Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,724 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
(* ========================================================================= *)
(* Iterated application of a function, ITER n f x = f^n(x).                  *)
(*                                                                           *)
(* (c) Marco Maggesi, Graziano Gentili and Gianni Ciolli, 2008.              *)
(* ========================================================================= *)

let ITER = define
  `(!f. ITER 0 f x = x) /\
   (!f n. ITER (SUC n) f x = f (ITER n f x))`;;

let ITER_POINTLESS = prove
  (`(!f. ITER 0 f = I) /\
    (!f n. ITER (SUC n) f = f o ITER n f)`,
   REWRITE_TAC [FUN_EQ_THM; I_THM; o_THM; ITER]);;

let ITER_ALT = prove
  (`(!f x. ITER 0 f x = x) /\
    (!f n x. ITER (SUC n) f x = ITER n f (f x))`,
   REWRITE_TAC [ITER] THEN GEN_TAC THEN INDUCT_TAC THEN
   ASM_REWRITE_TAC [ITER]);;

let ITER_ALT_POINTLESS = prove
  (`(!f. ITER 0 f = I) /\
    (!f n. ITER (SUC n) f = ITER n f o f)`,
   REWRITE_TAC [FUN_EQ_THM; I_THM; o_THM; ITER_ALT]);;

let ITER_1 = prove
 (`!f x. ITER 1 f x = f x`,
  REWRITE_TAC[num_CONV `1`; ITER]);;

let ITER_ADD = prove
  (`!f n m x. ITER n f (ITER m f x) = ITER (n + m) f x`,
   GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ITER; ADD]);;

let ITER_ADD_POINTLESS = prove
 (`!m n. ITER (m + n) f = ITER m f o ITER n f`,
  REWRITE_TAC[FUN_EQ_THM; o_THM; ITER_ADD]);;

let ITER_MUL = prove
  (`!f n m x. ITER n (ITER m f) x = ITER (n * m) f x`,
   GEN_TAC THEN INDUCT_TAC THEN
   ASM_REWRITE_TAC[ITER; MULT; ITER_ADD; ADD_AC]);;

let ITER_FIXPOINT = prove
  (`!f n x. f x = x ==> ITER n f x = x`,
   GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC [ITER_ALT]);;

(* ------------------------------------------------------------------------- *)
(* Existence of "order" or "characteristic" in a general setting.            *)
(* ------------------------------------------------------------------------- *)

let ORDER_EXISTENCE_GEN = prove
 (`!P f:num->A.
         P(f 0) /\ (!m n. P(f m) /\ ~(m = 0) ==> (P(f(m + n)) <=> P(f n)))
         ==> ?d. !n. P(f n) <=> d divides n`,
  REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `!n. ~(n = 0) ==> ~P(f n:A)` THENL
   [EXISTS_TAC `0` THEN REWRITE_TAC[NUMBER_RULE `0 divides n <=> n = 0`] THEN
    ASM_MESON_TAC[];
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM])] THEN
  GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN MATCH_MP_TAC MONO_EXISTS THEN
  X_GEN_TAC `d:num` THEN REWRITE_TAC[NOT_IMP] THEN
  REWRITE_TAC[GSYM IMP_CONJ_ALT] THEN STRIP_TAC THEN
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  ASM_CASES_TAC `n = 0` THENL
   [ASM_MESON_TAC[NUMBER_RULE `n divides 0`]; ALL_TAC] THEN
  ASM_CASES_TAC `d <= n:num` THENL
   [ALL_TAC; ASM_MESON_TAC[NOT_LT; DIVIDES_LE]] THEN
  SUBGOAL_THEN `n:num = (n - d) + d` SUBST1_TAC THENL
   [ASM_ARITH_TAC; ABBREV_TAC `m:num = n - d`] THEN
  REWRITE_TAC[NUMBER_RULE `(d:num) divides m + d <=> d divides m`] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
  ANTS_TAC THENL [ASM_ARITH_TAC; ASM_MESON_TAC[ADD_SYM]]);;

let ORDER_EXISTENCE_ITER = prove
 (`!R f z:A.
        R z z /\
        (!x y. R x y ==> R y x) /\
        (!x y z. R x y /\ R y z ==> R x z) /\
        (!x y. R x y ==> R (f x) (f y))
        ==> ?d. !n. R (ITER n f z) z <=> d divides n`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`\x. (R:A->A->bool) x z`;
                 `\n. ITER n f (z:A)`] ORDER_EXISTENCE_GEN) THEN
  ASM_REWRITE_TAC[ITER] THEN DISCH_THEN MATCH_MP_TAC THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN X_GEN_TAC `m:num` THEN STRIP_TAC THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[GSYM ITER_ADD] THEN
  MP_TAC(MESON[]
   `!a b:num->A. (!x y. R x y ==> R y x) /\
          (!x y z. R x y /\ R y z ==> R x z) /\
          (!n. R (a n) (b n))
          ==> (!n. R (a n) z <=> R (b n) z)`) THEN
  DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
  INDUCT_TAC THEN ASM_REWRITE_TAC[ITER] THEN
  ASM_MESON_TAC[]);;

let ORDER_EXISTENCE_CARD = prove
 (`!R f z:A k.
     FINITE { R(ITER n f z) | n IN (:num)} /\
     CARD { R(ITER n f z) | n IN (:num)} <= k /\
     R z z /\
     (!x y. R x y ==> R y x) /\
     (!x y z. R x y /\ R y z ==> R x z) /\
     (!x y. R (f x) (f y) <=> R x y)
     ==> ?d. 0 < d /\ d <= k /\ !n. R (ITER n f z) z <=> d divides n`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `?m. 0 < m /\ m <= k /\ (R:A->A->bool) (ITER m f z) z`
  STRIP_ASSUME_TAC THENL
    [MP_TAC(ISPECL [`\n. (R:A->A->bool) (ITER n f z)`; `0..k`]
      CARD_IMAGE_EQ_INJ) THEN
     REWRITE_TAC[FINITE_NUMSEG; CARD_NUMSEG; SUB_0] THEN
     MATCH_MP_TAC(TAUT `~p /\ (~q ==> r) ==> (p <=> q) ==> r`) THEN
     CONJ_TAC THENL
      [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE
        `c <= k ==> s <= c ==> ~(s = k + 1)`)) THEN
       MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[];
       REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; LEFT_IMP_EXISTS_THM] THEN
       MATCH_MP_TAC WLOG_LT THEN REWRITE_TAC[] THEN
       CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
       MAP_EVERY X_GEN_TAC [`p:num`; `q:num`] THEN
       REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
       EXISTS_TAC `q - p:num` THEN
       REPEAT(CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN
       SUBGOAL_THEN
        `!d. d <= p
             ==> (R:A->A->bool) (ITER (p - d) f z) (ITER (q - d) f z)`
       MP_TAC THENL
        [INDUCT_TAC THEN ASM_REWRITE_TAC[SUB_0] THENL
          [SPEC_TAC(`q:num`,`q:num`) THEN INDUCT_TAC THEN
           ASM_REWRITE_TAC[ITER];
           DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN
           ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
           SUBGOAL_THEN `q - d = SUC(q - SUC d) /\ p - d = SUC(p - SUC d)`
            (fun th -> REWRITE_TAC[th]) THENL [ASM_ARITH_TAC; ALL_TAC] THEN
           ASM_REWRITE_TAC[ITER]];
         DISCH_THEN(MP_TAC o SPEC `p:num`) THEN
         REWRITE_TAC[LE_REFL; SUB_REFL; ITER] THEN ASM_MESON_TAC[]]];
     MP_TAC(ISPECL [`R:A->A->bool`; `f:A->A`; `z:A`] ORDER_EXISTENCE_ITER) THEN
     ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN
     X_GEN_TAC `d:num` THEN ASM_CASES_TAC `d = 0` THEN ASM_SIMP_TAC[] THEN
     DISCH_THEN(MP_TAC o SPEC `m:num`) THEN
     ASM_SIMP_TAC[LE_1; NUMBER_RULE `!n. 0 divides n <=> n = 0`] THEN
     DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_ARITH_TAC]);;

let ORDER_EXISTENCE_FINITE = prove
 (`!R f z:A.
     FINITE { R(ITER n f z) | n IN (:num)} /\
     R z z /\
     (!x y. R x y ==> R y x) /\
     (!x y z. R x y /\ R y z ==> R x z) /\
     (!x y. R (f x) (f y) <=> R x y)
     ==> ?d. 0 < d /\ !n. R (ITER n f z) z <=> d divides n`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`R:A->A->bool`; `f:A->A`; `z:A`;
   `CARD {(R:A->A->bool)(ITER n f z) | n IN (:num)}`]
   ORDER_EXISTENCE_CARD) THEN ASM_REWRITE_TAC[LE_REFL] THEN MESON_TAC[]);;