMUL_CONV =
let cmul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_cmul]
and cmul_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_cmul] in
let rec POLY_CMUL_CONV tm =
(cmul_conv0 ORELSEC
(cmul_conv1 THENC
LAND_CONV REAL_RAT_MUL_CONV THENC
RAND_CONV POLY_CMUL_CONV)) tm in
POLY_CMUL_CONV;;
let POLY_ADD_CONV =
let add_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_ADD_CLAUSES))
and add_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_ADD_CLAUSES)] in
let rec POLY_ADD_CONV tm =
(add_conv0 ORELSEC
(add_conv1 THENC
LAND_CONV REAL_RAT_ADD_CONV THENC
RAND_CONV POLY_ADD_CONV)) tm in
POLY_ADD_CONV;;
let POLY_MUL_CONV =
let mul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 POLY_MUL_CLAUSES]
and mul_conv1 = GEN_REWRITE_CONV I [CONJUNCT1(CONJUNCT2 POLY_MUL_CLAUSES)]
and mul_conv2 = GEN_REWRITE_CONV I [CONJUNCT2(CONJUNCT2 POLY_MUL_CLAUSES)] in
let rec POLY_MUL_CONV tm =
(mul_conv0 ORELSEC
(mul_conv1 THENC POLY_CMUL_CONV) ORELSEC
(mul_conv2 THENC
LAND_CONV POLY_CMUL_CONV THENC
RAND_CONV(RAND_CONV POLY_MUL_CONV) THENC
POLY_ADD_CONV)) tm in
POLY_MUL_CONV;;
let POLY_NORMALIZE_CONV =
let pth = prove
(`normalize (CONS h t) =
(\n. if n = [] then if h = &0 then [] else [h] else CONS h n)
(normalize t)`,
REWRITE_TAC[normalize]) in
let norm_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 normalize]
and norm_conv1 = GEN_REWRITE_CONV I [pth]
and norm_conv2 = GEN_REWRITE_CONV DEPTH_CONV
[COND_CLAUSES; NOT_CONS_NIL; EQT_INTRO(SPEC_ALL EQ_REFL)] in
let rec POLY_NORMALIZE_CONV tm =
(norm_conv0 ORELSEC
(norm_conv1 THENC
RAND_CONV POLY_NORMALIZE_CONV THENC
BETA_CONV THENC
RATOR_CONV(RAND_CONV(RATOR_CONV(LAND_CONV REAL_RAT_EQ_CONV))) THENC
norm_conv2)) tm in
POLY_NORMALIZE_CONV;;
(* ------------------------------------------------------------------------- *)
(* Some theorems asserting that operations give non-nil results. *)
(* ------------------------------------------------------------------------- *)
let NOT_POLY_CMUL_NIL = prove
(`!h p. ~(p = []) ==> ~((h ## p) = [])`,
STRIP_TAC THEN LIST_INDUCT_TAC THENL
[SIMP_TAC[]; SIMP_TAC[poly_cmul; NOT_CONS_NIL]]);;
let NOT_POLY_MUL_NIL = prove
(`!p1 p2. ~(p1 = []) /\ ~(p2 = []) ==> ~((p1 ** p2) = [])`,
LIST_INDUCT_TAC THENL
[SIMP_TAC[];
LIST_INDUCT_TAC THENL
[SIMP_TAC[];
SIMP_TAC[poly_mul;NOT_CONS_NIL] THEN
SPEC_TAC (`t:(real)list`,`t:(real)list`) THEN LIST_INDUCT_TAC THENL
[SIMP_TAC[poly_cmul;NOT_CONS_NIL];
SIMP_TAC[poly_cmul;poly_add;NOT_CONS_NIL]]
]
]);;
let NOT_POLY_EXP_NIL = prove
(`!n p . ~(p = []) ==> ~((poly_exp p n) = [])`,
let lem001 = ASSUME `!p . ~(p = []) ==> ~(poly_exp p n = [])` in
let lem002 = SIMP_RULE[NOT_CONS_NIL] (SPEC `CONS (h:real) t` lem001) in
INDUCT_TAC THENL
[SIMP_TAC[poly_exp;NOT_CONS_NIL];
LIST_INDUCT_TAC THENL
[SIMP_TAC[];
SIMP_TAC[lem002;NOT_POLY_MUL_NIL;poly_exp;NOT_CONS_NIL]
]
]);;
let NOT_POLY_EXP_X_NIL = prove
(`!n. ~((poly_exp [&0;&1] n) = [])`,
let lem01 = prove(`~([&0;&1] = [])`,SIMP_TAC[NOT_CONS_NIL]) in
INDUCT_TAC THENL
[SIMP_TAC[poly_exp;NOT_CONS_NIL];
ASM_SIMP_TAC[poly_exp;NOT_POLY_MUL_NIL;lem01]]);;
(* ------------------------------------------------------------------------- *)
(* Some general lemmas. *)
(* ------------------------------------------------------------------------- *)
let POLY_CMUL_LID = prove
(`!p. &1 ## p = p`,
LIST_INDUCT_TAC THENL
[SIMP_TAC[poly_cmul];
ASM_SIMP_TAC[poly_cmul] THEN SIMP_TAC[REAL_ARITH `&1 * h = h`]]);;
let POLY_MUL_LID = prove
(`!p. [&1] ** p = p`,
LIST_INDUCT_TAC THENL
[SIMP_TAC[poly_mul;poly_cmul];
ONCE_REWRITE_TAC[poly_mul] THEN SIMP_TAC[POLY_CMUL_LID]]);;
let POLY_MUL_RID = prove
(`!p. p ** [&1] = p`,
LIST_INDUCT_TAC THENL
[SIMP_TAC[poly_mul];
ASM_CASES_TAC `t:(real)list = []` THEN
ASM_SIMP_TAC[poly_mul;poly_cmul;poly_add;NOT_CONS_NIL;HD;TL;
REAL_ARITH `h + (real_of_num 0) = h`;REAL_ARITH `h * (real_of_num 1) = h`]
]);;
let POLY_ADD_SYM = prove
(`!x y . x ++ y = y ++ x`,
let lem1 = ASSUME `!y . t ++ y = y ++ t` in
let lem2 = SPEC `t':(real)list` lem1 in
LIST_INDUCT_TAC THENL
[LIST_INDUCT_TAC THENL [SIMP_TAC[poly_add]; SIMP_TAC[poly_add]];
LIST_INDUCT_TAC THENL
[SIMP_TAC[poly_add];
SIMP_TAC[POLY_ADD_CLAUSES] THEN
ONCE_REWRITE_TAC[lem2] THEN
SIMP_TAC[SPECL [`h:real`;`h':real`] REAL_ADD_SYM]
]
]);;
let POLY_ADD_ASSOC = prove
(`!x y z . x ++ (y ++ z) = (x ++ y) ++ z`,
let lem1 = ASSUME `!y z. t ++ y ++ z = (t ++ y) ++ z` in
let lem2 = SPECL [`t':(real)list`;`t'':(real)list`] lem1 in
LIST_INDUCT_TAC THENL
[SIMP_TAC[POLY_ADD_CLAUSES];
LIST_INDUCT_TAC THENL
[SIMP_TAC[POLY_ADD_CLAUSES];
LIST_INDUCT_TAC THENL
[SIMP_TAC[POLY_ADD_CLAUSES];
SIMP_TAC[POLY_ADD_CLAUSES] THEN
SIMP_TAC[REAL_ADD_ASSOC] THEN
SIMP_TAC[lem2]
]
]
]);;
(* ------------------------------------------------------------------------- *)
(* Heads and tails resulting from operations. *)
(* ------------------------------------------------------------------------- *)
let TL_POLY_MUL_X = prove
(`!p. TL ([&0;&1] ** p) = p`,
LIST_INDUCT_TAC THENL
[ONCE_REWRITE_TAC[poly_mul] THEN
SIMP_TAC[NOT_CONS_NIL;poly_cmul;poly_add;TL;poly_mul];
ONCE_REWRITE_TAC[poly_mul] THEN SIMP_TAC[NOT_CONS_NIL] THEN
ONCE_REWRITE_TAC[poly_cmul] THEN ONCE_REWRITE_TAC[poly_add] THEN
SIMP_TAC[NOT_CONS_NIL] THEN SIMP_TAC[TL;POLY_MUL_LID] THEN
SPEC_TAC (`h:real`,`h:real`) THEN
SPEC_TAC (`t:(real)list`,`t:(real)list`) THEN
LIST_INDUCT_TAC THENL
[SIMP_TAC[poly_cmul;poly_add];
ASM_SIMP_TAC[poly_cmul;poly_add;NOT_CONS_NIL;HD;TL;
REAL_ARITH `(&0) * h + h' = h'`]
]
]);;
let HD_POLY_MUL_X = prove
(`!p. HD ([&0;&1] ** p) = &0`,
LIST_INDUCT_TAC THEN
SIMP_TAC[poly_mul;NOT_CONS_NIL;poly_cmul;poly_add;HD;
REAL_ARITH `&0 * h + &0 = &0`]);;
let TL_POLY_EXP_X_SUC = prove
(`!n . TL (poly_exp [&0;&1] (SUC n)) = poly_exp [&0;&1] n`,
SIMP_TAC[poly_exp;TL_POLY_MUL_X]);;
let HD_POLY_EXP_X_SUC = prove
(`!n . HD (poly_exp [&0;&1] (SUC n)) = &0`,
INDUCT_TAC THENL
[SIMP_TAC[poly_exp;poly_add;HD;TL;poly_cmul;poly_mul;NOT_CONS_NIL;
REAL_ARITH `&0 * &1 + &0 = &0`];
SIMP_TAC[poly_exp;HD_POLY_MUL_X]]);;
let HD_POLY_ADD = prove
(`!p1 p2. ~(p1 = []) /\ ~(p2 = []) ==> HD (p1 ++ p2) = (HD p1) + (HD p2)`,
LIST_INDUCT_TAC THENL
[SIMP_TAC[];
LIST_INDUCT_TAC THENL
[SIMP_TAC[];
SIMP_TAC[NOT_CONS_NIL;poly_add] THEN
ONCE_REWRITE_TAC[ISPECL [`h':real`;`t':(real)list`] NOT_CONS_NIL] THEN
SIMP_TAC[HD]
]
]);;
let HD_POLY_CMUL = prove
(`!x p . ~(p = []) ==> HD (x ## p) = x * (HD p)`,
STRIP_TAC THEN LIST_INDUCT_TAC THENL
[SIMP_TAC[]; SIMP_TAC[NOT_CONS_NIL;poly_cmul;HD]]);;
let TL_POLY_CMUL = prove
(`!x p . ~(p = []) ==> TL (x ## p) = x ## (TL p)`,
STRIP_TAC THEN LIST_INDUCT_TAC THENL
[SIMP_TAC[]; SIMP_TAC[NOT_CONS_NIL;poly_cmul;TL]]);;
let HD_POLY_MUL = prove
(`!p1 p2 . ~(p1 = []) /\ ~(p2 = []) ==> HD (p1 ** p2) = (HD p1) * (HD p2)`,
LIST_INDUCT_TAC THENL
[SIMP_TAC[];
LIST_INDUCT_TAC THENL
[SIMP_TAC[];
SIMP_TAC[NOT_CONS_NIL;poly_mul] THEN
ASM_CASES_TAC `(t:(real)list) = []` THENL
[ASM_SIMP_TAC[poly_cmul;HD];
ASM_SIMP_TAC[poly_cmul;poly_add;NOT_CONS_NIL;HD] THEN REAL_ARITH_TAC
]
]
]);;
let HD_POLY_EXP = prove
(`!n p . ~(p = []) ==> HD (poly_exp p n) = (HD p) pow n`,
INDUCT_TAC THENL
[SIMP_TAC[poly_exp] THEN LIST_INDUCT_TAC THENL
[SIMP_TAC[]; SIMP_TAC[HD;pow]];
SIMP_TAC[poly_exp] THEN LIST_INDUCT_TAC THENL
[SIMP_TAC[];
SIMP_TAC[HD;GSYM pow;NOT_CONS_NIL;poly_mul] THEN
ASM_CASES_TAC `(t:(real)list) = []` THENL
[ASM_SIMP_TAC[HD_POLY_CMUL;NOT_POLY_CMUL_NIL;NOT_POLY_EXP_NIL;
NOT_CONS_NIL;HD;GSYM pow];
ASM_SIMP_TAC[NOT_POLY_CMUL_NIL;NOT_POLY_EXP_NIL;NOT_CONS_NIL;
HD_POLY_ADD;HD;HD_POLY_CMUL;GSYM pow] THEN
REAL_ARITH_TAC]
]
]);;
(* ------------------------------------------------------------------------- *)
(* Additional general lemmas. *)
(* ------------------------------------------------------------------------- *)
let POLY_ADD_IDENT = prove
(`neutral (++) = []`,
let l1 = ASSUME `!x. (!y. x ++ y = y /\ y ++ x = y)
==> (!y. (CONS h t) ++ y = y /\ y ++ (CONS h t) = y)` in
let l2 = SPEC `[]:(real)list` l1 in
let l3 = SIMP_RULE[POLY_ADD_CLAUSES] l2 in
let l4 = SPEC `[]:(real)list` l3 in
let l5 = CONJUNCT1 l4 in
let l6 = SIMP_RULE[POLY_ADD_CLAUSES;NOT_CONS_NIL] l5 in
let l7 = NOT_INTRO (DISCH_ALL l6) in
ONCE_REWRITE_TAC[neutral] THEN SELECT_ELIM_TAC THEN LIST_INDUCT_TAC THENL
[SIMP_TAC[];SIMP_TAC[l7]]);;
let POLY_ADD_NEUTRAL = prove
(`!x. neutral (++) ++ x = x`,
SIMP_TAC[POLY_ADD_IDENT;POLY_ADD_CLAUSES]);;
let MONOIDAL_POLY_ADD = prove
(`monoidal poly_add`,
let lem1 = CONJ POLY_ADD_SYM (CONJ POLY_ADD_ASSOC POLY_ADD_NEUTRAL) in
ONCE_REWRITE_TAC[monoidal] THEN ACCEPT_TAC lem1);;
let POLY_DIFF_AUX_ADD_LEMMA = prove
(`!t1 t2 n. poly_diff_aux n (t1 ++ t2) =
(poly_diff_aux n t1) ++ (poly_diff_aux n t2)`,
let lem = REAL_ARITH `!n h h'. (&n * h) + (&n * h') = &n * (h + h')` in
LIST_INDUCT_TAC THEN SIMP_TAC[POLY_ADD_CLAUSES;poly_diff_aux] THEN
LIST_INDUCT_TAC THEN SIMP_TAC[POLY_ADD_CLAUSES;poly_diff_aux] THEN
STRIP_TAC THEN
ONCE_REWRITE_TAC[POLY_ADD_CLAUSES] THEN
ONCE_REWRITE_TAC[poly_diff_aux] THEN
ONCE_REWRITE_TAC[POLY_ADD_CLAUSES] THEN
ONCE_REWRITE_TAC[lem] THEN
ASM_SIMP_TAC[]);;
let POLYDIFF_ADD = prove
(`!p1 p2. (poly_diff (p1 ++ p2)) = (poly_diff p1 ++ poly_diff p2)`,
let lem1 = prove
(`!h0 t0 h1 t1. ~(((CONS h0 t0) ++ (CONS h1 t1)) = [])`,
SIMP_TAC[POLY_ADD_CLAUSES;NOT_CONS_NIL]) in
let lem2 = prove
(`!h0 t0 h1 t1.
(TL ((CONS h0 t0) ++ (CONS h1 t1))
= (TL (CONS h0 t0)) ++ (TL (CONS h1 t1)))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[poly_add] THEN
ONCE_REWRITE_TAC[NOT_CONS_NIL] THEN REWRITE_TAC[TL]
THEN SIMP_TAC[]) in
REPEAT LIST_INDUCT_TAC THENL
[SIMP_TAC[poly_add;poly_diff];
SIMP_TAC[poly_add;poly_diff];
SIMP_TAC[poly_add;poly_diff;POLY_ADD_CLAUSES];
SIMP_TAC[poly_diff] THEN
ONCE_REWRITE_TAC[lem1;NOT_CONS_NIL] THEN
SIMP_TAC[lem2;POLY_DIFF_AUX_ADD_LEMMA]
]);;
let POLY_DIFF_AUX_POLY_CMUL = prove
(`!p c n. poly_diff_aux n (c ## p) = c ## (poly_diff_aux n p)`,
let lem01 = ASSUME
`!c n. poly_diff_aux n (c ## t) = c ## poly_diff_aux n t` in
let lem02 = SPECL [`c:real`;`SUC n`] lem01 in
LIST_INDUCT_TAC THEN STRIP_TAC THEN STRIP_TAC THEN
SIMP_TAC[poly_cmul;poly_diff_aux;lem02;
REAL_ARITH `(a:real) * b * c = b * a * c`]);;
let POLY_CMUL_POLY_DIFF = prove
(`!p c. poly_diff (c ## p) = c ## (poly_diff p)`,
LIST_INDUCT_TAC THEN
SIMP_TAC[poly_diff;POLY_DIFF_AUX_POLY_CMUL;TL_POLY_CMUL;
poly_cmul;NOT_CONS_NIL]);;
(* ------------------------------------------------------------------------- *)
(* Theorems about the lengths of lists from the polynomial operations. *)
(* ------------------------------------------------------------------------- *)
let POLY_CMUL_LENGTH = prove
(`!c p. LENGTH (c ## p) = LENGTH p`,
STRIP_TAC THEN LIST_INDUCT_TAC THENL
[SIMP_TAC[poly_cmul];
SIMP_TAC[poly_cmul] THEN ASM_SIMP_TAC[LENGTH]
]);;
let POLY_ADD_LENGTH = prove
(`!p q. LENGTH (p ++ q) = MAX (LENGTH p) (LENGTH q)`,
LIST_INDUCT_TAC THENL
[SIMP_TAC[poly_add;LENGTH] THEN ARITH_TAC;
LIST_INDUCT_TAC THENL
[SIMP_TAC[poly_add;LENGTH] THEN ARITH_TAC;
SIMP_TAC[poly_add;LENGTH] THEN
ONCE_REWRITE_TAC[NOT_CONS_NIL] THEN SIMP_TAC[HD;TL;LENGTH] THEN
ASM_SIMP_TAC[] THEN
ONCE_REWRITE_TAC[ARITH_RULE `MAX x y = if (x > y) then x else y`] THEN
ASM_CASES_TAC `LENGTH (t:(real)list) > LENGTH (t':(real)list)` THENL
[ASM_SIMP_TAC[ARITH_RULE `x > y ==> (SUC x) > (SUC y)`];
ASM_SIMP_TAC[ARITH_RULE `~(x > y) ==> ~((SUC x) > (SUC y))`]]
]
]);;
let POLY_MUL_LENGTH = prove
(`!p h t. LENGTH (p ** (CONS h t)) >= LENGTH p`,
let lemma01 = ASSUME `!h t'. LENGTH (t ** CONS h t') >= LENGTH t` in
let lemma02 = SPECL [`h':real`;`t':(real)list`] lemma01 in
let lemma03 = ONCE_REWRITE_RULE[ARITH_RULE `(x:num) >= y <=> SUC x >= SUC y`]
lemma02 in
let lemma05 = ARITH_RULE `(y:num) >= z ==> (x + (y - x) >= z) ` in
let lemma06 = SPECL [`SUC (LENGTH (t ** (CONS (h':real) t')))`;
`LENGTH (h ## (CONS h' t'))`;
`SUC (LENGTH (t:(real)list))`] (GEN_ALL lemma05) in
let lemma07 = MATCH_MP (lemma06) (lemma03) in
LIST_INDUCT_TAC THENL
[SIMP_TAC[POLY_MUL_CLAUSES] THEN ARITH_TAC;
SIMP_TAC[poly_mul] THEN ASM_CASES_TAC `(t:(real)list) = []` THENL
[ASM_SIMP_TAC[POLY_CMUL_LENGTH;LENGTH] THEN ARITH_TAC;
ASM_SIMP_TAC[POLY_ADD_LENGTH;LENGTH;lemma07;
ARITH_RULE `!x y. (MAX x y) = x + (y - x)`]
]
]);;
let POLY_EXP_X_REC = prove
(`!n. poly_exp [&0;&1] (SUC n) = CONS (&0) (poly_exp [&0;&1] n)`,
let lem01 = MATCH_MP CONS_HD_TL (SPEC `(SUC n)` NOT_POLY_EXP_X_NIL) in
let lem02 = ONCE_REWRITE_RULE[HD_POLY_EXP_X_SUC; TL_POLY_EXP_X_SUC] lem01 in
ACCEPT_TAC (GEN_ALL lem02));;
let POLY_MUL_LENGTH2 = prove
(`!q p. ~(q = []) ==> LENGTH (p ** q) >= LENGTH p`,
LIST_INDUCT_TAC THEN SIMP_TAC[NOT_CONS_NIL; POLY_MUL_LENGTH]);;
let POLY_EXP_X_LENGTH = prove
(`!n. LENGTH (poly_exp [&0;&1] n) = SUC n`,
INDUCT_TAC THEN
ASM_SIMP_TAC[poly_exp;LENGTH; POLY_EXP_X_REC;
ARITH_RULE `(SUC x) = (SUC y) <=> x = y`]);;
(* ------------------------------------------------------------------------- *)
(* Expansion of a polynomial as a power sum. *)
(* ------------------------------------------------------------------------- *)
let POLY_SUM_EQUIV = prove
(`!p x.
~(p = []) ==>
poly p x = sum (0..(PRE (LENGTH p))) (\i. (EL i p)*(x pow i))`,
let lem000 = ARITH_RULE `0 <= 0 + 1 /\ 0 <= (LENGTH (t:(real)list))` in
let lem001 = SPECL
[`f:num->real`;`0`;`0`;`LENGTH (t:(real)list)`]
SUM_COMBINE_R in
let lem002 = MP lem001 lem000 in
let lem003 = SPECL
[`f:num->real`;`1`;`LENGTH (t:(real)list)`]
SUM_OFFSET_0 in
let lem004 = ASSUME `~((t:(real)list) = [])` in
let lem005 = ONCE_REWRITE_RULE[GSYM LENGTH_EQ_NIL] lem004 in
let lem006 = ONCE_REWRITE_RULE[ARITH_RULE `~(x = 0) <=> (1 <= x)`] lem005 in
let lem007 = MP lem003 lem006 in
let lem017 = ARITH_RULE `1 <= (LENGTH (t:(real)list))
==> ((LENGTH t) - 1 = PRE (LENGTH t))` in
let lem018 = MP lem017 lem006 in
LIST_INDUCT_TAC THENL
[ SIMP_TAC[NOT_CONS_NIL]
;
ASM_CASES_TAC `(t:(real)list) = []` THENL
[
ASM_SIMP_TAC[POLY_CONST;LENGTH;PRE]
THEN ONCE_REWRITE_TAC[NUMSEG_CONV `0..0`]
THEN ONCE_REWRITE_TAC[SUM_SING]
THEN BETA_TAC
THEN ONCE_REWRITE_TAC[EL]
THEN ONCE_REWRITE_TAC[HD]
THEN REAL_ARITH_TAC
;
ASM_SIMP_TAC[POLY_CONST;LENGTH;PRE]
THEN ONCE_REWRITE_TAC[poly]
THEN ONCE_REWRITE_TAC[GSYM lem002]
THEN ONCE_REWRITE_TAC[ARITH_RULE `0 + 1 = 1`]
THEN ONCE_REWRITE_TAC[NUMSEG_CONV `0..0`]
THEN ONCE_REWRITE_TAC[SUM_SING]
THEN BETA_TAC
THEN SIMP_TAC[EL;HD]
THEN ONCE_REWRITE_TAC[lem007]
THEN BETA_TAC
THEN ONCE_REWRITE_TAC[GSYM ADD1]
THEN SIMP_TAC[EL;TL]
THEN ONCE_REWRITE_TAC[real_pow]
THEN ONCE_REWRITE_TAC[REAL_MUL_RID]
THEN ONCE_REWRITE_TAC[REAL_ARITH `(A:real) * B * C = B * (A * C)`]
THEN ONCE_REWRITE_TAC[NSUM_LMUL]
THEN ONCE_REWRITE_TAC[SUM_LMUL]
THEN ASM_SIMP_TAC[]
THEN SIMP_TAC[NOT_CONS_NIL]
THEN ONCE_REWRITE_TAC[lem018]
THEN SIMP_TAC[]
]]);;
let ITERATE_RADD_POLYADD = prove
(`!n x f. iterate (+) (0..n) (\i.poly (f i) x) =
poly (iterate (++) (0..n) f) x`,
INDUCT_TAC THEN
ASM_SIMP_TAC[ITERATE_CLAUSES_NUMSEG; MONOIDAL_REAL_ADD; MONOIDAL_POLY_ADD;
LE_0; POLY_ADD]);;
(* ------------------------------------------------------------------------- *)
(* Now we're finished with polynomials... *)
(* ------------------------------------------------------------------------- *)
do_list reduce_interface
["divides",`poly_divides:real list->real list->bool`;
"exp",`poly_exp:real list -> num -> real list`;
"diff",`poly_diff:real list->real list`];;
unparse_as_infix "exp";;
|