Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 17,862 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
(* ========================================================================= *)
(* A formulation of free Abelian groups on :A using a type :(A)frag.         *)
(* ========================================================================= *)

let frag_tybij =
  let th = prove
   (`?f:A->int. FINITE {x | ~(f x = &0)}`,
    EXISTS_TAC `(\x. &0):A->int` THEN
    REWRITE_TAC[EMPTY_GSPEC; FINITE_EMPTY]) in
  new_type_definition "frag" ("mk_frag","dest_frag") th;;

let frag_support = new_definition
 `frag_support (x:A frag) = {a | ~(dest_frag x a = &0)}`;;

let frag_0 = new_definition
 `frag_0:A frag = mk_frag (\x. &0)`;;

let frag_of = new_definition
 `frag_of (c:A) = mk_frag (\a. if a = c then &1 else &0)`;;

let frag_neg = new_definition
 `frag_neg (x:A frag) = mk_frag (\a. --(dest_frag x a))`;;

let frag_cmul = new_definition
 `frag_cmul c (x:A frag) = mk_frag (\a. c * dest_frag x a)`;;

let frag_add = new_definition
 `frag_add (x:A frag) y = mk_frag (\a. dest_frag x a + dest_frag y a)`;;

let frag_sub = new_definition
 `frag_sub (x:A frag) y = mk_frag (\a. dest_frag x a - dest_frag y a)`;;

let FRAG_EQ = prove
 (`!c1 c2:A frag. c1 = c2 <=> dest_frag c1 = dest_frag c2`,
  MESON_TAC[frag_tybij]);;

let DEST_FRAG_0 = prove
 (`dest_frag(frag_0:A frag) = \x. &0`,
  REWRITE_TAC[frag_0; GSYM(CONJUNCT2 frag_tybij)] THEN
  REWRITE_TAC[EMPTY_GSPEC; FINITE_EMPTY]);;

let DEST_FRAG_OF = prove
 (`!c:A. dest_frag(frag_of c) = \a. if a = c then &1 else &0`,
  REWRITE_TAC[frag_of; GSYM(CONJUNCT2 frag_tybij)] THEN
  ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
  CONV_TAC INT_REDUCE_CONV THEN
  REWRITE_TAC[MESON[] `~(if p then F else T) <=> p`] THEN
  REWRITE_TAC[SING_GSPEC; FINITE_SING]);;

let DEST_FRAG_NEG = prove
 (`!x:A frag. dest_frag(frag_neg x) = \a. --(dest_frag x a)`,
  REWRITE_TAC[frag_neg; GSYM(CONJUNCT2 frag_tybij)] THEN
  REWRITE_TAC[INT_NEG_EQ_0] THEN REWRITE_TAC[frag_tybij; ETA_AX]);;

let DEST_FRAG_CMUL = prove
 (`!c x:A frag. dest_frag(frag_cmul c x) = \a. c * dest_frag x a`,
  REPEAT GEN_TAC THEN REWRITE_TAC[frag_cmul; GSYM(CONJUNCT2 frag_tybij)] THEN
  MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `{a:A | ~(dest_frag x a = &0)}` THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; INT_MUL_RZERO] THEN
  REWRITE_TAC[frag_tybij; ETA_AX]);;

let DEST_FRAG_ADD = prove
 (`!x y:A frag. dest_frag(frag_add x y) = \a. dest_frag x a + dest_frag y a`,
  REPEAT GEN_TAC THEN REWRITE_TAC[frag_add; GSYM(CONJUNCT2 frag_tybij)] THEN
  MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC
   `{a:A | ~(dest_frag x a = &0)} UNION {a | ~(dest_frag y a = &0)}` THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN
  SIMP_TAC[GSYM DE_MORGAN_THM; CONTRAPOS_THM; INT_ADD_LID] THEN
  REWRITE_TAC[FINITE_UNION; frag_tybij; ETA_AX]);;

let DEST_FRAG_SUB = prove
 (`!x y:A frag. dest_frag(frag_sub x y) = \a. dest_frag x a - dest_frag y a`,
  REPEAT GEN_TAC THEN REWRITE_TAC[frag_sub; GSYM(CONJUNCT2 frag_tybij)] THEN
  MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC
   `{a:A | ~(dest_frag x a = &0)} UNION {a | ~(dest_frag y a = &0)}` THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN
  SIMP_TAC[GSYM DE_MORGAN_THM; CONTRAPOS_THM; INT_SUB_RZERO] THEN
  REWRITE_TAC[FINITE_UNION; frag_tybij; ETA_AX]);;

let FRAG_OF_NONZERO = prove
 (`!a:A. ~(frag_of a = frag_0)`,
  GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `a:A` o MATCH_MP (MESON[]
   `c = d ==> !a:A. dest_frag c a = dest_frag d a`)) THEN
  REWRITE_TAC[DEST_FRAG_OF; DEST_FRAG_0] THEN
  CONV_TAC INT_REDUCE_CONV);;

let FRAG_MODULE =
  let tac =
    REPEAT(CONJ_TAC ORELSE GEN_TAC) THEN
   GEN_REWRITE_TAC ONCE_DEPTH_CONV
    [MESON[CONJUNCT1 frag_tybij; FUN_EQ_THM]
      `!x y:A frag. x = y <=> !a. dest_frag x a = dest_frag y a`] THEN
   GEN_REWRITE_TAC TOP_DEPTH_CONV
     [DEST_FRAG_0; DEST_FRAG_NEG; DEST_FRAG_CMUL;
      DEST_FRAG_ADD; DEST_FRAG_SUB; BETA_THM] THEN
   GEN_REWRITE_TAC DEPTH_CONV
    [AND_FORALL_THM; LEFT_OR_FORALL_THM; RIGHT_OR_FORALL_THM] THEN
   ((MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) ORELSE
    TRY(AP_TERM_TAC THEN ABS_TAC)) THEN
   CONV_TAC INT_RING in
  fun tm -> prove(tm,tac);;

let FINITE_FRAG_SUPPORT = prove
 (`!x:A frag. FINITE(frag_support (x:A frag))`,
  REWRITE_TAC[frag_support; frag_tybij; ETA_AX]);;

let FRAG_SUPPORT_0 = prove
 (`frag_support frag_0 = {}`,
  REWRITE_TAC[frag_support; DEST_FRAG_0; EMPTY_GSPEC]);;

let FRAG_SUPPORT_OF = prove
 (`!a:A. frag_support(frag_of a) = {a}`,
  REWRITE_TAC[frag_support; DEST_FRAG_OF] THEN
  ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
  CONV_TAC INT_REDUCE_CONV THEN
  REWRITE_TAC[MESON[] `~(if p then F else T) <=> p`] THEN
  REWRITE_TAC[SING_GSPEC]);;

let FRAG_SUPPORT_NEG = prove
 (`!x:A frag. frag_support(frag_neg x) = frag_support x`,
  REWRITE_TAC[frag_support; DEST_FRAG_NEG; INT_NEG_EQ_0]);;

let FRAG_SUPPORT_CMUL = prove
 (`!a x:A frag. frag_support(frag_cmul a x) SUBSET frag_support x`,
  REWRITE_TAC[frag_support; DEST_FRAG_CMUL] THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; INT_MUL_RZERO] THEN
  REWRITE_TAC[frag_tybij; ETA_AX]);;

let FRAG_SUPPORT_ADD = prove
 (`!x y:A frag. frag_support(frag_add x y) SUBSET
                frag_support x UNION frag_support y`,
  REWRITE_TAC[frag_support; DEST_FRAG_ADD] THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN
  SIMP_TAC[GSYM DE_MORGAN_THM; CONTRAPOS_THM; INT_ADD_LID]);;

let FRAG_SUPPORT_SUB = prove
 (`!x y:A frag. frag_support(frag_sub x y) SUBSET
                frag_support x UNION frag_support y`,
  REWRITE_TAC[frag_support; DEST_FRAG_SUB] THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN
  SIMP_TAC[GSYM DE_MORGAN_THM; CONTRAPOS_THM; INT_SUB_RZERO]);;

let FRAG_SUPPORT_EQ_EMPTY = prove
 (`!c:A frag. frag_support c = {} <=> c = frag_0`,
  REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN
  REWRITE_TAC[MESON[frag_tybij] `c = d <=> dest_frag c = dest_frag d`] THEN
  REWRITE_TAC[DEST_FRAG_0; FUN_EQ_THM; frag_support; IN_ELIM_THM]);;

let FRAG_OF_EQ = prove
 (`!x y:A. frag_of x = frag_of y <=> x = y`,
  MESON_TAC[FRAG_SUPPORT_OF; SET_RULE `{x} = {y} <=> x = y`]);;

let FRAG_ADD_EQ_0 = prove
 (`!c1 c2:A frag.
        DISJOINT (frag_support c1) (frag_support c2) /\
        frag_add c1 c2 = frag_0
        ==> c1 = frag_0 /\ c2 = frag_0`,
  REPEAT GEN_TAC THEN REWRITE_TAC[frag_support; FRAG_EQ] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  REWRITE_TAC[DEST_FRAG_ADD; DEST_FRAG_0; FUN_EQ_THM; AND_FORALL_THM] THEN
  MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC(INT_ARITH
   `~(~(x:int = &0) /\ ~(y = &0)) ==> x + y = &0 ==> x = &0 /\ y = &0`) THEN
  ASM SET_TAC[]);;

let NEUTRAL_FRAG_ADD = prove
 (`neutral frag_add :A frag = frag_0`,
  REWRITE_TAC[neutral; FRAG_MODULE
   `(frag_add x y = y <=> x = frag_0) /\
    (frag_add y x = y <=> x = frag_0)`]);;

let MONOIDAL_FRAG_ADD = prove
 (`monoidal frag_add`,
  REWRITE_TAC[monoidal; NEUTRAL_FRAG_ADD] THEN CONV_TAC FRAG_MODULE);;

let FRAG_CMUL_SUM = prove
 (`!f:B->A frag k a.
        frag_cmul a (iterate frag_add k f) =
        iterate frag_add k (\b. frag_cmul a (f b))`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `a:int = &0` THEN
  ASM_SIMP_TAC[INT_MUL_LZERO; FRAG_MODULE `frag_cmul (&0) x = frag_0`;
   REWRITE_RULE[NEUTRAL_FRAG_ADD]
     (MATCH_MP ITERATE_EQ_NEUTRAL MONOIDAL_FRAG_ADD)] THEN
  ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
  ASM_REWRITE_TAC[support; NEUTRAL_FRAG_ADD;
     FRAG_MODULE `frag_cmul a c = frag_0 <=> a = &0 \/ c = frag_0`] THEN
  COND_CASES_TAC THEN
  ASM_REWRITE_TAC[FRAG_MODULE `frag_cmul a frag_0 = frag_0`] THEN
  UNDISCH_TAC `FINITE {x | x IN k /\ ~((f:B->A frag) x = frag_0)}` THEN
  SPEC_TAC(`{x | x IN k /\ ~((f:B->A frag) x = frag_0)}`,`k:B->bool`) THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN
  REWRITE_TAC[NEUTRAL_FRAG_ADD; FRAG_MODULE `frag_cmul a frag_0 = frag_0`] THEN
  SIMP_TAC[FRAG_MODULE
   `frag_cmul a (frag_add x y) =
    frag_add (frag_cmul a x) (frag_cmul a y)`]);;

let FRAG_SUPPORT_SUM = prove
 (`!f:B->A frag k.
        frag_support(iterate frag_add k f) SUBSET
        UNIONS {frag_support(f i) | i IN k}`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
  REWRITE_TAC[NEUTRAL_FRAG_ADD] THEN COND_CASES_TAC THEN
  REWRITE_TAC[FRAG_SUPPORT_0; EMPTY_SUBSET] THEN
  TRANS_TAC SUBSET_TRANS
   `UNIONS {frag_support (f i) |i| i IN support frag_add (f:B->A frag) k}` THEN
  CONJ_TAC THENL
   [POP_ASSUM MP_TAC THEN
    SPEC_TAC(`support frag_add (f:B->A frag) k`,`k:B->bool`) THEN
    MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
    SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN
    REWRITE_TAC[SIMPLE_IMAGE; IMAGE_CLAUSES; NEUTRAL_FRAG_ADD] THEN
    REWRITE_TAC[FRAG_SUPPORT_0; EMPTY_SUBSET] THEN
    REPEAT STRIP_TAC THEN
    W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_ADD o lhand o snd) THEN
    ASM SET_TAC[];
    REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC SUBSET_UNIONS THEN
    SIMP_TAC[SUPPORT_SUBSET; IMAGE_SUBSET]]);;

let frag_extend = new_definition
 `frag_extend (f:A->B frag) x =
        iterate frag_add (frag_support x)
            (\a. frag_cmul (dest_frag x a) (f a))`;;

let FRAG_EXTEND = prove
 (`!f:A->B frag x.
        frag_extend f x =
        iterate frag_add UNIV (\a. frag_cmul (dest_frag x a) (f a))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[frag_extend] THEN
  MATCH_MP_TAC(MATCH_MP ITERATE_UNIV MONOIDAL_FRAG_ADD) THEN
  REWRITE_TAC[support; NEUTRAL_FRAG_ADD; frag_support; IN_UNIV] THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM] THEN
  REPEAT STRIP_TAC THEN CONV_TAC FRAG_MODULE);;

let FRAG_EXTEND_0 = prove
 (`!f:A->B frag. frag_extend f frag_0 = frag_0`,
  REWRITE_TAC[frag_extend; FRAG_SUPPORT_0] THEN
  REWRITE_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN
  REWRITE_TAC[NEUTRAL_FRAG_ADD]);;

let FRAG_EXTEND_OF = prove
 (`!f:A->B frag a. frag_extend f (frag_of a) = f a`,
  REWRITE_TAC[frag_extend; FRAG_SUPPORT_OF] THEN
  SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD; FINITE_EMPTY] THEN
  REWRITE_TAC[NOT_IN_EMPTY; NEUTRAL_FRAG_ADD; DEST_FRAG_OF] THEN
  CONV_TAC FRAG_MODULE);;

let FRAG_EXTEND_CMUL = prove
 (`!f:A->B frag c x.
        frag_extend f (frag_cmul c x) = frag_cmul c (frag_extend f x)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `c:int = &0` THEN
  ASM_REWRITE_TAC[FRAG_MODULE `frag_cmul (&0) x = frag_0`; FRAG_EXTEND_0] THEN
  REWRITE_TAC[frag_extend; frag_support; DEST_FRAG_CMUL] THEN
  ASM_REWRITE_TAC[INT_ENTIRE; FRAG_CMUL_SUM; FRAG_MODULE
    `frag_cmul (a * b) c = frag_cmul a (frag_cmul b c)`]);;

let FRAG_EXTEND_NEG = prove
 (`!f:A->B frag x.
        frag_extend f (frag_neg x) = frag_neg(frag_extend f x)`,
  REWRITE_TAC[FRAG_MODULE `frag_neg x = frag_cmul (-- &1) x`] THEN
  REWRITE_TAC[FRAG_EXTEND_CMUL]);;

let FRAG_EXTEND_ADD = prove
 (`!f:A->B frag x y.
        frag_extend f (frag_add x y) =
        frag_add (frag_extend f x) (frag_extend f y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[FRAG_EXTEND] THEN
  W(MP_TAC o PART_MATCH (rand o rand)
      (MATCH_MP ITERATE_OP_GEN MONOIDAL_FRAG_ADD) o rand o snd) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL
   [REWRITE_TAC[support; NEUTRAL_FRAG_ADD; IN_UNIV] THEN
    CONJ_TAC THEN MATCH_MP_TAC FINITE_SUBSET THENL
     [EXISTS_TAC `frag_support (x:A frag)`;
      EXISTS_TAC `frag_support (y:A frag)`] THEN
    REWRITE_TAC[FINITE_FRAG_SUPPORT] THEN
    SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; frag_support] THEN
    REPEAT STRIP_TAC THEN CONV_TAC FRAG_MODULE;
    DISCH_THEN(SUBST1_TAC o SYM) THEN
    MATCH_MP_TAC(MATCH_MP ITERATE_EQ MONOIDAL_FRAG_ADD) THEN
    REWRITE_TAC[IN_UNIV] THEN CONV_TAC FRAG_MODULE]);;

let FRAG_EXTEND_SUB = prove
 (`!f:A->B frag x y.
        frag_extend f (frag_sub x y) =
        frag_sub (frag_extend f x) (frag_extend f y)`,
  REWRITE_TAC[FRAG_MODULE
   `frag_sub x y = frag_add x (frag_cmul (-- &1) y)`] THEN
  REWRITE_TAC[FRAG_EXTEND_CMUL; FRAG_EXTEND_ADD]);;

let FRAG_EXTEND_SUM = prove
 (`!f:A->B frag g k:C->bool.
        FINITE k
        ==> frag_extend f (iterate frag_add k g) =
            iterate frag_add k (frag_extend f o g)`,
  GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN
  SIMP_TAC[NEUTRAL_FRAG_ADD; FRAG_EXTEND_0; FRAG_EXTEND_ADD; o_THM]);;

let FRAG_EXTEND_EQ = prove
 (`!(g:A->B frag) h c.
        (!f. f IN frag_support c ==> g f = h f)
        ==> frag_extend g c = frag_extend h c`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[frag_extend] THEN
  MATCH_MP_TAC(MATCH_MP ITERATE_EQ MONOIDAL_FRAG_ADD) THEN
  ASM_SIMP_TAC[]);;

let FRAG_EXTEND_EQ_0 = prove
 (`!(f:A->B frag) c.
        (!a. a IN frag_support c ==> f a = frag_0)
        ==> frag_extend f c = frag_0`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[frag_extend] THEN
  REWRITE_TAC[GSYM NEUTRAL_FRAG_ADD] THEN
  MATCH_MP_TAC(MATCH_MP ITERATE_EQ_NEUTRAL MONOIDAL_FRAG_ADD) THEN
  ASM_SIMP_TAC[NEUTRAL_FRAG_ADD] THEN REPEAT STRIP_TAC THEN
  CONV_TAC FRAG_MODULE);;

let FRAG_SUPPORT_FRAG_EXTEND = prove
 (`!f:A->B frag c.
        frag_support(frag_extend f c) SUBSET
        UNIONS {frag_support(f a) | a IN frag_support c}`,
  REPEAT GEN_TAC THEN REWRITE_TAC[frag_extend] THEN
  W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_SUM o lhand o snd) THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS) THEN
  REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC UNIONS_MONO_IMAGE THEN
  REWRITE_TAC[FRAG_SUPPORT_CMUL]);;

let FRAG_EXPANSION = prove
 (`!x:A frag. x = frag_extend frag_of x`,
  GEN_TAC THEN REWRITE_TAC[frag_extend] THEN MATCH_MP_TAC(MESON[frag_tybij]
   `dest_frag x = dest_frag y ==> x = y`) THEN
  REWRITE_TAC[o_THM; FUN_EQ_THM; I_THM] THEN X_GEN_TAC `b:A` THEN
  SUBGOAL_THEN
   `!k. FINITE k
        ==> dest_frag(iterate frag_add k
                        (\a:A. frag_cmul (dest_frag x a) (frag_of a))) b =
            if b IN k then dest_frag x b else &0`
   (fun th -> SIMP_TAC[th; FINITE_FRAG_SUPPORT])
  THENL
   [MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
    SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN
    REWRITE_TAC[NOT_IN_EMPTY; NEUTRAL_FRAG_ADD; DEST_FRAG_0] THEN
    SIMP_TAC[DEST_FRAG_ADD; DEST_FRAG_CMUL; DEST_FRAG_OF] THEN
    MAP_EVERY X_GEN_TAC [`a:A`; `k:A->bool`] THEN
    ASM_CASES_TAC `b:A = a` THEN ASM_SIMP_TAC[IN_INSERT] THEN INT_ARITH_TAC;
    REWRITE_TAC[frag_support; IN_ELIM_THM] THEN MESON_TAC[]]);;

let FRAG_CLOSURE_SUB_CMUL = prove
 (`!P:A frag->bool.
        P frag_0 /\
        (!c1 c2. P c1 /\ P c2 ==> P(frag_sub c1 c2))
        ==> !a c. P c ==> P(frag_cmul a c)`,
  GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN `!n. (P:(A frag)->bool) (frag_cmul (&n) c)` ASSUME_TAC THENL
   [INDUCT_TAC THEN REWRITE_TAC[GSYM INT_OF_NUM_SUC; FRAG_MODULE
    `frag_cmul (a + &1) x = frag_sub (frag_cmul a x) (frag_sub frag_0 x)`] THEN
    ASM_SIMP_TAC[DEST_FRAG_0; FRAG_MODULE `frag_cmul (&0) x = frag_0`];
    ALL_TAC] THEN
  X_GEN_TAC `a:int` THEN
  DISJ_CASES_TAC(INT_ARITH `&0:int <= a \/ &0 <= --a`) THENL
   [UNDISCH_TAC `&0:int <= a` THEN SPEC_TAC(`a:int`,`a:int`);
    ONCE_REWRITE_TAC[FRAG_MODULE
     `frag_cmul a x = frag_sub frag_0 (frag_cmul (--a) x)`] THEN
    ASM_SIMP_TAC[DEST_FRAG_CMUL; DEST_FRAG_0; FRAG_MODULE
     `frag_sub x y = frag_sub x z <=> y = z`] THEN
    UNDISCH_TAC `&0:int <= --a` THEN SPEC_TAC(`--a:int`,`a:int`)] THEN
  ASM_SIMP_TAC[GSYM INT_FORALL_POS]);;

let FRAG_INDUCTION = prove
 (`!P:A frag->bool s.
        P frag_0 /\
        (!a. a IN s ==> P(frag_of a)) /\
        (!c1 c2. P c1 /\ P c2 ==> P(frag_sub c1 c2))
        ==> !c. frag_support c SUBSET s ==> P c`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MP_TAC(ISPEC `P:A frag->bool` FRAG_CLOSURE_SUB_CMUL) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  GEN_REWRITE_TAC (BINDER_CONV o RAND_CONV o RAND_CONV) [FRAG_EXPANSION] THEN
  REWRITE_TAC[frag_extend; o_THM] THEN X_GEN_TAC `c:A frag` THEN
  MP_TAC(ISPEC `c:A frag` FINITE_FRAG_SUPPORT) THEN
  SPEC_TAC(`frag_support(c:A frag)`,`k:A->bool`) THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN
  ASM_REWRITE_TAC[NEUTRAL_FRAG_ADD; INSERT_SUBSET] THEN
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[FRAG_MODULE
   `frag_add x y = frag_sub x (frag_sub frag_0 y)`] THEN
  REPEAT(FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC) THEN
  ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
  ASM SET_TAC[]);;

let FRAG_EXTEND_COMPOSE = prove
 (`!(f:B->C frag) (g:A->B) c.
        frag_extend f (frag_extend (frag_of o g) c) = frag_extend (f o g) c`,
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC(MESON[SUBSET_UNIV]
   `(!c. frag_support c SUBSET UNIV ==> P c) ==> (!c. P c)`) THEN
  MATCH_MP_TAC FRAG_INDUCTION THEN
  SIMP_TAC[FRAG_EXTEND_0; FRAG_EXTEND_SUB; FRAG_EXTEND_OF; o_THM]);;

let FRAG_SPLIT = prove
 (`!c s t:A->bool.
        frag_support c SUBSET s UNION t
        ==> ?d e. frag_support d SUBSET s /\ frag_support e SUBSET t /\
                  frag_add d e = c`,
  REPEAT STRIP_TAC THEN MAP_EVERY EXISTS_TAC
   [`frag_extend (\f. if f IN s then frag_of f else frag_0) c:A frag`;
    `frag_extend (\f. if f IN s then frag_0 else frag_of f) c:A frag`] THEN
  REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL
   [CONJ_TAC THEN
    W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_FRAG_EXTEND o lhand o snd) THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS) THEN
    REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN
    REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
    ASM_REWRITE_TAC[FRAG_SUPPORT_0; EMPTY_SUBSET; FRAG_SUPPORT_OF] THEN
    ASM SET_TAC[];
    POP_ASSUM MP_TAC THEN SPEC_TAC(`c:A frag`,`c:A frag`) THEN
    MATCH_MP_TAC FRAG_INDUCTION THEN
    REWRITE_TAC[FRAG_EXTEND_0; FRAG_EXTEND_SUB; FRAG_EXTEND_OF] THEN
    CONJ_TAC THENL [CONV_TAC FRAG_MODULE; ALL_TAC] THEN
    CONJ_TAC THENL [ALL_TAC; CONV_TAC FRAG_MODULE] THEN
    REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC FRAG_MODULE]);;