Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 5,292 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
(* small LP-based prover, to convert the HOL-terms to a coefficient
matrix and back it uses the code of REAL_LINEAR_PROVER in the HOL
Light distribution *)
let cddwrapper = "cdd_cert";;
(* in lin_of_hol one can replace the call to linear_add to a call to lin_add *)
let lin_of_hol =
let one_tm = `&1:real`
and zero_tm = `&0:real`
and add_tm = `(+):real->real->real`
and mul_tm = `(*):real->real->real`
and lin_add = combine (+/) (fun x -> x =/ num_0) in
let rec lin_of_hol tm =
if tm = zero_tm then undefined
else if not (is_comb tm) then (tm |=> Int 1)
else if is_ratconst tm then (one_tm |=> rat_of_term tm) else
let lop,r = dest_comb tm in
if not (is_comb lop) then (tm |=> Int 1) else
let op,l = dest_comb lop in
if op = add_tm then lin_add (lin_of_hol l) (lin_of_hol r)
else if op = mul_tm && is_ratconst l then (r |=> rat_of_term l)
else (tm |=> Int 1) in
lin_of_hol;;
let words s =
let stre = Stream.of_string s in
let is_empty st = match Stream.peek st with
None -> true
| Some _ -> false in
let rec sb acc st =
if is_empty st
then [acc]
else
let t = Stream.next st in
if t = ' ' then acc :: (sb "" st) else sb (acc ^ Char.escaped t) st
in filter (fun x -> x <> "") (sb "" stre);;
let cdd ins =
let outfn = Filename.temp_file "cdd" ".res"
and infn = Filename.temp_file "cdd" ".ine" in
let s = "cat " ^ infn ^ "| " ^ cddwrapper ^ " 2> /dev/null > " ^ outfn in
let inch = open_out infn in
output_string inch ins;
close_out inch;
if Sys.command s <> 0 then failwith "cdd" else
let fd = Pervasives.open_in outfn in let data = input_line fd in close_in fd; Sys.remove infn; Sys.remove outfn; data;;
let rec take n l =
match l with
x :: xs -> if n = 0 then [] else x :: (take (n-1) xs)
| [] -> [];;
let rec drop n l =
match l with
x :: xs -> if n = 0 then l else (drop (n-1) xs)
| [] -> [];;
let lp_prover (eq,le,lt) =
let one_tm = `&1:real` in
let vars = (subtract (itlist (union o dom) (eq@le@lt) []) [one_tm]) in
let neq = length eq
and nle = length le
and nlt = length lt
and nr = length (eq@le@lt) in
let get_row v = map (fun x -> applyd x (fun _ -> num_0) v) (eq@le@lt) in
let rec rep n e = if n = 0 then [] else e :: (rep (n-1) e) in
let one_at n =
map (fun i -> (rep i (num_0))@[num_1]@(rep (n-i-1) (num_0))) (0--(n-1)) in
let main_rows = map ((fun l -> num_0::l) o get_row) vars
and lt_row = [minus_num num_1] @ (rep (length eq) num_0) @
(rep (length le) num_0) @ (rep (length lt) num_1)
and pos_rows = map (fun l -> (rep (length eq + 1 ) num_0) @ l)
(one_at (length (le@lt)))
and bvec = (num_0 :: (get_row one_tm)) in
let mat = main_rows@[lt_row]@pos_rows in
let string_of_row = (String.concat " ") o (map string_of_num) in
let cddlp = (String.concat "\n"
["H-representation";
"linearity "^(string_of_int (length main_rows))^" "^
(String.concat " " (map string_of_int (1--(length main_rows))));
"begin";
String.concat " " [string_of_int (length mat);string_of_int (nr+1);"rational"];
String.concat "\n" (map string_of_row mat);
"end";
String.concat " " ["minimize";string_of_row bvec]]) in
let outp = (cdd cddlp) in
let res = (* print_string cddlp; print_newline(); *)(* print_string outp; print_newline(); *)
if outp = "No Contradiction" then failwith "No contradiction" else map Num.num_of_string (words outp) in
let (req,rle,rlt) = (take neq res,
take nle (drop neq res),
take nlt (drop (nle+neq) res)) in
let peq = map2 (fun r e -> if (r =/ num_0) then [] else [Eqmul (term_of_rat r, Axiom_eq e)]) req (0--(neq-1))
and ple = map2 (fun r e -> if (r =/ num_0) then [] else [Product (Rational_lt r,Axiom_le e)]) rle (0--(nle-1))
and plt = map2 (fun r e -> if (r =/ num_0) then [] else [Product (Rational_lt r,Axiom_lt e)]) rlt (0--(nlt-1)) in
let pp = List.flatten (peq@ple@plt) in
let refu = itlist (fun acc x -> Sum (acc,x)) (tl pp) (hd pp) in
(* print_string outp; *)
(* print_newline(); *)
refu;;
let LP_PROVER =
let is_alien tm =
match tm with
Comb(Const("real_of_num",_),n) when not(is_numeral n) -> true
| _ -> false in
let n_tm = `n:num` in
let pth = REWRITE_RULE[GSYM real_ge] (SPEC n_tm REAL_POS) in
fun translator (eq,le,lt) ->
let eq_pols = map (lin_of_hol o lhand o concl) eq
and le_pols = map (lin_of_hol o lhand o concl) le
and lt_pols = map (lin_of_hol o lhand o concl) lt in
let aliens = filter is_alien
(itlist (union o dom) (eq_pols @ le_pols @ lt_pols) []) in
let le_pols' = le_pols @ map (fun v -> (v |=> Int 1)) aliens in
let proof = lp_prover(eq_pols,le_pols',lt_pols) in
let le' = le @ map (fun a -> INST [rand a,n_tm] pth) aliens in
translator (eq,le',lt) proof;;
let LP_ARITH =
let init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [DECIMAL]
and pure = GEN_REAL_ARITH LP_PROVER in
fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)));;
let LP_ARITH_TAC = CONV_TAC LP_ARITH;;
|