Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 17,862 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
(* ========================================================================= *)
(* A formulation of free Abelian groups on :A using a type :(A)frag. *)
(* ========================================================================= *)
let frag_tybij =
let th = prove
(`?f:A->int. FINITE {x | ~(f x = &0)}`,
EXISTS_TAC `(\x. &0):A->int` THEN
REWRITE_TAC[EMPTY_GSPEC; FINITE_EMPTY]) in
new_type_definition "frag" ("mk_frag","dest_frag") th;;
let frag_support = new_definition
`frag_support (x:A frag) = {a | ~(dest_frag x a = &0)}`;;
let frag_0 = new_definition
`frag_0:A frag = mk_frag (\x. &0)`;;
let frag_of = new_definition
`frag_of (c:A) = mk_frag (\a. if a = c then &1 else &0)`;;
let frag_neg = new_definition
`frag_neg (x:A frag) = mk_frag (\a. --(dest_frag x a))`;;
let frag_cmul = new_definition
`frag_cmul c (x:A frag) = mk_frag (\a. c * dest_frag x a)`;;
let frag_add = new_definition
`frag_add (x:A frag) y = mk_frag (\a. dest_frag x a + dest_frag y a)`;;
let frag_sub = new_definition
`frag_sub (x:A frag) y = mk_frag (\a. dest_frag x a - dest_frag y a)`;;
let FRAG_EQ = prove
(`!c1 c2:A frag. c1 = c2 <=> dest_frag c1 = dest_frag c2`,
MESON_TAC[frag_tybij]);;
let DEST_FRAG_0 = prove
(`dest_frag(frag_0:A frag) = \x. &0`,
REWRITE_TAC[frag_0; GSYM(CONJUNCT2 frag_tybij)] THEN
REWRITE_TAC[EMPTY_GSPEC; FINITE_EMPTY]);;
let DEST_FRAG_OF = prove
(`!c:A. dest_frag(frag_of c) = \a. if a = c then &1 else &0`,
REWRITE_TAC[frag_of; GSYM(CONJUNCT2 frag_tybij)] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
CONV_TAC INT_REDUCE_CONV THEN
REWRITE_TAC[MESON[] `~(if p then F else T) <=> p`] THEN
REWRITE_TAC[SING_GSPEC; FINITE_SING]);;
let DEST_FRAG_NEG = prove
(`!x:A frag. dest_frag(frag_neg x) = \a. --(dest_frag x a)`,
REWRITE_TAC[frag_neg; GSYM(CONJUNCT2 frag_tybij)] THEN
REWRITE_TAC[INT_NEG_EQ_0] THEN REWRITE_TAC[frag_tybij; ETA_AX]);;
let DEST_FRAG_CMUL = prove
(`!c x:A frag. dest_frag(frag_cmul c x) = \a. c * dest_frag x a`,
REPEAT GEN_TAC THEN REWRITE_TAC[frag_cmul; GSYM(CONJUNCT2 frag_tybij)] THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{a:A | ~(dest_frag x a = &0)}` THEN
SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; INT_MUL_RZERO] THEN
REWRITE_TAC[frag_tybij; ETA_AX]);;
let DEST_FRAG_ADD = prove
(`!x y:A frag. dest_frag(frag_add x y) = \a. dest_frag x a + dest_frag y a`,
REPEAT GEN_TAC THEN REWRITE_TAC[frag_add; GSYM(CONJUNCT2 frag_tybij)] THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC
`{a:A | ~(dest_frag x a = &0)} UNION {a | ~(dest_frag y a = &0)}` THEN
SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN
SIMP_TAC[GSYM DE_MORGAN_THM; CONTRAPOS_THM; INT_ADD_LID] THEN
REWRITE_TAC[FINITE_UNION; frag_tybij; ETA_AX]);;
let DEST_FRAG_SUB = prove
(`!x y:A frag. dest_frag(frag_sub x y) = \a. dest_frag x a - dest_frag y a`,
REPEAT GEN_TAC THEN REWRITE_TAC[frag_sub; GSYM(CONJUNCT2 frag_tybij)] THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC
`{a:A | ~(dest_frag x a = &0)} UNION {a | ~(dest_frag y a = &0)}` THEN
SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN
SIMP_TAC[GSYM DE_MORGAN_THM; CONTRAPOS_THM; INT_SUB_RZERO] THEN
REWRITE_TAC[FINITE_UNION; frag_tybij; ETA_AX]);;
let FRAG_OF_NONZERO = prove
(`!a:A. ~(frag_of a = frag_0)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `a:A` o MATCH_MP (MESON[]
`c = d ==> !a:A. dest_frag c a = dest_frag d a`)) THEN
REWRITE_TAC[DEST_FRAG_OF; DEST_FRAG_0] THEN
CONV_TAC INT_REDUCE_CONV);;
let FRAG_MODULE =
let tac =
REPEAT(CONJ_TAC ORELSE GEN_TAC) THEN
GEN_REWRITE_TAC ONCE_DEPTH_CONV
[MESON[CONJUNCT1 frag_tybij; FUN_EQ_THM]
`!x y:A frag. x = y <=> !a. dest_frag x a = dest_frag y a`] THEN
GEN_REWRITE_TAC TOP_DEPTH_CONV
[DEST_FRAG_0; DEST_FRAG_NEG; DEST_FRAG_CMUL;
DEST_FRAG_ADD; DEST_FRAG_SUB; BETA_THM] THEN
GEN_REWRITE_TAC DEPTH_CONV
[AND_FORALL_THM; LEFT_OR_FORALL_THM; RIGHT_OR_FORALL_THM] THEN
((MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) ORELSE
TRY(AP_TERM_TAC THEN ABS_TAC)) THEN
CONV_TAC INT_RING in
fun tm -> prove(tm,tac);;
let FINITE_FRAG_SUPPORT = prove
(`!x:A frag. FINITE(frag_support (x:A frag))`,
REWRITE_TAC[frag_support; frag_tybij; ETA_AX]);;
let FRAG_SUPPORT_0 = prove
(`frag_support frag_0 = {}`,
REWRITE_TAC[frag_support; DEST_FRAG_0; EMPTY_GSPEC]);;
let FRAG_SUPPORT_OF = prove
(`!a:A. frag_support(frag_of a) = {a}`,
REWRITE_TAC[frag_support; DEST_FRAG_OF] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
CONV_TAC INT_REDUCE_CONV THEN
REWRITE_TAC[MESON[] `~(if p then F else T) <=> p`] THEN
REWRITE_TAC[SING_GSPEC]);;
let FRAG_SUPPORT_NEG = prove
(`!x:A frag. frag_support(frag_neg x) = frag_support x`,
REWRITE_TAC[frag_support; DEST_FRAG_NEG; INT_NEG_EQ_0]);;
let FRAG_SUPPORT_CMUL = prove
(`!a x:A frag. frag_support(frag_cmul a x) SUBSET frag_support x`,
REWRITE_TAC[frag_support; DEST_FRAG_CMUL] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; INT_MUL_RZERO] THEN
REWRITE_TAC[frag_tybij; ETA_AX]);;
let FRAG_SUPPORT_ADD = prove
(`!x y:A frag. frag_support(frag_add x y) SUBSET
frag_support x UNION frag_support y`,
REWRITE_TAC[frag_support; DEST_FRAG_ADD] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN
SIMP_TAC[GSYM DE_MORGAN_THM; CONTRAPOS_THM; INT_ADD_LID]);;
let FRAG_SUPPORT_SUB = prove
(`!x y:A frag. frag_support(frag_sub x y) SUBSET
frag_support x UNION frag_support y`,
REWRITE_TAC[frag_support; DEST_FRAG_SUB] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN
SIMP_TAC[GSYM DE_MORGAN_THM; CONTRAPOS_THM; INT_SUB_RZERO]);;
let FRAG_SUPPORT_EQ_EMPTY = prove
(`!c:A frag. frag_support c = {} <=> c = frag_0`,
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN
REWRITE_TAC[MESON[frag_tybij] `c = d <=> dest_frag c = dest_frag d`] THEN
REWRITE_TAC[DEST_FRAG_0; FUN_EQ_THM; frag_support; IN_ELIM_THM]);;
let FRAG_OF_EQ = prove
(`!x y:A. frag_of x = frag_of y <=> x = y`,
MESON_TAC[FRAG_SUPPORT_OF; SET_RULE `{x} = {y} <=> x = y`]);;
let FRAG_ADD_EQ_0 = prove
(`!c1 c2:A frag.
DISJOINT (frag_support c1) (frag_support c2) /\
frag_add c1 c2 = frag_0
==> c1 = frag_0 /\ c2 = frag_0`,
REPEAT GEN_TAC THEN REWRITE_TAC[frag_support; FRAG_EQ] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[DEST_FRAG_ADD; DEST_FRAG_0; FUN_EQ_THM; AND_FORALL_THM] THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC(INT_ARITH
`~(~(x:int = &0) /\ ~(y = &0)) ==> x + y = &0 ==> x = &0 /\ y = &0`) THEN
ASM SET_TAC[]);;
let NEUTRAL_FRAG_ADD = prove
(`neutral frag_add :A frag = frag_0`,
REWRITE_TAC[neutral; FRAG_MODULE
`(frag_add x y = y <=> x = frag_0) /\
(frag_add y x = y <=> x = frag_0)`]);;
let MONOIDAL_FRAG_ADD = prove
(`monoidal frag_add`,
REWRITE_TAC[monoidal; NEUTRAL_FRAG_ADD] THEN CONV_TAC FRAG_MODULE);;
let FRAG_CMUL_SUM = prove
(`!f:B->A frag k a.
frag_cmul a (iterate frag_add k f) =
iterate frag_add k (\b. frag_cmul a (f b))`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:int = &0` THEN
ASM_SIMP_TAC[INT_MUL_LZERO; FRAG_MODULE `frag_cmul (&0) x = frag_0`;
REWRITE_RULE[NEUTRAL_FRAG_ADD]
(MATCH_MP ITERATE_EQ_NEUTRAL MONOIDAL_FRAG_ADD)] THEN
ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
ASM_REWRITE_TAC[support; NEUTRAL_FRAG_ADD;
FRAG_MODULE `frag_cmul a c = frag_0 <=> a = &0 \/ c = frag_0`] THEN
COND_CASES_TAC THEN
ASM_REWRITE_TAC[FRAG_MODULE `frag_cmul a frag_0 = frag_0`] THEN
UNDISCH_TAC `FINITE {x | x IN k /\ ~((f:B->A frag) x = frag_0)}` THEN
SPEC_TAC(`{x | x IN k /\ ~((f:B->A frag) x = frag_0)}`,`k:B->bool`) THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN
REWRITE_TAC[NEUTRAL_FRAG_ADD; FRAG_MODULE `frag_cmul a frag_0 = frag_0`] THEN
SIMP_TAC[FRAG_MODULE
`frag_cmul a (frag_add x y) =
frag_add (frag_cmul a x) (frag_cmul a y)`]);;
let FRAG_SUPPORT_SUM = prove
(`!f:B->A frag k.
frag_support(iterate frag_add k f) SUBSET
UNIONS {frag_support(f i) | i IN k}`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
REWRITE_TAC[NEUTRAL_FRAG_ADD] THEN COND_CASES_TAC THEN
REWRITE_TAC[FRAG_SUPPORT_0; EMPTY_SUBSET] THEN
TRANS_TAC SUBSET_TRANS
`UNIONS {frag_support (f i) |i| i IN support frag_add (f:B->A frag) k}` THEN
CONJ_TAC THENL
[POP_ASSUM MP_TAC THEN
SPEC_TAC(`support frag_add (f:B->A frag) k`,`k:B->bool`) THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN
REWRITE_TAC[SIMPLE_IMAGE; IMAGE_CLAUSES; NEUTRAL_FRAG_ADD] THEN
REWRITE_TAC[FRAG_SUPPORT_0; EMPTY_SUBSET] THEN
REPEAT STRIP_TAC THEN
W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_ADD o lhand o snd) THEN
ASM SET_TAC[];
REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC SUBSET_UNIONS THEN
SIMP_TAC[SUPPORT_SUBSET; IMAGE_SUBSET]]);;
let frag_extend = new_definition
`frag_extend (f:A->B frag) x =
iterate frag_add (frag_support x)
(\a. frag_cmul (dest_frag x a) (f a))`;;
let FRAG_EXTEND = prove
(`!f:A->B frag x.
frag_extend f x =
iterate frag_add UNIV (\a. frag_cmul (dest_frag x a) (f a))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[frag_extend] THEN
MATCH_MP_TAC(MATCH_MP ITERATE_UNIV MONOIDAL_FRAG_ADD) THEN
REWRITE_TAC[support; NEUTRAL_FRAG_ADD; frag_support; IN_UNIV] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM] THEN
REPEAT STRIP_TAC THEN CONV_TAC FRAG_MODULE);;
let FRAG_EXTEND_0 = prove
(`!f:A->B frag. frag_extend f frag_0 = frag_0`,
REWRITE_TAC[frag_extend; FRAG_SUPPORT_0] THEN
REWRITE_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN
REWRITE_TAC[NEUTRAL_FRAG_ADD]);;
let FRAG_EXTEND_OF = prove
(`!f:A->B frag a. frag_extend f (frag_of a) = f a`,
REWRITE_TAC[frag_extend; FRAG_SUPPORT_OF] THEN
SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD; FINITE_EMPTY] THEN
REWRITE_TAC[NOT_IN_EMPTY; NEUTRAL_FRAG_ADD; DEST_FRAG_OF] THEN
CONV_TAC FRAG_MODULE);;
let FRAG_EXTEND_CMUL = prove
(`!f:A->B frag c x.
frag_extend f (frag_cmul c x) = frag_cmul c (frag_extend f x)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `c:int = &0` THEN
ASM_REWRITE_TAC[FRAG_MODULE `frag_cmul (&0) x = frag_0`; FRAG_EXTEND_0] THEN
REWRITE_TAC[frag_extend; frag_support; DEST_FRAG_CMUL] THEN
ASM_REWRITE_TAC[INT_ENTIRE; FRAG_CMUL_SUM; FRAG_MODULE
`frag_cmul (a * b) c = frag_cmul a (frag_cmul b c)`]);;
let FRAG_EXTEND_NEG = prove
(`!f:A->B frag x.
frag_extend f (frag_neg x) = frag_neg(frag_extend f x)`,
REWRITE_TAC[FRAG_MODULE `frag_neg x = frag_cmul (-- &1) x`] THEN
REWRITE_TAC[FRAG_EXTEND_CMUL]);;
let FRAG_EXTEND_ADD = prove
(`!f:A->B frag x y.
frag_extend f (frag_add x y) =
frag_add (frag_extend f x) (frag_extend f y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FRAG_EXTEND] THEN
W(MP_TAC o PART_MATCH (rand o rand)
(MATCH_MP ITERATE_OP_GEN MONOIDAL_FRAG_ADD) o rand o snd) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[REWRITE_TAC[support; NEUTRAL_FRAG_ADD; IN_UNIV] THEN
CONJ_TAC THEN MATCH_MP_TAC FINITE_SUBSET THENL
[EXISTS_TAC `frag_support (x:A frag)`;
EXISTS_TAC `frag_support (y:A frag)`] THEN
REWRITE_TAC[FINITE_FRAG_SUPPORT] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; frag_support] THEN
REPEAT STRIP_TAC THEN CONV_TAC FRAG_MODULE;
DISCH_THEN(SUBST1_TAC o SYM) THEN
MATCH_MP_TAC(MATCH_MP ITERATE_EQ MONOIDAL_FRAG_ADD) THEN
REWRITE_TAC[IN_UNIV] THEN CONV_TAC FRAG_MODULE]);;
let FRAG_EXTEND_SUB = prove
(`!f:A->B frag x y.
frag_extend f (frag_sub x y) =
frag_sub (frag_extend f x) (frag_extend f y)`,
REWRITE_TAC[FRAG_MODULE
`frag_sub x y = frag_add x (frag_cmul (-- &1) y)`] THEN
REWRITE_TAC[FRAG_EXTEND_CMUL; FRAG_EXTEND_ADD]);;
let FRAG_EXTEND_SUM = prove
(`!f:A->B frag g k:C->bool.
FINITE k
==> frag_extend f (iterate frag_add k g) =
iterate frag_add k (frag_extend f o g)`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN
SIMP_TAC[NEUTRAL_FRAG_ADD; FRAG_EXTEND_0; FRAG_EXTEND_ADD; o_THM]);;
let FRAG_EXTEND_EQ = prove
(`!(g:A->B frag) h c.
(!f. f IN frag_support c ==> g f = h f)
==> frag_extend g c = frag_extend h c`,
REPEAT STRIP_TAC THEN REWRITE_TAC[frag_extend] THEN
MATCH_MP_TAC(MATCH_MP ITERATE_EQ MONOIDAL_FRAG_ADD) THEN
ASM_SIMP_TAC[]);;
let FRAG_EXTEND_EQ_0 = prove
(`!(f:A->B frag) c.
(!a. a IN frag_support c ==> f a = frag_0)
==> frag_extend f c = frag_0`,
REPEAT STRIP_TAC THEN REWRITE_TAC[frag_extend] THEN
REWRITE_TAC[GSYM NEUTRAL_FRAG_ADD] THEN
MATCH_MP_TAC(MATCH_MP ITERATE_EQ_NEUTRAL MONOIDAL_FRAG_ADD) THEN
ASM_SIMP_TAC[NEUTRAL_FRAG_ADD] THEN REPEAT STRIP_TAC THEN
CONV_TAC FRAG_MODULE);;
let FRAG_SUPPORT_FRAG_EXTEND = prove
(`!f:A->B frag c.
frag_support(frag_extend f c) SUBSET
UNIONS {frag_support(f a) | a IN frag_support c}`,
REPEAT GEN_TAC THEN REWRITE_TAC[frag_extend] THEN
W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_SUM o lhand o snd) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS) THEN
REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC UNIONS_MONO_IMAGE THEN
REWRITE_TAC[FRAG_SUPPORT_CMUL]);;
let FRAG_EXPANSION = prove
(`!x:A frag. x = frag_extend frag_of x`,
GEN_TAC THEN REWRITE_TAC[frag_extend] THEN MATCH_MP_TAC(MESON[frag_tybij]
`dest_frag x = dest_frag y ==> x = y`) THEN
REWRITE_TAC[o_THM; FUN_EQ_THM; I_THM] THEN X_GEN_TAC `b:A` THEN
SUBGOAL_THEN
`!k. FINITE k
==> dest_frag(iterate frag_add k
(\a:A. frag_cmul (dest_frag x a) (frag_of a))) b =
if b IN k then dest_frag x b else &0`
(fun th -> SIMP_TAC[th; FINITE_FRAG_SUPPORT])
THENL
[MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN
REWRITE_TAC[NOT_IN_EMPTY; NEUTRAL_FRAG_ADD; DEST_FRAG_0] THEN
SIMP_TAC[DEST_FRAG_ADD; DEST_FRAG_CMUL; DEST_FRAG_OF] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `k:A->bool`] THEN
ASM_CASES_TAC `b:A = a` THEN ASM_SIMP_TAC[IN_INSERT] THEN INT_ARITH_TAC;
REWRITE_TAC[frag_support; IN_ELIM_THM] THEN MESON_TAC[]]);;
let FRAG_CLOSURE_SUB_CMUL = prove
(`!P:A frag->bool.
P frag_0 /\
(!c1 c2. P c1 /\ P c2 ==> P(frag_sub c1 c2))
==> !a c. P c ==> P(frag_cmul a c)`,
GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `!n. (P:(A frag)->bool) (frag_cmul (&n) c)` ASSUME_TAC THENL
[INDUCT_TAC THEN REWRITE_TAC[GSYM INT_OF_NUM_SUC; FRAG_MODULE
`frag_cmul (a + &1) x = frag_sub (frag_cmul a x) (frag_sub frag_0 x)`] THEN
ASM_SIMP_TAC[DEST_FRAG_0; FRAG_MODULE `frag_cmul (&0) x = frag_0`];
ALL_TAC] THEN
X_GEN_TAC `a:int` THEN
DISJ_CASES_TAC(INT_ARITH `&0:int <= a \/ &0 <= --a`) THENL
[UNDISCH_TAC `&0:int <= a` THEN SPEC_TAC(`a:int`,`a:int`);
ONCE_REWRITE_TAC[FRAG_MODULE
`frag_cmul a x = frag_sub frag_0 (frag_cmul (--a) x)`] THEN
ASM_SIMP_TAC[DEST_FRAG_CMUL; DEST_FRAG_0; FRAG_MODULE
`frag_sub x y = frag_sub x z <=> y = z`] THEN
UNDISCH_TAC `&0:int <= --a` THEN SPEC_TAC(`--a:int`,`a:int`)] THEN
ASM_SIMP_TAC[GSYM INT_FORALL_POS]);;
let FRAG_INDUCTION = prove
(`!P:A frag->bool s.
P frag_0 /\
(!a. a IN s ==> P(frag_of a)) /\
(!c1 c2. P c1 /\ P c2 ==> P(frag_sub c1 c2))
==> !c. frag_support c SUBSET s ==> P c`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MP_TAC(ISPEC `P:A frag->bool` FRAG_CLOSURE_SUB_CMUL) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
GEN_REWRITE_TAC (BINDER_CONV o RAND_CONV o RAND_CONV) [FRAG_EXPANSION] THEN
REWRITE_TAC[frag_extend; o_THM] THEN X_GEN_TAC `c:A frag` THEN
MP_TAC(ISPEC `c:A frag` FINITE_FRAG_SUPPORT) THEN
SPEC_TAC(`frag_support(c:A frag)`,`k:A->bool`) THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN
ASM_REWRITE_TAC[NEUTRAL_FRAG_ADD; INSERT_SUBSET] THEN
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[FRAG_MODULE
`frag_add x y = frag_sub x (frag_sub frag_0 y)`] THEN
REPEAT(FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC) THEN
ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM SET_TAC[]);;
let FRAG_EXTEND_COMPOSE = prove
(`!(f:B->C frag) (g:A->B) c.
frag_extend f (frag_extend (frag_of o g) c) = frag_extend (f o g) c`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC(MESON[SUBSET_UNIV]
`(!c. frag_support c SUBSET UNIV ==> P c) ==> (!c. P c)`) THEN
MATCH_MP_TAC FRAG_INDUCTION THEN
SIMP_TAC[FRAG_EXTEND_0; FRAG_EXTEND_SUB; FRAG_EXTEND_OF; o_THM]);;
let FRAG_SPLIT = prove
(`!c s t:A->bool.
frag_support c SUBSET s UNION t
==> ?d e. frag_support d SUBSET s /\ frag_support e SUBSET t /\
frag_add d e = c`,
REPEAT STRIP_TAC THEN MAP_EVERY EXISTS_TAC
[`frag_extend (\f. if f IN s then frag_of f else frag_0) c:A frag`;
`frag_extend (\f. if f IN s then frag_0 else frag_of f) c:A frag`] THEN
REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL
[CONJ_TAC THEN
W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_FRAG_EXTEND o lhand o snd) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS) THEN
REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[FRAG_SUPPORT_0; EMPTY_SUBSET; FRAG_SUPPORT_OF] THEN
ASM SET_TAC[];
POP_ASSUM MP_TAC THEN SPEC_TAC(`c:A frag`,`c:A frag`) THEN
MATCH_MP_TAC FRAG_INDUCTION THEN
REWRITE_TAC[FRAG_EXTEND_0; FRAG_EXTEND_SUB; FRAG_EXTEND_OF] THEN
CONJ_TAC THENL [CONV_TAC FRAG_MODULE; ALL_TAC] THEN
CONJ_TAC THENL [ALL_TAC; CONV_TAC FRAG_MODULE] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC FRAG_MODULE]);;
|