Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,338 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219




(* ------------------------------------------------------------------ *)
(*   Theorems that construct and propagate equality and inequality    *)
(* ------------------------------------------------------------------ *)

(* ------------------------------------------------------------------ *)
(* Propagation of =EQUAL=  *)
(* ------------------------------------------------------------------ *)

unambiguous_interface();;
prioritize_num();;

let REAL_MUL_LTIMES = prove (`!x a b. (x*.a = x*.b) ==> (~(x=(&.0))) ==> (a =b)`,
   MESON_TAC[REAL_EQ_MUL_LCANCEL]);;

let REAL_MUL_RTIMES = prove (`!x a b. (a*.x = b*.x) ==> (~(x=(&.0))) ==> (a =b)`,
   MESON_TAC[REAL_EQ_MUL_RCANCEL]);;

let REAL_PROP_EQ_LMUL = REAL_MUL_LTIMES;;
let REAL_PROP_EQ_RMUL = REAL_MUL_RTIMES;;

let REAL_PROP_EQ_LMUL_' = REAL_EQ_MUL_LCANCEL (* |- !x y z. (x * y = x * z) = (x = &0) \/ (y = z) *);;
let REAL_PROP_EQ_RMUL_' = REAL_EQ_MUL_LCANCEL (* |- !x y z. (x * z = y * z) = (x = y) \/ (z = &0) *);;
(* see also minor variations REAL_LT_LMUL_EQ, REAL_LT_RMUL_EQ *)

let REAL_PROP_EQ_SQRT = SQRT_INJ;; (* |- !x y. &0 <= x /\ &0 <= y ==> ((sqrt x = sqrt y) = x = y) *)

(* ------------------------------------------------------------------ *)
(* Construction of <=. *)
(* ------------------------------------------------------------------ *)
let REAL_MK_LE_SQUARE = REAL_LE_SQUARE_POW ;; (*  |- !x. &0 <= x pow 2 *)

(* ------------------------------------------------------------------ *)
(* Propagation of <=. *)
(* ------------------------------------------------------------------ *)

let REAL_MUL_LTIMES_LE = prove (`!x a b. (x*.a <=. x*.b) ==> (&.0 < x) ==> (a <=. b)`,
   MESON_TAC[REAL_LE_LMUL_EQ]);;
  (* virtually identical to REAL_LE_LCANCEL_IMP, REAL_LE_LMUL_EQ *)

let REAL_MUL_RTIMES_LE = prove (`!x a b. (a*.x <=. b*.x) ==> (&.0 < x) ==> (a <=. b)`,
   MESON_TAC[REAL_LE_RMUL_EQ]);;
  (* virtually identical to REAL_LE_RCANCEL_IMP, REAL_LE_RMUL_EQ *)

let REAL_PROP_LE_LCANCEL = REAL_MUL_LTIMES_LE;;
let REAL_PROP_LE_RCANCEL = REAL_MUL_RTIMES_LE;;
let REAL_PROP_LE_LMUL = REAL_LE_LMUL (* |- !x y z. &0 <= x /\ y <= z ==> x * y <= x * z *);;
let REAL_PROP_LE_RMUL = REAL_LE_RMUL (* |- !x y z. x <= y /\ &0 <= z ==> x * z <= y * z *);;
let REAL_PROP_LE_LRMUL = REAL_LE_MUL2;; (* |- !w x y z. &0 <= w /\ w <= x /\ &0 <= y /\ y <= z ==> w * y <= x * z *)
let REAL_PROP_LE_POW = POW_LE;; (* |- !n x y. &0 <= x /\ x <= y ==> x pow n <= y pow n *)
let REAL_PROP_LE_SQRT = SQRT_MONO_LE_EQ;; (* |- !x y. &0 <= x /\ &0 <= y ==> (sqrt x <= sqrt y = x <= y) *)

(* ------------------------------------------------------------------ *)
(* Construction of LT *)
(* ------------------------------------------------------------------ *)

let REAL_MK_LT_SQUARE  = REAL_LT_SQUARE;; (* |- !x. &0 < x * x = ~(x = &0) *)

(* ------------------------------------------------------------------ *)
(* Propagation of LT *)
(* ------------------------------------------------------------------ *)

let REAL_PROP_LT_LCANCEL = REAL_LT_LCANCEL_IMP (* |- !x y z. &0 < x /\ x * y < x * z ==> y < z *);;
let REAL_PROP_LT_RCANCEL = REAL_LT_RCANCEL_IMP (* |- !x y z. &0 < z /\ x * z < y * z ==> x < y *);;
let REAL_PROP_LT_LMUL = REAL_LT_LMUL (* |- !x y z. &0 < x /\ y < z ==> x * y < x * z *);;
let REAL_PROP_LT_RMUL = REAL_LT_RMUL (* |- !x y z. x < y /\ &0 < z ==> x * z < y * z *);;
(* minor variation REAL_LT_LMUL_IMP, REAL_LT_RMUL_IMP *)

let REAL_PROP_LT_LRMUL= REAL_LT_MUL2;; (* |- !w x y z. &0 <= w /\ w < x /\ &0 <= y /\ y < z ==> w * y < x * z *)
let REAL_PROP_LT_SQRT = SQRT_MONO_LT_EQ;; (* |- !x y. &0 <= x /\ &0 <= y ==> (sqrt x < sqrt y = x < y) *)

(* ------------------------------------------------------------------ *)
(* Constructors of Non-negative *)
(* ------------------------------------------------------------------ *)

let REAL_MK_NN_SQUARE = REAL_LE_SQUARE;; (* |- !x. &0 <= x * x *)
let REAL_MK_NN_ABS = ABS_POS;; (* |- !x. &0 <= abs x *)

(* ------------------------------------------------------------------ *)
(* Propagation of Non-negative *)
(* ------------------------------------------------------------------ *)

let REAL_PROP_NN_POS = prove(`! x y. x<. y ==> x <= y`,MESON_TAC[REAL_LT_LE]);;
let REAL_PROP_NN_ADD2 = REAL_LE_ADD (* |- !x y. &0 <= x /\ &0 <= y ==> &0 <= x + y *);;
let REAL_PROP_NN_DOUBLE = REAL_LE_DOUBLE (* |- !x. &0 <= x + x <=> &0 <= x *);;
let REAL_PROP_NN_RCANCEL= prove(`!x y. &.0 <. x /\ (&.0) <=. y*.x ==> ((&.0) <=. y)`,
  MESON_TAC[REAL_PROP_LE_RCANCEL;REAL_MUL_LZERO]);;
let REAL_PROP_NN_LCANCEL= prove(`!x y. &.0 <. x /\ (&.0) <=. x*.y ==> ((&.0) <=. y)`,
  MESON_TAC[REAL_PROP_LE_LCANCEL;REAL_MUL_RZERO]);;
let REAL_PROP_NN_MUL2 = REAL_LE_MUL (* |- !x y. &0 <= x /\ &0 <= y ==> &0 <= x * y *);;
let REAL_PROP_NN_POW = REAL_POW_LE (* |- !x n. &0 <= x ==> &0 <= x pow n *);;
let REAL_PROP_NN_SQUARE = REAL_LE_POW_2;; (* |- !x. &0 <= x pow 2 *)
let REAL_PROP_NN_SQRT = SQRT_POS_LE;; (* |- !x. &0 <= x ==> &0 <= sqrt x *)
let REAL_PROP_NN_INV = REAL_LE_INV_EQ (* |- !x. &0 <= inv x = &0 <= x *);;
let REAL_PROP_NN_SIN = SIN_POS_PI_LE;; (* |- !x. &0 <= x /\ x <= pi ==> &0 <= sin x *)
let REAL_PROP_NN_ATN = ATN_POS_LE;; (* |- &0 <= atn x = &0 <= x *)


(* ------------------------------------------------------------------ *)
(* Constructor of POS *)
(* ------------------------------------------------------------------ *)

let REAL_MK_POS_ABS = REAL_ABS_NZ (* |- !x. ~(x = &0) = &0 < abs x *);;
let REAL_MK_POS_EXP = REAL_EXP_POS_LT;; (* |- !x. &0 < exp x *)
let REAL_MK_POS_LN = LN_POS_LT;; (* |- !x. &1 < x ==> &0 < ln x *)
let REAL_MK_POS_PI = PI_POS;; (* |- &0 < pi *)


(* ------------------------------------------------------------------ *)
(* Propagation of POS *)
(* ------------------------------------------------------------------ *)

let REAL_PROP_POS_ADD2 = REAL_LT_ADD (* |- !x y. &0 < x /\ &0 < y ==> &0 < x + y *);;
let REAL_PROP_POS_LADD = REAL_LET_ADD (* |- !x y. &0 <= x /\ &0 < y ==> &0 < x + y *);;
let REAL_PROP_POS_RADD = REAL_LTE_ADD (* |- !x y. &0 < x /\ &0 <= y ==> &0 < x + y *);;
let REAL_PROP_POS_LMUL = REAL_LT_LMUL_0;; (* |- !x y. &0 < x ==> (&0 < x * y = &0 < y) *)
let REAL_PROP_POS_RMUL = REAL_LT_RMUL_0;; (* |- !x y. &0 < y ==> (&0 < x * y = &0 < x) *)
let REAL_PROP_POS_MUL2 = REAL_LT_MUL (* |- !x y. &0 < x /\ &0 < y ==> &0 < x * y *);;
let REAL_PROP_POS_SQRT = SQRT_POS_LT;; (* |- !x. &0 < x ==> &0 < sqrt x *)
let REAL_PROP_POS_POW =  REAL_POW_LT (*  |- !x n. &0 < x ==> &0 < x pow n *);;
let REAL_PROP_POS_INV = REAL_LT_INV (* |- !x. &0 < x ==> &0 < inv x *);;
let REAL_PROP_POS_SIN = SIN_POS_PI;; (*  |- !x. &0 < x /\ x < pi ==> &0 < sin x *)
let REAL_PROP_POS_TAN = TAN_POS_PI2;; (* |- !x. &0 < x /\ x < pi / &2 ==> &0 < tan x *)
let REAL_PROP_POS_ATN = ATN_POS_LT;; (* |- &0 < atn x = &0 < x *)

(* ------------------------------------------------------------------ *)
(* Construction of NZ *)
(* ------------------------------------------------------------------ *)

(* renamed from REAL_MK_NZ_OF_POS *)
let REAL_MK_NZ_POS = REAL_LT_IMP_NZ (* |- !x. &0 < x ==> ~(x = &0) *);;
let REAL_MK_NZ_EXP = REAL_EXP_NZ;; (*  |- !x. ~(exp x = &0) *)

(* ------------------------------------------------------------------ *)
(* Propagation of NZ *)
(* ------------------------------------------------------------------ *)

(* renamed from REAL_ABS_NZ, moved from float.ml *)
let REAL_PROP_NZ_ABS =  prove(`!x. (~(x = (&.0))) ==> (~(abs(x) = (&.0)))`,
    REWRITE_TAC[ABS_ZERO]);;
let REAL_PROP_NZ_POW = REAL_POW_NZ (*  |- !x n. ~(x = &0) ==> ~(x pow n = &0) *);;
let REAL_PROP_NZ_INV = REAL_INV_NZ;; (* |- !x. ~(x = &0) ==> ~(inv x = &0) *)


(* ------------------------------------------------------------------ *)
(* Propagation of ZERO *)
(* ------------------------------------------------------------------ *)

let REAL_PROP_ZERO_ABS = REAL_ABS_ZERO (* |- !x. (abs x = &0) = x = &0); *);;
let REAL_PROP_ZERO_NEG = REAL_NEG_EQ_0 ;; (*  |- !x. (--x = &0) = x = &0 *)
let REAL_PROP_ZERO_INV = REAL_INV_EQ_0 (* |- !x. (inv x = &0) = x = &0 *);;
let REAL_PROP_ZERO_NEG = REAL_NEG_EQ0;; (* |- !x. (--x = &0) = x = &0 *)
let REAL_PROP_ZERO_SUMSQ = REAL_SUMSQ;; (* |- !x y. (x * x + y * y = &0) = (x = &0) /\ (y = &0) *)
let REAL_PROP_ZERO_POW = REAL_POW_EQ_0;; (* |- !x n. (x pow n = &0) = (x = &0) /\ ~(n = 0) *)
let REAL_PROP_ZERO_SQRT = SQRT_EQ_0;; (* |- !x. &0 <= x ==> (x / sqrt x = sqrt x) *)

(* ------------------------------------------------------------------ *)
(* Special values of functions *)
(* ------------------------------------------------------------------ *)

let REAL_SV_LADD_0 = REAL_ADD_LID (* |- !x. &0 + x = x); *);;
let REAL_SV_INV_0 = REAL_INV_0 (*  |- inv (&0) = &0 *);;
let REAL_SV_RMUL_0 = REAL_MUL_RZERO (* |- !x. x * &0 = &0 *);;
let REAL_SV_LMUL_0 = REAL_MUL_LZERO (* |- !x. &0 * x = &0 *);;
let REAL_SV_NEG_0 = REAL_NEG_0 (*  |- -- &0 = &0 *);;
let REAL_SV_ABS_0 = REAL_ABS_0 (* |- abs (&0) = &0 *);;
let REAL_SV_EXP_0 = REAL_EXP_0;; (* |- exp (&0) = &1 *)
let REAL_SV_LN_1 = LN_1;; (* |- ln (&1) = &0 *)
let REAL_SV_SQRT_0 = SQRT_0;; (* |- sqrt (&0) = &0 *)
let REAL_SV_TAN_0 = TAN_0;; (*  |- tan (&0) = &0 *)
let REAL_SV_TAN_PI = TAN_PI;; (* |- tan pi = &0 *)

(* ------------------------------------------------------------------ *)
(* A tactic that multiplies a real on the left *)
(* ------------------------------------------------------------------ *)

(**
#g `a:real = b:real`;;
#e (REAL_LMUL_TAC `c:real`);;
it : goalstack = 2 subgoals (2 total)
`~(c = &0)`

`c * a = c * b`

 0 [`~(c = &0)`]
#
**)
(* ------------------------------------------------------------------ *)



let REAL_LMUL_TAC t =
  let REAL_MUL_LTIMES =
        prove ((`!x a b.
        (((~(x=(&0)) ==> (x*a = x*b)) /\ ~(x=(&0))) ==>  (a = b))`),
                MESON_TAC[REAL_EQ_MUL_LCANCEL]) in
   (MATCH_MP_TAC (SPEC t REAL_MUL_LTIMES))
   THEN CONJ_TAC
   THENL [DISCH_TAC; ALL_TAC];;

(* ------------------------------------------------------------------ *)
(* Right multiply by a real *)
(* ------------------------------------------------------------------ *)

let REAL_RMUL_TAC t =
  let REAL_MUL_RTIMES =
        prove (`!x a b.
                ((~(x=(&0))==>(a*x = b*x)) /\ ~(x=(&0))) ==>  (a = b)`,
                MESON_TAC[REAL_EQ_MUL_RCANCEL]) in
   (MATCH_MP_TAC (SPEC t REAL_MUL_RTIMES))
   THEN CONJ_TAC
   THENL [DISCH_TAC; ALL_TAC];;


pop_priority();;