Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 65,702 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 |
(* ------------------------------------------------------------------ *)
(* Author and Copyright: Thomas C. Hales *)
(* License: GPL http://www.gnu.org/copyleft/gpl.html *)
(* Project: FLYSPECK http://www.math.pitt.edu/~thales/flyspeck/ *)
(* ------------------------------------------------------------------ *)
prioritize_real();;
let add_test,test = new_test_suite();;
let twopow =
new_definition(
`twopow x = if (?n. (x = (int_of_num n)))
then ((&2) pow (nabs x))
else inv((&2) pow (nabs x))`);;
let float =
new_definition(
`float x n = (real_of_int x)*(twopow n)`);;
let interval =
new_definition(
`interval x f eps = ((abs (x-f)) <= eps)`);;
(*--------------------------------------------------------------------*)
let mk_interval a b ex =
mk_comb(mk_comb (mk_comb (`interval`,a),b),ex);;
add_test("mk_interval",
mk_interval `#3` `#4` `#1` = `interval #3 #4 #1`);;
let dest_interval intv =
let (h1,ex) = dest_comb intv in
let (h2,f) = dest_comb h1 in
let (h3,a) = dest_comb h2 in
let _ = assert(h3 = `interval`) in
(a,f,ex);;
add_test("dest_interval",
let a = `#3` and b = `#4` and c = `#1` in
dest_interval (mk_interval a b c) = (a,b,c));;
(*--------------------------------------------------------------------*)
let (dest_int:term-> Num.num) =
fun b ->
let dest_pos_int a =
let (op,nat) = dest_comb a in
if (fst (dest_const op) = "int_of_num") then (dest_numeral nat)
else fail() in
let (op',u) = (dest_comb b) in
try (if (fst (dest_const op') = "int_neg") then
minus_num (dest_pos_int u) else
dest_pos_int b) with
Failure _ -> failwith "dest_int ";;
let (mk_int:Num.num -> term) =
fun a ->
let sgn = Num.sign_num a in
let abv = Num.abs_num a in
let r = mk_comb(` &: `,mk_numeral abv) in
try (if (sgn<0) then mk_comb (` --: `,r) else r) with
Failure _ -> failwith ("dest_int "^(string_of_num a));;
add_test("mk_int",
(mk_int (Int (-1443)) = `--: (&:1443)`) &&
(mk_int (Int 37) = `(&:37)`));;
(* ------------------------------------------------------------------ *)
let (split_ratio:Num.num -> Num.num*Num.num) =
function
(Ratio r) -> (Big_int (Ratio.numerator_ratio r)),
(Big_int (Ratio.denominator_ratio r))|
u -> (u,(Int 1));;
add_test("split_ratio",
let (a,b) = split_ratio ((Int 4)//(Int 20)) in
(a =/ (Int 1)) && (b =/ (Int 5)));;
(* ------------------------------------------------------------------ *)
(* break nonzero int r into a*(C**b) with a prime to C . *)
let (factor_C:int -> Num.num -> Num.num*Num.num) =
function c ->
let intC = (Int c) in
let rec divC (a,b) =
if ((Int 0) =/ mod_num a intC) then (divC (a//intC,b+/(Int 1)))
else (a,b) in
function r->
if ((Num.is_integer_num r)&& not((Num.sign_num r) = 0)) then
divC (r,(Int 0)) else failwith "factor_C";;
add_test("factor_C",
(factor_C 2 (Int (4096+32)) = (Int 129,Int 5)) &&
(factor_C 10 (Int (5000)) = (Int 5,Int 3)) &&
(cannot (factor_C 2) ((Int 50)//(Int 3))));;
(*--------------------------------------------------------------------*)
let (dest_float:term -> Num.num) =
fun f ->
let (a,b) = dest_binop `float` f in
(dest_int a)*/ ((Int 2) **/ (dest_int b));;
add_test("dest_float",
dest_float `float (&:3) (&:17)` = (Int 393216));;
add_test("dest_float2", (* must express as numeral first *)
cannot dest_float `float ((&:3)+:(&:1)) (&:17)`);;
(* ------------------------------------------------------------------ *)
(* creates float of the form `float a b` with a odd *)
let (mk_float:Num.num -> term) =
function r ->
let (a,b) = split_ratio r in
let (a',exp_a) = if (a=/(Int 0)) then ((Int 0),(Int 0)) else factor_C 2 a in
let (b',exp_b) = factor_C 2 b in
let c = a'//b' in
if (Num.is_integer_num c) then
mk_binop `float` (mk_int c) (mk_int (exp_a -/ exp_b))
else failwith "mk_float";;
add_test("mk_float",
mk_float (Int (4096+32)) = `float (&:129) (&:5)` &&
(mk_float (Int 0) = `float (&:0) (&:0)`));;
add_test("mk_float2", (* throws exception exactly when denom != 2^k *)
let rtest = fun t -> (t =/ dest_float (mk_float t)) in
rtest ((Int 3)//(Int 1024)) &&
(cannot rtest ((Int 1)//(Int 3))));;
add_test("mk_float dest_float", (* constructs canonical form of float *)
mk_float (dest_float `float (&:4) (&:3)`) = `float (&:1) (&:5)`);;
(* ------------------------------------------------------------------ *)
(* creates decimal of the form `DECIMAL a b` with a prime to 10 *)
let (mk_pos_decimal:Num.num -> term) =
function r ->
let _ = assert (r >=/ (Int 0)) in
let (a,b) = split_ratio r in
if (a=/(Int 0)) then `#0` else
let (a1,exp_a5) = factor_C 5 a in
let (a2,exp_a2) = factor_C 2 a1 in
let (b1,exp_b5) = factor_C 5 b in
let (b2,exp_b2) = factor_C 2 b1 in
let _ = assert(b2 =/ (Int 1)) in
let c = end_itlist Num.max_num [exp_b5-/exp_a5;exp_b2-/exp_a2;(Int 0)] in
let a' = a2*/((Int 2)**/ (c +/ exp_a2 -/ exp_b2))*/
((Int 5)**/(c +/ exp_a5 -/ exp_b5)) in
let b' = (Int 10) **/ c in
mk_binop `DECIMAL` (mk_numeral a') (mk_numeral b');;
add_test("mk_pos_decimal",
mk_pos_decimal (Int (5000)) = `#5000` &&
(mk_pos_decimal ((Int 30)//(Int 40)) = `#0.75`) &&
(mk_pos_decimal (Int 0) = `#0`) &&
(mk_pos_decimal ((Int 15)//(Int 25)) = `#0.6`) &&
(mk_pos_decimal ((Int 25)//(Int 4)) = `#6.25`) &&
(mk_pos_decimal ((Int 2)//(Int 25)) = `#0.08`));;
let (mk_decimal:Num.num->term) =
function r ->
let a = Num.sign_num r in
let b = mk_pos_decimal (Num.abs_num r) in
if (a < 0) then (mk_comb (`--.`, b)) else b;;
add_test("mk_decimal",
(mk_decimal (Int 3) = `#3`) &&
(mk_decimal (Int (-3)) = `--. (#3)`));;
(*--------------------------------------------------------------------*)
let (dest_decimal:term -> Num.num) =
fun f ->
let (a,b) = dest_binop `DECIMAL` f in
let a1 = dest_numeral a in
let b1 = dest_numeral b in
a1//b1;;
add_test("dest_decimal",
dest_decimal `#3.4` =/ ((Int 34)//(Int 10)));;
add_test("dest_decimal2",
cannot dest_decimal `--. (#3.4)`);;
(*--------------------------------------------------------------------*)
(* Properties of integer powers of 2. *)
(* ------------------------------------------------------------------ *)
let TWOPOW_POS = prove(`!n. (twopow (int_of_num n) = (&2) pow n)`,
(REWRITE_TAC[twopow])
THEN GEN_TAC
THEN COND_CASES_TAC
THENL [AP_TERM_TAC;ALL_TAC]
THEN (REWRITE_TAC[NABS_POS])
THEN (UNDISCH_EL_TAC 0)
THEN (TAUT_TAC (` ( A ) ==> (~ A ==> B)`))
THEN (MESON_TAC[]));;
let TWOPOW_NEG = prove(`!n. (twopow (--(int_of_num n)) = inv((&2) pow n))`,
GEN_TAC
THEN (REWRITE_TAC[twopow])
THEN (COND_CASES_TAC THENL [ALL_TAC;REWRITE_TAC[NABS_NEG]])
THEN (POP_ASSUM CHOOSE_TAC)
THEN (REWRITE_TAC[NABS_NEG])
THEN (UNDISCH_EL_TAC 0)
THEN (REWRITE_TAC[int_eq;int_neg_th;INT_NUM_REAL])
THEN (REWRITE_TAC[prove (`! u y.((--(real_of_num u) = (real_of_num y))=
((real_of_num u) +(real_of_num y) = (&0)))`,REAL_ARITH_TAC)])
THEN (REWRITE_TAC[REAL_OF_NUM_ADD;REAL_OF_NUM_EQ;ADD_EQ_0])
THEN (DISCH_TAC)
THEN (ASM_REWRITE_TAC[real_pow;REAL_INV_1]));;
let TWOPOW_INV = prove(`!a. (twopow (--: a) = (inv (twopow a)))`,
(GEN_TAC)
THEN ((ASSUME_TAC (SPEC `a:int` INT_REP2)))
THEN ((POP_ASSUM CHOOSE_TAC))
THEN ((POP_ASSUM DISJ_CASES_TAC))
THEN ((ASM_REWRITE_TAC[TWOPOW_POS;TWOPOW_NEG;REAL_INV_INV;INT_NEG_NEG])));;
let INT_REP3 = prove(`!a .(?n.( (a = &: n) \/ (a = --: (&: (n+1)))))`,
(GEN_TAC)
THEN ((ASSUME_TAC (SPEC `a:int` INT_REP2)))
THEN ((POP_ASSUM CHOOSE_TAC))
THEN ((DISJ_CASES_TAC (prove (`((a:int) = (&: 0)) \/ ~((a:int) =(&: 0))`, MESON_TAC[]))))
(* cases *)
THENL[ ((EXISTS_TAC `0`)) THEN ((ASM_REWRITE_TAC[]));ALL_TAC]
THEN ((UNDISCH_EL_TAC 0))
THEN ((POP_ASSUM DISJ_CASES_TAC))
THENL [DISCH_TAC THEN ((ASM MESON_TAC)[]);ALL_TAC]
THEN (DISCH_TAC)
THEN ((EXISTS_TAC `PRE n`))
THEN ((DISJ2_TAC))
THEN ((ASM_REWRITE_TAC[INT_EQ_NEG2]))
(*** Changed by JRH, 2006/03/28 to avoid PRE_ELIM_TAC ***)
THEN (FIRST_X_ASSUM(MP_TAC o check(is_neg o concl)))
THEN (ASM_REWRITE_TAC[INT_NEG_EQ_0; INT_OF_NUM_EQ])
THEN (ARITH_TAC));;
let REAL_EQ_INV = prove(`!x y. ((x:real = y) <=> (inv(x) = inv (y)))`,
((REPEAT GEN_TAC))
THEN (EQ_TAC)
THENL [((DISCH_TAC THEN (ASM_REWRITE_TAC[])));
(* branch 2*) ((DISCH_TAC))
THEN ((ONCE_REWRITE_TAC [(GSYM REAL_INV_INV)]))
THEN ((ASM_REWRITE_TAC[]))]);;
let TWOPOW_ADD_1 =
prove(`!a. (twopow (a +: (&:1)) = twopow (a) *. (twopow (&:1)))`,
EVERY[
GEN_TAC;
CHOOSE_TAC (SPEC `a:int` INT_REP3);
POP_ASSUM DISJ_CASES_TAC
THENL[
ASM_REWRITE_TAC[TWOPOW_POS;INT_OF_NUM_ADD;REAL_POW_ADD];
EVERY[
ASM_REWRITE_TAC[GSYM INT_OF_NUM_ADD;INT_NEG_ADD;GSYM INT_ADD_ASSOC;INT_ADD_LINV;INT_ADD_RID];
REWRITE_TAC[GSYM INT_NEG_ADD;INT_OF_NUM_ADD;TWOPOW_NEG;TWOPOW_POS];
ONCE_REWRITE_TAC[SPEC `(&. 2) pow 1` (GSYM REAL_INV_INV)];
REWRITE_TAC[GSYM REAL_INV_MUL;GSYM REAL_EQ_INV;REAL_POW_ADD;GSYM REAL_MUL_ASSOC;REAL_POW_1];
REWRITE_TAC[MATCH_MP REAL_MUL_RINV (REAL_ARITH `~((&. 2) = (&. 0))`); REAL_MUL_RID]
]
]
]);;
let REAL_INV2 = prove(
`(inv(&. 2)*(&. 2) = (&.1)) /\ ((&. 2)*inv(&. 2) = (&.1))`,
SUBGOAL_TAC `~((&.2) = (&.0))`
THENL[
REAL_ARITH_TAC;
SIMP_TAC[REAL_MUL_RINV;REAL_MUL_LINV]]);;
let TWOPOW_0 = prove(`twopow (&: 0) = (&. 1)`,
(REWRITE_TAC[TWOPOW_POS;real_pow]));;
let TWOPOW_SUB_NUM = prove(`!m n.( twopow((&:m) - (&: n)) = twopow((&:m))*. twopow(--: (&:n)))`,
((INDUCT_TAC))
THENL [REWRITE_TAC[INT_SUB_LZERO;REAL_MUL_LID;TWOPOW_0];ALL_TAC]
THEN ((INDUCT_TAC THEN
( (ASM_REWRITE_TAC[INT_SUB_RZERO;TWOPOW_0;REAL_MUL_RID;INT_NEG_0;ADD1;GSYM INT_OF_NUM_ADD]))))
THEN ((ASM_REWRITE_TAC [TWOPOW_ADD_1;TWOPOW_INV;prove (`((&:m)+(&:1)) -: ((&:n) +: (&:1)) = ((&:m)-: (&:n))`,INT_ARITH_TAC)]))
THEN ((REWRITE_TAC[REAL_INV_MUL]))
THEN ((ABBREV_TAC `a:real = twopow (&: m)`))
THEN ((ABBREV_TAC `b:real = inv(twopow (&: n))`))
THEN ((REWRITE_TAC[TWOPOW_POS;REAL_POW_1;GSYM REAL_MUL_ASSOC;prove (`!(x:real). ((&.2)*x = x*(&.2))`,REAL_ARITH_TAC)]))
THEN ((REWRITE_TAC[REAL_INV2;REAL_MUL_RID])));;
let TWOPOW_ADD_NUM = prove(
`!m n. (twopow ((&:m) + (&:n)) = twopow((&:m))*. twopow((&:n)))`,
(REWRITE_TAC[TWOPOW_POS;REAL_POW_ADD;INT_OF_NUM_ADD]));;
let TWOPOW_ADD_INT = prove(
`!a b. (twopow (a +: b) = twopow(a) *. (twopow(b)))`,
((REPEAT GEN_TAC))
THEN ((ASSUME_TAC (SPEC `a:int` INT_REP)))
THEN ((POP_ASSUM CHOOSE_TAC))
THEN ((POP_ASSUM CHOOSE_TAC))
THEN ((ASSUME_TAC (SPEC `b:int` INT_REP)))
THEN ((REPEAT (POP_ASSUM CHOOSE_TAC)))
THEN ((ASM_REWRITE_TAC[]))
THEN ((SUBGOAL_TAC `&: n -: &: m +: &: n' -: &: m' = (&: (n+n')) -: (&: (m+m'))`))
(* branch *)
THENL[ ((REWRITE_TAC[GSYM INT_OF_NUM_ADD]))
THEN ((INT_ARITH_TAC));ALL_TAC]
(* 2nd *)
THEN ((DISCH_TAC))
THEN ((ASM_REWRITE_TAC[TWOPOW_SUB_NUM;TWOPOW_INV;TWOPOW_POS;REAL_POW_ADD;REAL_INV_MUL;GSYM REAL_MUL_ASSOC]))
THEN ((ABBREV_TAC `a':real = inv ((&. 2) pow m)`))
THEN ((ABBREV_TAC `c :real = (&. 2) pow n`))
THEN ((ABBREV_TAC `d :real = (&. 2) pow n'`))
THEN ((ABBREV_TAC `e :real = inv ((&. 2) pow m')`))
THEN (MESON_TAC[REAL_MUL_AC]));;
let TWOPOW_ABS = prove(`!a. ||. (twopow a) = (twopow a)`,
(GEN_TAC)
THEN ((CHOOSE_THEN DISJ_CASES_TAC (SPEC `a:int` INT_REP2)))
(* branch *)
THEN ((ASM_REWRITE_TAC[TWOPOW_POS;TWOPOW_NEG;REAL_ABS_POW;REAL_ABS_NUM;REAL_ABS_INV])));;
let REAL_POW_POW = prove(
`!x m n . (x **. m) **. n = x **. (m *| n)`,
((GEN_TAC THEN GEN_TAC THEN INDUCT_TAC))
(* branch *)
THENL[ ((REWRITE_TAC[real_pow;MULT_0]));
(* second branch *)
((REWRITE_TAC[real_pow]))
THEN ((ASM_REWRITE_TAC[ADD1;LEFT_ADD_DISTRIB;REAL_POW_ADD;REAL_MUL_AC;MULT_CLAUSES]))]);;
let INT_POW_POW = INT_OF_REAL_THM REAL_POW_POW;;
let TWOPOW_POW = prove(
`!a n. (twopow a) pow n = twopow (a *: (&: n))`,
((REPEAT GEN_TAC))
THEN ((CHOOSE_THEN DISJ_CASES_TAC (SPEC `a:int` INT_REP2)))
(* branch *)
THEN ((ASM_REWRITE_TAC[TWOPOW_POS;INT_OF_NUM_MUL;
REAL_POW_POW;TWOPOW_NEG;REAL_POW_INV;INT_OF_NUM_MUL;GSYM INT_NEG_LMUL])));;
(* ------------------------------------------------------------------ *)
(* Arithmetic operations on float *)
(* ------------------------------------------------------------------ *)
let FLOAT_NEG = prove(`!a m. --. (float a m) = float (--: a) m`,
REPEAT GEN_TAC THEN
REWRITE_TAC[float;GSYM REAL_MUL_LNEG;int_neg_th]);;
let FLOAT_MUL = prove(`!a b m n. (float a m) *. (float b n) = (float (a *: b) (m +: n))`,
((REPEAT GEN_TAC))
THEN ((REWRITE_TAC[float;GSYM REAL_MUL_ASSOC;TWOPOW_ADD_INT;int_mul_th]))
THEN ((MESON_TAC[REAL_MUL_AC])));;
let FLOAT_ADD = prove(
`!a b c m. (float a (m+: (&:c))) +. (float b m)
= (float ( (&:(2 EXP c))*a +: b) m)`,
((REWRITE_TAC[float;int_add_th;REAL_ADD_RDISTRIB;int_mul_th;TWOPOW_ADD_INT]))
THEN ((REPEAT GEN_TAC))
THEN ((REWRITE_TAC[TWOPOW_POS;INT_NUM_REAL;GSYM REAL_OF_NUM_POW]))
THEN ((MESON_TAC[REAL_MUL_AC])));;
let FLOAT_ADD_EQ = prove(
`!a b m. (float a m) +. (float b m) =
(float (a+:b) m)`,
((REPEAT GEN_TAC))
THEN ((REWRITE_TAC[REWRITE_RULE[INT_ADD_RID] (SPEC `m:int` (SPEC `0` (SPEC `b:int` (SPEC `a:int` FLOAT_ADD))))]))
THEN ((REWRITE_TAC[EXP;INT_MUL_LID])));;
let FLOAT_ADD_NP = prove(
`!a b m n. (float b (--:(&: n))) +. (float a (&: m)) = (float a (&: m)) +. (float b (--:(&: n)))`,
(REWRITE_TAC[REAL_ADD_AC]));;
let FLOAT_ADD_PN = prove(
`!a b m n. (float a (&: m)) +. (float b (--(&: n))) = (float ( (&:(2 EXP (m+| n)))*a + b) (--:(&: n)))`,
((REPEAT GEN_TAC))
THEN ((SUBGOAL_TAC `&: m = (--:(&: n)) + (&:(m+n))`))
THENL[ ((REWRITE_TAC[GSYM INT_OF_NUM_ADD]))
THEN ((INT_ARITH_TAC));
(* branch *)
((DISCH_TAC))
THEN ((ASM_REWRITE_TAC[FLOAT_ADD]))]);;
let FLOAT_ADD_PP = prove(
`!a b m n. ((n <=| m) ==>( (float a (&: m)) +. (float b (&: n)) = (float ((&:(2 EXP (m -| n))) *a + b) (&: n))))`,
((REPEAT GEN_TAC))
THEN (DISCH_TAC)
THEN ((SUBGOAL_TAC `&: m = (&: n) + (&: (m-n))`))
THENL[ ((REWRITE_TAC[INT_OF_NUM_ADD]))
THEN (AP_TERM_TAC)
THEN ((REWRITE_TAC[prove (`!(m:num) n. (n+m-n) = (m-n)+n`,REWRITE_TAC[ADD_AC])]))
THEN ((UNDISCH_EL_TAC 0))
THEN ((MATCH_ACCEPT_TAC(GSYM SUB_ADD)));
(* branch *)
((DISCH_TAC))
THEN ((ASM_REWRITE_TAC[FLOAT_ADD]))]);;
let FLOAT_ADD_PPv2 = prove(
`!a b m n. ((m <| n) ==>( (float a (&: m)) +. (float b (&: n)) = (float ((&:(2 EXP (n -| m))) *b + a) (&: m))))`,
((REPEAT GEN_TAC))
THEN (DISCH_TAC)
THEN ((H_MATCH_MP (THM (prove(`!m n. m<|n ==> m <=|n`,MESON_TAC[LT_LE]))) (HYP_INT 0)))
THEN ((UNDISCH_EL_TAC 0))
THEN ((SIMP_TAC[GSYM FLOAT_ADD_PP]))
THEN (DISCH_TAC)
THEN ((REWRITE_TAC[REAL_ADD_AC])));;
let FLOAT_ADD_NN = prove(
`!a b m n. ((n <=| m) ==>( (float a (--:(&: m))) +. (float b (--:(&: n)))
= (float ((&:(2 EXP (m -| n))) *b + a) (--:(&: m)))))`,
((REPEAT GEN_TAC))
THEN (DISCH_TAC)
THEN ((SUBGOAL_TAC `--: (&: n) = --: (&: m) + (&: (m-n))`))
THENL [((UNDISCH_EL_TAC 0))
THEN ((SIMP_TAC [INT_OF_REAL_THM (GSYM REAL_OF_NUM_SUB)]))
THEN (DISCH_TAC)
THEN ((INT_ARITH_TAC));
(*branch*)
((DISCH_TAC))
THEN (ASM_REWRITE_TAC[GSYM FLOAT_ADD;REAL_ADD_AC])]);;
let FLOAT_ADD_NNv2 = prove(
`!a b m n. ((m <| n) ==>( (float a (--:(&: m))) +. (float b (--:(&: n)))
= (float ((&:(2 EXP (n -| m))) *a + b) (--:(&: n)))))`,
((REPEAT GEN_TAC))
THEN (DISCH_TAC)
THEN (((H_MATCH_MP (THM (prove(`!m n. m<|n ==> m <=|n`,MESON_TAC[LT_LE]))) (HYP_INT 0))))
THEN (((UNDISCH_EL_TAC 0)))
THEN (((SIMP_TAC[GSYM FLOAT_ADD_NN])))
THEN ((DISCH_TAC))
THEN (((REWRITE_TAC[REAL_ADD_AC]))));;
let FLOAT_SUB = prove(
`!a b n m. (float a n) -. (float b m)
= (float a n) +. (float (--: b) m)`,
REWRITE_TAC[float;int_neg_th;real_sub;REAL_NEG_LMUL]);;
let FLOAT_ABS = prove(
`!a n. ||. (float a n) = (float (||: a) n)`,
(REWRITE_TAC[float;int_abs_th;REAL_ABS_MUL;TWOPOW_ABS]));;
let FLOAT_POW = prove(
`!a n m. (float a n) **. m = (float (a **: m) (n *: (&:m)))`,
(REWRITE_TAC[float;REAL_POW_MUL;int_pow_th;TWOPOW_POW]));;
let INT_SUB = prove(
`!a b. (a -: b) = (a +: (--: b))`,
(REWRITE_TAC[GSYM INT_SUB_RNEG;INT_NEG_NEG]));;
let INT_ABS_NUM = prove(
`!n. ||: (&: n) = (&: n)`,
(REWRITE_TAC[int_eq;int_abs_th;INT_NUM_REAL;REAL_ABS_NUM]));;
let INT_ABS_NEG_NUM = prove(
`!n. ||: (--: (&: n)) = (&: n)`,
(REWRITE_TAC[int_eq;int_abs_th;int_neg_th;INT_NUM_REAL;REAL_ABS_NUM;REAL_ABS_NEG]));;
let INT_ADD_NEG_NUM = prove(`!x y. --: (&: x) +: (&: y) = (&: y) +: (--: (&: x))`,
(REWRITE_TAC[INT_ADD_AC]));;
let INT_POW_MUL = INT_OF_REAL_THM REAL_POW_MUL;;
let INT_POW_NEG1 = prove (
`!x n. (--: (&: x)) **: n = ((--: (&: 1)) **: n) *: ((&: x) **: n)`,
(REWRITE_TAC[GSYM INT_POW_MUL; GSYM INT_NEG_MINUS1]));;
let INT_POW_EVEN_NEG1 = prove(
`!x n. (--: (&: x)) **: (NUMERAL (BIT0 n)) = ((&: x) **: (NUMERAL (BIT0 n)))`,
((REPEAT GEN_TAC))
THEN ((ONCE_REWRITE_TAC[INT_POW_NEG1]))
THEN ((ABBREV_TAC `a = &: 1`))
THEN ((ABBREV_TAC `b = (&: x)**: (NUMERAL (BIT0 n))`))
THEN ((REWRITE_TAC[NUMERAL;BIT0]))
THEN ((REWRITE_TAC[GSYM MULT_2;GSYM INT_POW_POW;INT_OF_REAL_THM REAL_POW_2;INT_NEG_MUL2]))
THEN ((EXPAND_TAC "a"))
THEN ((REWRITE_TAC[INT_MUL_RID;INT_MUL_LID;INT_OF_REAL_THM REAL_POW_ONE])));;
let INT_POW_ODD_NEG1 = prove(
`!x n. (--: (&: x)) **: (NUMERAL (BIT1 n)) = --: ((&: x) **: (NUMERAL (BIT1 n)))`,
((REPEAT GEN_TAC))
THEN ((ONCE_REWRITE_TAC[INT_POW_NEG1]))
THEN (((ABBREV_TAC `a = &: 1`)))
THEN (((ABBREV_TAC `b = (&: x)**: (NUMERAL (BIT1 n))`)))
THEN ((REWRITE_TAC[NUMERAL;BIT1]))
THEN ((ONCE_REWRITE_TAC[ADD1]))
THEN ((EXPAND_TAC "a"))
THEN ((REWRITE_TAC[GSYM MULT_2]))
THEN ((REWRITE_TAC[INT_OF_REAL_THM POW_MINUS1;INT_OF_REAL_THM REAL_POW_ADD]))
THEN ((REWRITE_TAC[INT_OF_REAL_THM POW_1;INT_MUL_LID;INT_MUL_LNEG])));;
(* subtraction of integers *)
let INT_ADD_NEG = prove(
`!x y. (x < y ==> ((&: x) +: (--: (&: y)) = --: (&: (y - x))))`,
((REPEAT GEN_TAC))
THEN ((DISCH_TAC))
THEN ((SUBGOAL_TAC `&: (y-x ) = (&: y) - (&: x)`))
THENL [((SUBGOAL_TAC `x <=| y`))
(* branch *)
THENL [(((ASM MESON_TAC)[LE_LT]));((SIMP_TAC[GSYM (INT_OF_REAL_THM REAL_OF_NUM_SUB)]))]
(* branch *)
; ((DISCH_TAC))
THEN ((ASM_REWRITE_TAC[]))
THEN (ACCEPT_TAC(INT_ARITH `&: x +: --: (&: y) = --: (&: y -: &: x)`))]);;
let INT_ADD_NEGv2 = prove(
`!x y. (y <= x ==> ((&: x) +: (--: (&: y)) = (&: (x - y))))`,
((REPEAT GEN_TAC))
THEN ((DISCH_TAC))
THEN ((SUBGOAL_TAC `&: (x - y) = (&: x) - (&: y)`))
THENL[
((UNDISCH_EL_TAC 0)) THEN ((SIMP_TAC[GSYM (INT_OF_REAL_THM REAL_OF_NUM_SUB)]));
((DISCH_TAC)) THEN ((ASM_REWRITE_TAC[INT_SUB]))
]
);;
(* assumes a term of the form &:a +: (--: (&: b)) *)
let INT_SUB_CONV t =
let a,b = dest_binop `(+:)` t in
let (_,a) = dest_comb a in
let (_,b) = dest_comb b in
let (_,b) = dest_comb b in
let a = dest_numeral a in
let b = dest_numeral b in
let thm = if (b <=/ a) then
INT_ADD_NEGv2
else INT_ADD_NEG in
(ARITH_SIMP_CONV[thm]) t;; (* (SIMP_CONV[thm;ARITH]) t;; *)
(* ------------------------------------------------------------------ *)
(* Simplifies an arithmetic expression in floats *)
(* A workhorse *)
(* ------------------------------------------------------------------ *)
let FLOAT_CONV =
(ARITH_SIMP_CONV[FLOAT_MUL;FLOAT_SUB;FLOAT_ABS;FLOAT_POW;
FLOAT_ADD_NN;FLOAT_ADD_NNv2;FLOAT_ADD_PP;FLOAT_ADD_PPv2;
FLOAT_ADD_NP;FLOAT_ADD_PN;FLOAT_NEG;
INT_NEG_NEG;INT_SUB;
INT_ABS_NUM;INT_ABS_NEG_NUM;
INT_MUL_LNEG;INT_MUL_RNEG;INT_NEG_MUL2;INT_OF_NUM_MUL;
INT_OF_NUM_ADD;GSYM INT_NEG_ADD;INT_ADD_NEG_NUM;
INT_OF_NUM_POW;INT_POW_ODD_NEG1;INT_POW_EVEN_NEG1;
INT_ADD_NEG;INT_ADD_NEGv2 (* ; ARITH *)
]) ;;
add_test("FLOAT_CONV1",
let f z =
let (x,y) = dest_eq z in
let (u,v) = dest_thm (FLOAT_CONV x) in
(u=[]) && (z = v) in
f `float (&:3) (&:0) = float (&:3) (&:0)` &&
f `float (&:3) (&:3) = float (&:3) (&:3)` &&
f `float (&:3) (&:0) +. (float (&:4) (&:0)) = (float (&:7) (&:0))` &&
f `float (&:1 + (&:3)) (&:4) = float (&:4) (&:4)` &&
f `float (&:3 - (&:7)) (&:0) = float (--:(&:4)) (&:0)` &&
f `float (&:3) (&:4) *. (float (--: (&:2)) (&:3)) = float (--: (&:6))
(&:7)` &&
f `--. (float (--: (&:3)) (&:0)) = float (&:3) (&:0)`
);;
(* ------------------------------------------------------------------ *)
(* Operations on interval. Preliminary stuff to deal with *)
(* chains of inequalities. *)
(* ------------------------------------------------------------------ *)
let REAL_ADD_LE_SUBST_RHS = prove(
`!a b c P. ((a <=. ((P b)) /\ (!x. (P x) = x + (P (&. 0))) /\ (b <=. c)) ==> (a <=. (P c)))`,
(((REPEAT GEN_TAC)))
THEN (((REPEAT (TAUT_TAC `(b ==> a==> c) ==> (a /\ b ==> c)`))))
THEN (((REPEAT DISCH_TAC)))
THEN ((((H_RULER(ONCE_REWRITE_RULE))[HYP_INT 1] (HYP_INT 0))))
THEN ((((ASM ONCE_REWRITE_TAC)[])))
THEN ((((ASM MESON_TAC)[REAL_LE_RADD;REAL_LE_TRANS]))));;
let REAL_ADD_LE_SUBST_LHS = prove(
`!a b c P. (((P(a) <=. b /\ (!x. (P x) = x + (P (&. 0))) /\ (c <=. a)))
==> ((P c) <=. b))`,
(REP_GEN_TAC)
THEN (DISCH_ALL_TAC)
THEN (((H_RULER(ONCE_REWRITE_RULE)) [HYP_INT 1] (HYP_INT 0)))
THEN (((ASM ONCE_REWRITE_TAC)[]))
THEN (((ASM MESON_TAC)[REAL_LE_RADD;REAL_LE_TRANS])));;
(*
let rec SPECL =
function [] -> I |
(a::b) -> fun thm ->(SPECL b (SPEC a thm));;
*)
(*
input:
rel: b <=. c
thm: a <=. P(b).
output: a <=. P(c).
condition: REAL_ARITH must be able to prove !x. P(x) = x+. P(&.0).
condition: the term `a` must appear exactly once the lhs of the thm.
*)
let IWRITE_REAL_LE_RHS rel thm =
let bvar = genvar `:real` in
let (bt,_) = dest_binop `(<=.)` (concl rel) in
let sub = SUBS_CONV[ASSUME (mk_eq(bt,bvar))] in
let rule = (fun th -> EQ_MP (sub (concl th)) th) in
let (subrel,subthm) = (rule rel,rule thm) in
let (a,p) = dest_binop `(<=.)` (concl subthm) in
let (_,c) = dest_binop `(<=.)` (concl subrel) in
let pfn = mk_abs (bvar,p) in
let imp_th = BETA_RULE (SPECL [a;bvar;c;pfn] REAL_ADD_LE_SUBST_RHS) in
let ppart = REAL_ARITH
(fst(dest_conj(snd(dest_conj(fst(dest_imp(concl imp_th))))))) in
let prethm = MATCH_MP imp_th (CONJ subthm (CONJ ppart subrel)) in
let prethm2 = SPEC bt (GEN bvar (DISCH
(find (fun x -> try(bvar = rhs x) with failure -> false) (hyp prethm)) prethm)) in
MATCH_MP prethm2 (REFL bt);;
(*
input:
rel: c <=. a
thm: P a <=. b
output: P c <=. b
condition: REAL_ARITH must be able to prove !x. P(x) = x+. P(&.0).
condition: the term `a` must appear exactly once the lhs of the thm.
*)
let IWRITE_REAL_LE_LHS rel thm =
let avar = genvar `:real` in
let (_,at) = dest_binop `(<=.)` (concl rel) in
let sub = SUBS_CONV[ASSUME (mk_eq(at,avar))] in
let rule = (fun th -> EQ_MP (sub (concl th)) th) in
let (subrel,subthm) = (rule rel,rule thm) in
let (p,b) = dest_binop `(<=.)` (concl subthm) in
let (c,_) = dest_binop `(<=.)` (concl subrel) in
let pfn = mk_abs (avar,p) in
let imp_th = BETA_RULE (SPECL [avar;b;c;pfn] REAL_ADD_LE_SUBST_LHS) in
let ppart = REAL_ARITH
(fst(dest_conj(snd(dest_conj(fst(dest_imp(concl imp_th))))))) in
let prethm = MATCH_MP imp_th (CONJ subthm (CONJ ppart subrel)) in
let prethm2 = SPEC at (GEN avar (DISCH
(find (fun x -> try(avar = rhs x) with failure -> false) (hyp prethm)) prethm)) in
MATCH_MP prethm2 (REFL at);;
(* ------------------------------------------------------------------ *)
(* INTERVAL ADD, NEG, SUBTRACT *)
(* ------------------------------------------------------------------ *)
let INTERVAL_ADD = prove(
`!x f ex y g ey. interval x f ex /\ interval y g ey ==>
interval (x +. y) (f +. g) (ex +. ey)`,
EVERY[
REPEAT GEN_TAC;
TAUT_TAC `(A==>B==>C)==>(A/\ B ==> C)`;
REWRITE_TAC[interval];
REWRITE_TAC[prove(`(x+.y) -. (f+.g) = (x-.f) +. (y-.g)`,REAL_ARITH_TAC)];
ABBREV_TAC `a = x-.f`;
ABBREV_TAC `b = y-.g`;
ASSUME_TAC (SPEC `b:real` (SPEC `a:real` ABS_TRIANGLE));
UNDISCH_EL_TAC 0;
ABBREV_TAC `a':real = abs a`;
ABBREV_TAC `b':real = abs b`;
REPEAT DISCH_TAC;
(H_VAL2(IWRITE_REAL_LE_RHS)) (HYP_INT 0) (HYP_INT 2);
(H_VAL2(IWRITE_REAL_LE_RHS)) (HYP_INT 2) (HYP_INT 0);
ASM_REWRITE_TAC[]]);;
let INTERVAL_NEG = prove(
`!x f ex. interval x f ex = interval (--. x) (--. f) ex`,
(REWRITE_TAC[interval;REAL_ABS_NEG;REAL_ARITH `!x y. -- x -. (-- y) = --. (x -. y)`]));;
let INTERVAL_NEG2 = prove(
`!x f ex. interval (--. x) f ex = interval x (--. f) ex`,
(REWRITE_TAC[interval;REAL_ABS_NEG;REAL_ARITH `!x y. -- x -. y = --. (x -. (--. y))`]));;
let INTERVAL_SUB = prove(
`!x f ex y g ey. interval x f ex /\ interval y g ey ==> interval (x -. y) (f -. g) (ex +. ey)`,
((REWRITE_TAC[real_sub]))
THEN (DISCH_ALL_TAC)
THEN (((H_RULER (ONCE_REWRITE_RULE))[THM(INTERVAL_NEG)] (HYP_INT 1)))
THEN (((ASM MESON_TAC)[INTERVAL_ADD])));;
(* ------------------------------------------------------------------ *)
(* INTERVAL MULTIPLICATION *)
(* ------------------------------------------------------------------ *)
let REAL_PROP_LE_LABS = prove(
`!x y z. (y <=. z) ==> ((abs x)* y <=. (abs x) *z)`,(SIMP_TAC[REAL_LE_LMUL_IMP;ABS_POS]));;
(* renamed from REAL_LE_ABS_RMUL *)
let REAL_PROP_LE_RABS = prove(
`!x y z. (y <=. z) ==> ( y * (abs x) <=. z *(abs x))`,(SIMP_TAC[REAL_LE_RMUL_IMP;ABS_POS]));;
let REAL_LE_ABS_MUL = prove(
`!x y z w. (( x <=. y) /\ (abs z <=. w)) ==> (x*.w <=. y*.w) `,
(DISCH_ALL_TAC)
THEN ((ASSUME_TAC (REAL_ARITH `abs z <=. w ==> (&.0) <=. w`)))
THEN (((ASM MESON_TAC)[REAL_LE_RMUL_IMP])));;
let INTERVAL_MUL = prove(
`!x f ex y g ey. (interval x f ex) /\ (interval y g ey) ==>
(interval (x *. y) (f *. g) (abs(f)*.ey +. ex*. abs(g) +. ex*.ey))`,
(REP_GEN_TAC)
THEN ((REWRITE_TAC[interval]))
THEN ((REWRITE_TAC[REAL_ARITH `(x*. y -. f*. g) = (f *.(y -. g) +. (x -. f)*.g +. (x-.f)*.(y-. g))`]))
THEN (DISCH_ALL_TAC)
THEN ((ASSUME_TAC (SPECL [`f*.(y-g)`;`(x-f)*g +. (x-f)*.(y-g)`] ABS_TRIANGLE)))
THEN ((ASSUME_TAC (SPECL [`(x-f)*.g`;`(x-f)*.(y-g)`] ABS_TRIANGLE)))
THEN (((H_VAL2(IWRITE_REAL_LE_RHS)) (HYP_INT 0) (HYP_INT 1)))
THEN ((H_REWRITE_RULE [THM ABS_MUL] (HYP_INT 0)))
THEN ((H_MATCH_MP (THM (SPECL [`g:real`; `abs (x -. f)`; `ex:real`] REAL_PROP_LE_RABS)) (HYP_INT 4)))
THEN (((H_VAL2(IWRITE_REAL_LE_RHS)) (HYP_INT 0) (HYP_INT 1)))
THEN ((H_MATCH_MP (THM (SPECL [`f:real`; `abs (y -. g)`; `ey:real`] REAL_PROP_LE_LABS)) (HYP_INT 7)))
THEN (((H_VAL2 (IWRITE_REAL_LE_RHS)) (HYP_INT 0) (HYP_INT 1)))
THEN ((H_MATCH_MP (THM (SPECL [`x-.f`; `abs (y -. g)`; `ey:real`] REAL_PROP_LE_LABS)) (HYP_INT 9)))
THEN (((H_VAL2(IWRITE_REAL_LE_RHS)) (HYP_INT 0) (HYP_INT 1)))
THEN ((ASSUME_TAC (SPECL [`abs(x-.f)`;`ex:real`;`y-.g`;`ey:real`] REAL_LE_ABS_MUL)))
THEN ((H_CONJ (HYP_INT 11) (HYP_INT 12)))
THEN ((H_MATCH_MP (HYP_INT 1) (HYP_INT 0)))
THEN (((H_VAL2(IWRITE_REAL_LE_RHS)) (HYP_INT 0) (HYP_INT 3)))
THEN ((POP_ASSUM ACCEPT_TAC)));;
(* ------------------------------------------------------------------ *)
(* INTERVAL BASIC OPERATIONS *)
(* ------------------------------------------------------------------ *)
let INTERVAL_NUM = prove(
`!n. (interval(&.n) (float(&:n) (&:0)) (float (&: 0) (&:0)))`,
(REWRITE_TAC[interval;float;TWOPOW_POS;pow;REAL_MUL_RID;INT_NUM_REAL;REAL_SUB_REFL;REAL_ABS_0;REAL_LE_REFL]));;
let INTERVAL_CENTER = prove(
`!x f ex g. (interval x f ex) ==> (interval x g (abs(f-g)+.ex))`,
((REWRITE_TAC[interval]))
THEN (DISCH_ALL_TAC)
THEN ((ASSUME_TAC (REAL_ARITH `abs(x -. g) <=. abs(f-.g) +. abs(x -. f)`)))
THEN ((H_VAL2 IWRITE_REAL_LE_RHS (HYP_INT 1) (HYP_INT 0)))
THEN ((ASM_REWRITE_TAC[])));;
let INTERVAL_WIDTH = prove(
`!x f ex ex'. (ex <=. ex') ==> (interval x f ex) ==> (interval x f ex')`,
((REWRITE_TAC[interval]))
THEN (DISCH_ALL_TAC)
THEN ((H_VAL2 IWRITE_REAL_LE_RHS (HYP_INT 1) (HYP_INT 0)))
THEN ((ASM_REWRITE_TAC[])));;
let INTERVAL_MAX = prove(
`!x f ex. interval x f ex ==> (x <=. f+.ex)`,
(REWRITE_TAC[interval]) THEN REAL_ARITH_TAC);;
let INTERVAL_MIN = prove(
`!x f ex. interval x f ex ==> (f-. ex <=. x)`,
(REWRITE_TAC[interval]) THEN REAL_ARITH_TAC);;
let INTERVAL_ABS_MIN = prove(
`!x f ex. interval x f ex ==> (abs(f)-. ex <=. abs(x))`,
(REWRITE_TAC[interval] THEN REAL_ARITH_TAC)
);;
let INTERVAL_ABS_MAX = prove(
`!x f ex. interval x f ex ==> (abs(x) <=. abs(f)+. ex)`,
(REWRITE_TAC[interval] THEN REAL_ARITH_TAC)
);;
let REAL_RINV_2 = prove(
`&.2 *. (inv (&.2 )) = &. 1`,
EVERY[
MATCH_MP_TAC REAL_MUL_RINV;
REAL_ARITH_TAC]);;
let INTERVAL_MK = prove(
`let half = float(&:1)(--:(&:1)) in
!x xmin xmax. ((xmin <=. x) /\ (x <=. xmax)) ==>
interval x
((xmin+.xmax)*.half)
((xmax-.xmin)*.half)`,
EVERY[
REWRITE_TAC[LET_DEF;LET_END_DEF];
DISCH_ALL_TAC;
REWRITE_TAC[interval;float;TWOPOW_NEG;INT_NUM_REAL;REAL_POW_1;REAL_MUL_LID];
REWRITE_TAC[GSYM INTERVAL_ABS];
CONJ_TAC
]
THENL[
EVERY[
REWRITE_TAC[GSYM REAL_SUB_RDISTRIB];
REWRITE_TAC[REAL_ARITH `(b+.a)-.(a-.b)=b*.(&.2)`;GSYM REAL_MUL_ASSOC];
ASM_REWRITE_TAC[REAL_RINV_2;REAL_MUL_RID]
];
EVERY[
REWRITE_TAC[GSYM REAL_ADD_RDISTRIB];
REWRITE_TAC[REAL_ARITH `(b+.a)+. a -. b=a*.(&.2)`;GSYM REAL_MUL_ASSOC];
ASM_REWRITE_TAC[REAL_RINV_2;REAL_MUL_RID]
]
]);;
let INTERVAL_EPS_POS = prove(`!x f ex.
(interval x f ex) ==> (&.0 <=. ex)`,
EVERY[
REWRITE_TAC[interval];
REPEAT (GEN_TAC);
DISCH_THEN(fun x -> (MP_TAC (CONJ (SPEC `x-.f` REAL_ABS_POS) x)));
MATCH_ACCEPT_TAC REAL_LE_TRANS]);;
let INTERVAL_EPS_0 = prove(
`!x f n. (interval x f (float (&:0) n)) ==> (x = f)`,
EVERY[
REWRITE_TAC[interval;float;int_of_num_th;REAL_MUL_LZERO];
REAL_ARITH_TAC]);;
let REAL_EQ_RCANCEL_IMP' = prove(`!x y z.(x * z = y * z) ==> (~(z = &0) ==> (x=y))`,
MESON_TAC[REAL_EQ_RCANCEL_IMP]);;
(* renamed from REAL_ABS_POS *)
let REAL_MK_POS_ABS_' = prove (`!x. (~(x=(&.0))) ==> (&.0 < abs(x))`,
MESON_TAC[REAL_PROP_NZ_ABS;ABS_POS;REAL_LT_LE]);;
(* ------------------------------------------------------------------ *)
(* INTERVAL DIVIDE *)
(* ------------------------------------------------------------------ *)
let INTERVAL_DIV = prove(`!x f ex y g ey h ez.
(((interval x f ex) /\ (interval y g ey) /\ (ey <. (abs g)) /\
((ex +. (abs (f -. (h*.g))) +. (abs h)*. ey) <=. (ez*.((abs g) -. ey))))
==> (interval (x / y) h ez))`,
let lemma1 = prove( `&.0 < u /\ ||. z <=. e*. u ==> (&.0) <=. e`,
EVERY[
DISCH_ALL_TAC;
ASSUME_TAC (SPEC `z:real` REAL_MK_NN_ABS);
H_MATCH_MP (THM REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 0) (HYP_INT 2));
H_MATCH_MP (THM REAL_PROP_NN_RCANCEL) (H_RULE2 CONJ (HYP_INT 2) (HYP_INT 0));
ASM_REWRITE_TAC[]
]) in
EVERY[
DISCH_ALL_TAC;
SUBGOAL_TAC `~(y= (&.0))`
THENL[
EVERY[
UNDISCH_LIST[1;2];
REWRITE_TAC[interval];
REAL_ARITH_TAC
];
EVERY[
REWRITE_TAC[interval];
DISCH_TAC THEN (H I (HYP_INT 0)) THEN (UNDISCH_EL_TAC 0);
DISCH_THEN (fun th -> (MP_TAC(MATCH_MP REAL_MK_POS_ABS_' th)));
MATCH_MP_TAC REAL_MUL_RTIMES_LE;
REWRITE_TAC[GSYM ABS_MUL;REAL_SUB_RDISTRIB;real_div;GSYM REAL_MUL_ASSOC];
ASM_SIMP_TAC[REAL_MUL_LINV;REAL_MUL_RID];
H (REWRITE_RULE[interval]) (HYP_INT 1);
H (REWRITE_RULE[interval]) (HYP_INT 3);
H (MATCH_MP INTERVAL_ABS_MIN) (HYP_INT 4);
POPL_TAC[3;4;5];
H_VAL2 (IWRITE_REAL_LE_LHS) (HYP_INT 2) (HYP_INT 4);
H (REWRITE_RULE[ REAL_ADD_ASSOC]) (HYP_INT 0);
H_VAL2 (IWRITE_REAL_LE_LHS) (THM (SPEC `f-. h*g` (SPEC `x-.f` ABS_TRIANGLE))) (HYP_INT 0);
H (ONCE_REWRITE_RULE[REAL_ABS_SUB]) (HYP_INT 4);
H (MATCH_MP (SPEC `h:real` REAL_PROP_LE_LABS)) (HYP_INT 0);
H (REWRITE_RULE[GSYM ABS_MUL]) (HYP_INT 0);
H_VAL2 (IWRITE_REAL_LE_LHS) (HYP_INT 0) (HYP_INT 3);
H_VAL2 (IWRITE_REAL_LE_LHS) (THM (SPEC `h*.(g-.y)` (SPEC`(x-.f)+(f-. h*g)` ABS_TRIANGLE))) (HYP_INT 0);
POPL_TAC[1;2;3;4;5;6;7;9;10;12];
H (ONCE_REWRITE_RULE[REAL_ARITH `((x-.f) +. (f -. h*. g)) +. h*.(g-. y) = x -. h*. y `]) (HYP_INT 0);
ABBREV_TAC `z = x -. h*.y`;
H (ONCE_REWRITE_RULE[GSYM REAL_SUB_LT]) (HYP_INT 4);
ABBREV_TAC `u = abs(g) -. ey`;
POPL_TAC[0;2;4;6];
H (MATCH_MP lemma1 ) (H_RULE2 CONJ (HYP_INT 0) (HYP_INT 1));
H (MATCH_MP REAL_PROP_LE_LMUL) (H_RULE2 CONJ (HYP_INT 0) (HYP_INT 3));
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 3) (HYP_INT 0));
ASM_REWRITE_TAC[]
];
]]);;
(* ------------------------------------------------------------------ *)
(* INTERVAL ABS VALUE *)
(* ------------------------------------------------------------------ *)
let INTERVAL_ABSV = prove(`!x f ex. interval x f ex ==> (interval (abs x) (abs f) ex)`,
EVERY[
REWRITE_TAC[interval];
DISCH_ALL_TAC;
ASSUME_TAC (SPECL [`x:real`;`f:real`] REAL_ABS_SUB_ABS);
ASM_MESON_TAC[REAL_LE_TRANS]
]);; (* 7 minutes *)
(* ------------------------------------------------------------------ *)
(* INTERVAL SQRT *)
(* This requires some preliminaries. Extend sqrt by 0 on negatives *)
(* ------------------------------------------------------------------ *)
let ssqrt = new_definition `ssqrt x = if (x <. (&.0)) then (&.0) else sqrt x`;; (*2m*)
let LET_TAC = REWRITE_TAC[LET_DEF;LET_END_DEF];;
let REAL_SSQRT_NEG = prove(`!x. (x <. (&.0)) ==> (ssqrt x = (&.0))`,
EVERY[
DISCH_ALL_TAC;
REWRITE_TAC[ssqrt];
COND_CASES_TAC
THENL[
ACCEPT_TAC (REFL `&.0`);
ASM_MESON_TAC[]
]
]);;
(* 5 min*)
let REAL_SSQRT_NN = prove(`!x. (&.0) <=. x ==> (ssqrt x = (sqrt x))`,
EVERY[
DISCH_ALL_TAC;
REWRITE_TAC[ssqrt];
COND_CASES_TAC
THENL[
ASM_MESON_TAC[real_lt];
ACCEPT_TAC (REFL `sqrt x`)
]
]);; (* 12 min, mostly spent loading *index-shell* *)
(*17 minutes*)
let REAL_MK_NN_SSQRT = prove(`!x. (&.0) <=. (ssqrt x)`,
EVERY[
GEN_TAC;
DISJ_CASES_TAC (SPECL[`x:real`;`&.0`] REAL_LTE_TOTAL)
THENL[
POP_ASSUM (fun th -> MP_TAC(MATCH_MP (REAL_SSQRT_NEG) th)) THEN
MESON_TAC[REAL_LE_REFL];
POP_ASSUM (fun th -> ASSUME_TAC(CONJ th (MATCH_MP (REAL_SSQRT_NN) th))) THEN
ASM_MESON_TAC[REAL_PROP_NN_SQRT]
]
]);;
let REAL_SV_SSQRT_0 = prove(`!x. ssqrt (&.0) = (&.0)`,
EVERY[
GEN_TAC;
MP_TAC (SPEC `&.0` REAL_LE_REFL);
DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP REAL_SSQRT_NN th]);
ACCEPT_TAC REAL_SV_SQRT_0
]);; (* 6 minutes *)
let REAL_SSQRT_EQ_0 = prove(`!(x:real). (ssqrt(x) = (&.0)) ==> (x <=. (&.0))`,
EVERY[
GEN_TAC;
DISJ_CASES_TAC (SPECL[`x:real`;`&.0`] REAL_LTE_TOTAL)
THENL[
ASM_MESON_TAC[REAL_LT_IMP_LE];
ASM_SIMP_TAC[REAL_SSQRT_NN] THEN
ASM_MESON_TAC[SQRT_EQ_0;REAL_EQ_IMP_LE]
]
]);; (* 15 minutes *)
let REAL_SSQRT_MONO = prove(`!x. (x<=. y) ==> (ssqrt x <=. (ssqrt y))`,
EVERY[
GEN_TAC;
DISJ_CASES_TAC (SPECL[`x:real`;`&.0`] REAL_LTE_TOTAL)
THENL[
ASM_MESON_TAC[REAL_SSQRT_NEG;REAL_MK_NN_SSQRT];
ASM_MESON_TAC[REAL_LE_TRANS;REAL_SSQRT_NN;REAL_PROP_LE_SQRT];
]
]);; (* 5 minutes *)
let REAL_SSQRT_CHAR = prove(`!x t. (&.0 <=. t /\ (t*t = x)) ==> (t = (ssqrt x))`,
EVERY[
DISCH_ALL_TAC;
H_ASSUME_TAC (H_RULE_LIST REWRITE_RULE[HYP_INT 1] (THM (SPEC `t:real` REAL_MK_NN_SQUARE)));
ASM_MESON_TAC[REAL_SSQRT_NN;SQRT_MUL;POW_2_SQRT_ABS;REAL_POW_2;REAL_ABS_REFL];
]);; (* 13 minutes *)
let REAL_SSQRT_SQUARE = prove(`!x. (&.0 <=. x) ==> ((ssqrt x)*.(ssqrt x) = x)`,
MESON_TAC[REAL_SSQRT_NN;POW_2;SQRT_POW_2]);;(* 7min *)
let REAL_SSQRT_SQUARE' = prove(`!x. (&.0<=. x) ==> (ssqrt (x*.x) = x)`,
DISCH_ALL_TAC THEN
REWRITE_TAC[(MATCH_MP REAL_SSQRT_NN (SPEC `x:real` REAL_MK_NN_SQUARE))] THEN
ASM_SIMP_TAC[SQRT_MUL;GSYM POW_2;SQRT_POW_2]);; (*20min*)
(* an alternate proof appears in RCS *)
let INTERVAL_SSQRT = prove(`!x f ex u ey ez v. (interval x f ex) /\ (interval (u*.u) f ey) /\
(ex +.ey <=. ez*.(v+.u)) /\ (v*.v <=. f-.ex) /\ (&.0 <. u) /\ (&.0 <=. v) ==>
(interval (ssqrt x) u ez)`,
EVERY[
DISCH_ALL_TAC;
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (THM (SPEC `v:real` REAL_MK_NN_SQUARE)) (HYP_INT 3));
H (MATCH_MP (INTERVAL_MIN)) (HYP_INT 1);
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 1) (HYP_INT 0));
H (MATCH_MP INTERVAL_EPS_POS) (HYP_INT 3);
H (MATCH_MP INTERVAL_EPS_POS) (HYP_INT 5);
H (MATCH_MP REAL_PROP_NN_ADD2) (H_RULE2 CONJ (HYP_INT 1) (HYP_INT 0));
H (MATCH_MP REAL_PROP_POS_LADD) (H_RULE2 CONJ (HYP_INT 11) (HYP_INT 10));
H (MATCH_MP REAL_PROP_POS_LADD) (H_RULE2 CONJ (THM (SPEC `x:real` REAL_MK_NN_SSQRT)) (HYP_INT 11));
H (MATCH_MP REAL_PROP_POS_INV) (HYP_INT 0);
ASSUME_TAC (REAL_ARITH `(ssqrt x -. u) = (ssqrt x -. u)*.(&.1)`);
H (MATCH_MP REAL_MK_NZ_POS) (HYP_INT 2);
H (MATCH_MP REAL_MUL_RINV) (HYP_INT 0);
H_REWRITE_RULE[(H_RULE GSYM) (HYP_INT 0)] (HYP_INT 2);
POPL_TAC[1;2;3];
H (REWRITE_RULE[REAL_MUL_ASSOC]) (HYP_INT 0);
H (REWRITE_RULE[ONCE_REWRITE_RULE[REAL_MUL_SYM] REAL_DIFFSQ]) (HYP_INT 0);
POPL_TAC[1;2];
H_SIMP_RULE[HYP_INT 7;THM REAL_SSQRT_SQUARE] (HYP_INT 0);
ASSUME_TAC (REAL_ARITH `abs(x -. u*.u) <=. abs(x -. f) + abs(f-. u*.u)`);
H (REWRITE_RULE[interval]) (HYP_INT 12);
H (ONCE_REWRITE_RULE[interval]) (HYP_INT 14);
H (ONCE_REWRITE_RULE[REAL_ABS_SUB]) (HYP_INT 0);
POPL_TAC[1;5;15;16];
H (MATCH_MP REAL_LE_ADD2) (H_RULE2 CONJ (HYP_INT 1) (HYP_INT 0));
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 3) (HYP_INT 0));
POPL_TAC[1;2;3;4];
H (AP_TERM `||.`) (HYP_INT 1);
H (REWRITE_RULE[ABS_MUL]) (HYP_INT 0);
H (MATCH_MP REAL_LT_IMP_LE) (HYP_INT 4);
H (REWRITE_RULE[GSYM REAL_ABS_REFL]) (HYP_INT 0);
H_REWRITE_RULE [HYP_INT 0] (HYP_INT 2);
H (MATCH_MP REAL_LE_RMUL) (H_RULE2 CONJ (HYP_INT 5) (HYP_INT 2));
H_REWRITE_RULE [H_RULE GSYM (HYP_INT 1)] (HYP_INT 0);
POPL_TAC[1;2;3;5;6;7;8];
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 12) (HYP_INT 9));
H (MATCH_MP REAL_SSQRT_MONO) (HYP_INT 0);
H (MATCH_MP REAL_SSQRT_SQUARE') (HYP_INT 16);
H_REWRITE_RULE [HYP_INT 0] (HYP_INT 1);
H (ONCE_REWRITE_RULE[GSYM (SPECL[`v:real`;`ssqrt x`;`u:real`] REAL_LE_RADD)]) (HYP_INT 0);
H (MATCH_MP REAL_LE_INV2) (H_RULE2 CONJ (HYP_INT 9) (HYP_INT 0));
POPL_TAC[1;2;3;4;5;7;8;9;12;13];
H (MATCH_MP REAL_LE_LMUL) (H_RULE2 CONJ (HYP_INT 3) (HYP_INT 0));
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 2) (HYP_INT 0));
H (MATCH_MP REAL_PROP_POS_INV) (HYP_INT 4);
H (MATCH_MP REAL_LT_IMP_LE) (HYP_INT 0);
H (MATCH_MP REAL_LE_RMUL) (H_RULE2 CONJ (HYP_INT 11) (HYP_INT 0));
H (REWRITE_RULE[GSYM REAL_MUL_ASSOC]) (HYP_INT 0);
H (MATCH_MP REAL_MK_NZ_POS) (HYP_INT 8);
H (MATCH_MP REAL_MUL_RINV) (HYP_INT 0);
H_REWRITE_RULE[HYP_INT 0; THM REAL_MUL_RID] (HYP_INT 2);
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 7) (HYP_INT 0));
ASM_REWRITE_TAC[interval]
]);;
test();;
(* conversion for interval *)
(* ------------------------------------------------------------------ *)
(* Take a term x of type real. Convert to a thm of the form *)
(* interval x f eps *)
(* *)
(* ------------------------------------------------------------------ *)
let DOUBLE_CONV_FILE=true;;
let add_test,test = new_test_suite();;
(* Num package docs at http://caml.inria.fr/ocaml/htmlman/libref/Num.html *)
(* ------------------------------------------------------------------ *)
(* num_exponent
Take the absolute value of input.
Write it as a*2^k, where 1 <= a < 2, return k.
Except:
num_exponent (Int 0) is -1.
*)
let (num_exponent:Num.num -> Num.num) =
fun a ->
let afloat = float_of_num (abs_num a) in
Int ((snd (frexp afloat)) - 1);;
(*test*)let f (u,v) = ((num_exponent u) =(Int v)) in
add_test("num_exponenwt",
forall f
[Int 1,0; Int 65,6; Int (-65),6;
Int 0,-1; (Int 3)//(Int 4),-1]);;
(* ------------------------------------------------------------------ *)
let dest_unary op tm =
try let xop,r = dest_comb tm in
if xop = op then r else fail()
with Failure _ -> failwith "dest_unary";;
(* ------------------------------------------------------------------ *)
(* finds a nearby (outward-rounded) Int with only prec_b significant bits *)
let (round_outward: int -> Num.num -> Num.num) =
fun prec_b a ->
let b = abs_num a in
let sign = if (a =/ b) then I else minus_num in
let throw_bits = Num.max_num (Int 0) ((num_exponent b)-/ (Int prec_b)) in
let twoexp = power_num (Int 2) throw_bits in
(sign (ceiling_num (b // twoexp)))*/twoexp;;
let (round_inward: int-> Num.num -> Num.num) =
fun prec_b a ->
let b = abs_num a in
let sign = if (a=/b) then I else minus_num in
let throw_bits = Num.max_num (Int 0) ((num_exponent b)-/ (Int prec_b)) in
let twoexp = power_num (Int 2) throw_bits in
(sign (floor_num (b // twoexp)))*/twoexp;;
let round_rat bprec n =
let b = abs_num n in
let sign = if (b =/ n) then I else minus_num in
let powt = ((Int 2) **/ (Int bprec)) in
sign ((round_outward bprec (Num.ceiling_num (b */ powt)))//powt);;
let round_inward_rat bprec n =
let b = abs_num n in
let sign = if (b =/ n) then I else minus_num in
let powt = ((Int 2) **/ (Int bprec)) in
sign ((round_inward bprec (Num.floor_num (b */ powt)))//powt);;
let (round_outward_float: int -> float -> Num.num) =
fun bprec f ->
if (f=0.0) then (Int 0) else
begin
let b = abs_float f in
let sign = if (f >= 0.0) then I else minus_num in
let (x,n) = frexp b in
let u = int_of_float( ceil (ldexp x bprec)) in
sign ((Int u)*/ ((Int 2) **/ (Int (n - bprec))))
end;;
let (round_inward_float: int -> float -> Num.num) =
fun bprec f ->
if (f=0.0) then (Int 0) else
begin
(* avoid overflow on 30 bit integers *)
let bprec = if (bprec > 25) then 25 else bprec in
let b = abs_float f in
let sign = if (f >= 0.0) then I else minus_num in
let (x,n) = frexp b in
let u = int_of_float( floor (ldexp x bprec)) in
sign ((Int u)*/ ((Int 2) **/ (Int (n - bprec))))
end;;
(* ------------------------------------------------------------------ *)
(* This doesn't belong here. A general term substitution function *)
let SUBST_TERM sublist tm =
rhs (concl ((SPECL (map fst sublist)) (GENL (map snd sublist)
(REFL tm))));;
add_test("SUBST_TERM",
SUBST_TERM [(`#1`,`a:real`);(`#2`,`b:real`)] (`a +. b +. c`) =
`#1 + #2 + c`);;
(* ------------------------------------------------------------------ *)
(* take a term of the form `interval x f ex` and clean up the f and ex *)
let INTERVAL_CLEAN_CONV:conv =
fun interv ->
let (ixf,ex) = dest_comb interv in
let (ix,f) = dest_comb ixf in
let fthm = FLOAT_CONV f in
let exthm = FLOAT_CONV ex in
let ixfthm = AP_TERM ix fthm in
MK_COMB (ixfthm, exthm);;
(*test*) add_test("INTERVAL_CLEAN_CONV",
let testval = INTERVAL_CLEAN_CONV `interval ((&.1) +. (&.1))
(float (&:3) (&:4) +. (float (&:2) (--: (&:3))))
(float (&:1) (&:2) *. (float (&:3) (--: (&:2))))` in
let hypval = hyp testval in
let concval = concl testval in
(length hypval = 0) &&
concval =
`interval (&1 + &1) (float (&:3) (&:4) + float (&:2) (--: (&:3)))
(float (&:1) (&:2) * float (&:3) (--: (&:2))) =
interval (&1 + &1) (float (&:386) (--: (&:3))) (float (&:3) (&:0))`
);;
(* ------------------------------------------------------------------ *)
(* GENERAL lemmas *)
(* ------------------------------------------------------------------ *)
(* verifies statement of the form `float a b = float a' b'` *)
let FLOAT_EQ = prove(
`!a b a' b'. (float a b = (float a' b')) <=>
((float a b) -. (float a' b') = (&.0))`,MESON_TAC[REAL_SUB_0]);;
let FLOAT_LT = prove(
`!a b a' b'. (float a b <. (float a' b')) <=>
((&.0) <. (float a' b') -. (float a b))`,MESON_TAC[REAL_SUB_LT]);;
let FLOAT_LE = prove(
`!a b a' b'. (float a b <=. (float a' b')) <=>
((&.0) <=. (float a' b') -. (float a b))`,MESON_TAC[REAL_SUB_LE]);;
let TWOPOW_MK_POS = prove(
`!a. (&.0 <. ( twopow a))`,
EVERY[
GEN_TAC;
CHOOSE_TAC (SPEC `a:int` INT_REP2);
POP_ASSUM DISJ_CASES_TAC;
ASM_REWRITE_TAC[TWOPOW_POS;TWOPOW_NEG];
TRY (MATCH_MP_TAC REAL_INV_POS);
MATCH_MP_TAC REAL_POW_LT ;
REAL_ARITH_TAC;
]);;
let TWOPOW_NZ = prove(
`!a. ~(twopow a = (&.0))`,
GEN_TAC THEN
ACCEPT_TAC (MATCH_MP REAL_MK_NZ_POS (SPEC `a:int` TWOPOW_MK_POS)));;
let FLOAT_ZERO = prove(
`!a b. (float a b = (&.0)) <=> (a = (&:0))`,
EVERY[
REWRITE_TAC[float;REAL_ENTIRE;INT_OF_NUM_DEST];
MESON_TAC[TWOPOW_NZ];
]);;
let INT_ZERO = prove(
`!n. ((&:n = (&:0)) = (n=0))`,REWRITE_TAC[INT_OF_NUM_EQ]);;
let INT_ZERO_NEG=prove(
`!n. ((--: (&:n) = (&:0))) <=> (n=0)`,
REWRITE_TAC[INT_NEG_EQ_0;INT_ZERO]);;
let FLOAT_NN = prove(
`!a b. ((&.0) <=. (float a b)) <=> (&:0 <=: a)`,
EVERY[
REWRITE_TAC[float;INT_OF_NUM_DEST];
REP_GEN_TAC;
EQ_TAC THENL[EVERY[
DISCH_ALL_TAC;
INPUT_COMBO[THM REAL_PROP_NN_RCANCEL;THM (SPEC `b:int` TWOPOW_MK_POS) &&& (HYP"0")];
ASM_MESON_TAC[int_le;int_of_num_th]];
EVERY[
DISCH_ALL_TAC;
INPUT_COMBO[THM REAL_PROP_NN_POS;THM(SPEC`b:int`TWOPOW_MK_POS)];
INPUT_COMBO[THM int_of_num_th ; THM int_le ;(HYP"0")];
INPUT_COMBO[THM REAL_PROP_NN_MUL2; (HYP"2")&&&(HYP"1")];
ASM_REWRITE_TAC[]]]
]);;
let INT_NN = INT_POS;;
let INT_NN_NEG = prove(`!n. ((&:0) <=: (--:(&:n))) <=> (n = 0)`,
REWRITE_TAC[INT_NEG_GE0;INT_OF_NUM_LE] THEN ARITH_TAC
);;
let FLOAT_POS = prove(`!a b. ((&.0) <. (float a b)) <=> (&:0 <: a)`,
MESON_TAC[FLOAT_NN;FLOAT_ZERO;INT_LT_LE;REAL_LT_LE]);;
let INT_POS' = prove(`!n. (&:0) <: (&:n) <=> (~(n=0) )`,
REWRITE_TAC[INT_OF_NUM_LT] THEN ARITH_TAC);;
let INT_POS_NEG =prove(`!n. ((&:0) <: (--:(&:n))) <=> F`,
REWRITE_TAC[INT_OF_NUM_LT] THEN ARITH_TAC);;
let RAT_LEMMA1_SUB = prove(`~(y1 = &0) /\ ~(y2 = &0) ==>
((x1 / y1) - (x2 / y2) = (x1 * y2 - x2 * y1) * inv(y1) * inv(y2))`,
EVERY[REWRITE_TAC[real_div];
REWRITE_TAC[real_sub;GSYM REAL_MUL_LNEG];
REWRITE_TAC[GSYM real_div];
SIMP_TAC[RAT_LEMMA1];
DISCH_TAC;
MESON_TAC[real_div]]);;
let INTERVAL_0 = prove(`! a f ex. (interval a f ex <=> (&.0 <= (ex - (abs (a -. f)))))`,
MESON_TAC[interval;REAL_SUB_LE]);;
let ABS_NUM = prove (`!m n. abs (&. n -. (&. m)) = &.((m-|n) + (n-|m))`,
REPEAT GEN_TAC THEN
DISJ_CASES_TAC (SPECL [`m:num`;`n:num`] LTE_CASES) THENL[
(* first case *)
EVERY[ LABEL_ALL_TAC;
H_REWRITE_RULE [THM (GSYM REAL_OF_NUM_LT)] (HYP "0");
LABEL_ALL_TAC;
H_ONCE_REWRITE_RULE[THM (GSYM REAL_SUB_LT)] (HYP "1");
LABEL_ALL_TAC;
H_MATCH_MP (THM REAL_LT_IMP_LE) (HYP "2");
LABEL_ALL_TAC;
H_REWRITE_RULE [THM (GSYM ABS_REFL)] (HYP "3");
ASM_REWRITE_TAC[];
H_MATCH_MP (THM LT_IMP_LE) (HYP "0");
ASM_SIMP_TAC[REAL_OF_NUM_SUB];
REWRITE_TAC[REAL_OF_NUM_EQ];
ONCE_REWRITE_TAC[ARITH_RULE `!x:num y:num. (x = y) = (y = x)`];
REWRITE_TAC[EQ_ADD_RCANCEL_0];
ASM_REWRITE_TAC[SUB_EQ_0]];
(* second case *)
EVERY[LABEL_ALL_TAC;
H_REWRITE_RULE [THM (GSYM REAL_OF_NUM_LE)] (HYP "0");
LABEL_ALL_TAC;
H_ONCE_REWRITE_RULE[THM (GSYM REAL_SUB_LE)] (HYP "1");
LABEL_ALL_TAC;
H_REWRITE_RULE [THM (GSYM ABS_REFL)] (HYP "2");
ONCE_REWRITE_TAC[GSYM REAL_ABS_NEG];
REWRITE_TAC[REAL_ARITH `!x y. --.(x -. y) = (y-x)`];
ASM_REWRITE_TAC[];
ASM_SIMP_TAC[REAL_OF_NUM_SUB];
REWRITE_TAC[REAL_OF_NUM_EQ];
ONCE_REWRITE_TAC[ARITH_RULE `!x:num y:num. (x = y) <=> (y = x)`];
REWRITE_TAC[EQ_ADD_LCANCEL_0];
ASM_REWRITE_TAC[SUB_EQ_0]]]);;
let INTERVAL_TO_LESS = prove(
`!a f ex b g ey. ((interval a f ex) /\ (interval b g ey) /\
(&.0 <. (g -. (ey +. ex +. f)))) ==> (a <. b)`,
let lemma1 = REAL_ARITH `!ex ey f g. (&.0 <.
(g -. (ey +. ex +. f))) ==> ((f +. ex)<. (g -. ey)) ` in
EVERY[
REPEAT GEN_TAC;
DISCH_ALL_TAC;
H_MATCH_MP (THM lemma1) (HYP "2");
H_MATCH_MP (THM INTERVAL_MAX) (HYP "0");
H_MATCH_MP (THM INTERVAL_MIN) (HYP "1");
LABEL_ALL_TAC;
H_MATCH_MP (THM REAL_LET_TRANS) (H_RULE2 CONJ (HYP "4") (HYP "5"));
LABEL_ALL_TAC;
H_MATCH_MP (THM REAL_LTE_TRANS) (H_RULE2 CONJ (HYP "6") (HYP "3"));
ASM_REWRITE_TAC[]
]);;
let ABS_TO_INTERVAL = prove(
`!c u k. (abs (c - u) <=. k) ==> (!f g ex ey.((interval u f ex) /\ (interval k g ey) ==> (interval c f (g+.ey+.ex))))`,
EVERY[
REWRITE_TAC[interval];
DISCH_ALL_TAC;
REPEAT GEN_TAC;
DISCH_ALL_TAC;
ONCE_REWRITE_TAC [REAL_ARITH `c -. f = (c-. u) + (u-. f)`];
ONCE_REWRITE_TAC [REAL_ADD_ASSOC];
ASSUME_TAC (SPECL [`c-.u`;`u-.f`] ABS_TRIANGLE);
IMP_RES_THEN ASSUME_TAC (REAL_ARITH `||.(k-.g) <=. ey ==> (k <=. (g +. ey))`);
MATCH_MP_TAC (REAL_ARITH `(?a b.((x <=. (a+.b)) /\ (a <=. u) /\ (b <=. v))) ==> (x <=. (u +. v))`);
EXISTS_TAC `abs (c-.u)`;
EXISTS_TAC `abs(u-.f)`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[REAL_LE_TRANS];
]);;
(* end of general lemmas *)
(* ------------------------------------------------------------------ *)
(* ------------------------------------------------------------------ *)
(* Cache of computed constants (abs (c - u) <= k) *)
(* ------------------------------------------------------------------ *)
let calculated_constants = ref ([]:(term*thm) list);;
let add_real_constant ineq =
try(
let (abst,k) = dest_binop `(<=.)` (concl ineq) in
let (absh,cmu) = dest_comb abst in
let (c,u) = dest_binop `(-.)` cmu in
calculated_constants := (c,ineq)::(!calculated_constants))
with _ ->
(try(
let (c,f,ex) = dest_interval (concl ineq) in
calculated_constants := (c,ineq)::(!calculated_constants))
with _ -> failwith "calculated_constants format : abs(c - u) <= k");;
let get_real_constant tm =
assoc tm !calculated_constants;;
let remove_real_constant tm =
calculated_constants :=
filter (fun t -> not ((fst t) = tm)) !calculated_constants;;
(* ------------------------------------------------------------------ *)
(* term of the form '&.n'. Assume error checking done already. *)
let INTERVAL_OF_NUM:conv =
fun tm ->
let tm1 = snd (dest_comb tm) in
let th1 = (ARITH_REWRITE_CONV[] tm1) in
ONCE_REWRITE_RULE[AP_TERM `&.` (GSYM th1)]
(SPEC (rhs (concl th1)) INTERVAL_NUM);;
add_test("INTERVAL_OF_NUM",
dest_thm (INTERVAL_OF_NUM `&.3`) = ([],
`interval (&3) (float (&:3) (&:0)) (float (&:0) (&:0))`));;
(* term of the form `--. (&.n)`. Assume format checking already done. *)
let INTERVAL_OF_NEG:conv =
fun tm ->
let (sign,u) = dest_comb tm in
let _ = assert(sign = `--.`) in
let (amp,tm1) = (dest_comb u) in
let _ = assert(amp = `&.`) in
let th1 = (ARITH_REWRITE_CONV[] tm1) in
ONCE_REWRITE_RULE[FLOAT_NEG] (
ONCE_REWRITE_RULE[INTERVAL_NEG] (
ONCE_REWRITE_RULE[AP_TERM `&.` (GSYM th1)] (
(SPEC (rhs (concl th1)) INTERVAL_NUM))));;
add_test("INTERVAL_OF_NEG",
dest_thm (INTERVAL_OF_NEG `--.(&. (3+4))`) =
([],`interval( --.(&.(3 + 4)) )
(float (--: (&:7)) (&:0)) (float (&:0) (&:0))`));;
(* ------------------------------------------------------------------ *)
let INTERVAL_TO_LESS_CONV = fun thm1 thm2 ->
let (a,f,ex) = dest_interval (concl thm1) in
let (b,g,ey) = dest_interval (concl thm2) in
let rthm = ASSUME `!f g ex ey. (&.0 <. (g -. (ey +. ex +. f)))` in
let rspec = concl (SPECL [f;g;ex;ey] rthm) in
let rspec_simp = FLOAT_CONV (snd (dest_binop `(<.)` rspec)) in
let rthm2 = prove (rspec,REWRITE_TAC[rspec_simp;FLOAT_POS;INT_POS';
INT_POS_NEG] THEN ARITH_TAC) in
let fthm = CONJ thm1 (CONJ thm2 rthm2) in
MATCH_MP INTERVAL_TO_LESS fthm;;
add_test("INTERVAL_TO_LESS_CONV",
let thm1 = ASSUME
`interval (#0.1) (float (&:1) (--: (&:1))) (float (&:1) (--: (&:2)))` in
let thm2 = ASSUME `interval (#7) (float (&:4) (&:1)) (float (&:1) (&:0))` in
let thm3 = INTERVAL_TO_LESS_CONV thm1 thm2 in
concl thm3 = `#0.1 <. (#7)`);;
add_test("INTERVAL_TO_LESS_CONV2",
let (h,c) = dest_thm (INTERVAL_TO_LESS_CONV
(INTERVAL_OF_NUM `&.3`) (INTERVAL_OF_NUM `&.8`)) in
(h=[]) && (c = `&.3 <. (&.8)`));;
(* ------------------------------------------------------------------ *)
(* conversion for DEC <= posfloat and posfloat <= DEC *)
let lemma1 = prove(
`!n m p. ((&.p/(&.m)) <= (&.n)) <=> ((&.p/(&.m)) <= (&.n)/(&.1))`,
MESON_TAC[REAL_DIV_1]);;
let lemma2 = prove(
`!n m p. ((&.p) <= ((&.n)/(&.m))) <=> ((&.p/(&.1)) <= (&.n)/(&.m))`,
MESON_TAC[REAL_DIV_1]);;
let lemma3 = prove(`!a b c d. (
((0<b) /\ (0<d) /\ (a*d <=| c*b))
==> (&.a/(&.b) <=. ((&.c)/(&.d))))`,
EVERY[REPEAT GEN_TAC;
DISCH_ALL_TAC;
ASM_SIMP_TAC[RAT_LEMMA4;REAL_LT;REAL_OF_NUM_MUL;REAL_LE]]);;
let DEC_FLOAT = EQT_ELIM o
ARITH_SIMP_CONV[DECIMAL;float;TWOPOW_POS;TWOPOW_NEG;GSYM real_div;
REAL_OF_NUM_POW;INT_NUM_REAL;REAL_OF_NUM_MUL;
lemma1;lemma2;lemma3];;
add_test("DEC_FLOAT",
let f c x =
dest_thm (c x) = ([],x) in
((f DEC_FLOAT `#10.0 <= (float (&:3) (&:2))`) &&
(f DEC_FLOAT `#10 <= (float (&:3) (&:2))`) &&
(f DEC_FLOAT `#0.1 <= (float (&:1) (--: (&:2)))`) &&
(f DEC_FLOAT `float (&:3) (&:2) <= (#13.0)`) &&
(f DEC_FLOAT `float (&:3) (&:2) <= (#13)`) &&
(f DEC_FLOAT `float (&:1) (--: (&:2)) <= (#0.3)`)));;
(* ------------------------------------------------------------------ *)
(* conversion for float inequalities *)
let FLOAT_INEQ_CONV t =
let thm1= (ONCE_REWRITE_CONV[GSYM REAL_SUB_LT;GSYM REAL_SUB_LE] t) in
let rhsx= rhs (concl thm1) in
let thm2= prove(rhsx,REWRITE_TAC[FLOAT_CONV (snd (dest_comb rhsx))] THEN
REWRITE_TAC[FLOAT_NN;FLOAT_POS;INT_NN;INT_NN_NEG;
INT_POS';INT_POS_NEG] THEN ARITH_TAC) in
REWRITE_RULE[GSYM thm1] thm2;;
let t1 = `(float (&:3) (&:0)) +. (float (&:4) (&:0)) <. (float (&:8) (&:1))`;;
add_test("FLOAT_INEQ_CONV",
let f c x =
dest_thm (c x) = ([],x) in
let t1 =
`(float (&:3) (&:0)) +. (float (&:4) (&:0)) <. (float (&:8) (&:1))` in
((f FLOAT_INEQ_CONV t1)));;
(* ------------------------------------------------------------------ *)
(* converts a DECIMAL TO A THEOREM *)
let INTERVAL_MINMAX = prove(`!x f ex.
((f -. ex) <= x) /\ (x <=. (f +. ex)) ==> (interval x f ex)`,
EVERY[REPEAT GEN_TAC;
REWRITE_TAC[interval;ABS_BOUNDS];
REAL_ARITH_TAC]);;
let INTERVAL_OF_DECIMAL bprec dec =
let a_num = dest_decimal dec in
let f_num = round_rat bprec a_num in
let ex_num = round_rat bprec (Num.abs_num (f_num -/ a_num)) in
let _ = assert (ex_num <=/ f_num) in
let f = mk_float f_num in
let ex= mk_float ex_num in
let fplus_ex = FLOAT_CONV (mk_binop `(+.)` f ex) in
let fminus_ex= FLOAT_CONV (mk_binop `(-.)` f ex) in
let fplus_term = rhs (concl fplus_ex) in
let fminus_term = rhs (concl fminus_ex) in
let th1 = DEC_FLOAT (mk_binop `(<=.)` fminus_term dec) in
let th2 = DEC_FLOAT (mk_binop `(<=.)` dec fplus_term) in
let intv = mk_interval dec f ex in
EQT_ELIM (SIMP_CONV[INTERVAL_MINMAX;fplus_ex;fminus_ex;th1;th2] intv);;
add_test("INTERVAL_OF_DECIMAL",
let (h,c) = dest_thm (INTERVAL_OF_DECIMAL 4 `#36.1`) in
let (x,f,ex) = dest_interval c in
(h=[]) && (x = `#36.1`));;
add_test("INTERVAL_OF_DECIMAL2",
can (fun() -> INTERVAL_TO_LESS_CONV (INTERVAL_OF_DECIMAL 4 `#33.33`)
(INTERVAL_OF_DECIMAL 4 `#36.1`)) ());;
(*--------------------------------------------------------------------*)
(* functions to check format. *)
(* There are various implicit rules: *)
(* NUMERAL is followed by bits and no other kind of num, etc. *)
(* FLOAT a b, both a and b are &:NUMERAL or --:&:NUMERAL, etc. *)
(*--------------------------------------------------------------------*)
(* converts exceptions to false *)
let falsify_ex f x = try (f x) with _ -> false;;
let is_bits_format =
let rec format x =
if (x = `_0`) then true
else let (h,t) = dest_comb x in
(((h = `BIT1`) || (h = `BIT0`)) && (format t))
in falsify_ex format;;
let is_numeral_format =
let fn x =
let (h,t) = dest_comb x in
((h = `NUMERAL`) && (is_bits_format t)) in
falsify_ex fn;;
let is_decimal_format =
let fn x =
let (t1,t2) = dest_binop `DECIMAL` x in
((is_numeral_format t1) && (is_numeral_format t2)) in
falsify_ex fn;;
let is_pos_int_format =
let fn x =
let (h,t) = dest_comb x in
(h = ` &: `) && (is_numeral_format t) in
falsify_ex fn;;
let is_neg_int_format =
let fn x =
let (h,t) = dest_comb x in
(h = ` --: `) && (is_pos_int_format t) in
falsify_ex fn;;
let is_int_format x =
(is_neg_int_format x) || (is_pos_int_format x);;
let is_float_format =
let fn x =
let (t1,t2) = dest_binop `float` x in
(is_int_format t1) && (is_int_format t2) in
falsify_ex fn;;
let is_interval_format =
let fn x =
let (a,b,c) = dest_interval x in
(is_float_format b) && (is_float_format c) in
falsify_ex fn;;
let is_neg_real =
let fn x =
let (h,t) = dest_comb x in
(h= `--.`) in
falsify_ex fn;;
let is_real_num_format =
let fn x =
let (h,t) = dest_comb x in
(h=`&.`) && (is_numeral_format t) in
falsify_ex fn;;
let is_comb_of t u =
let fn t u =
t = (fst (dest_comb u)) in
try (fn t u) with failure -> false;;
(* ------------------------------------------------------------------ *)
(* Heron's formula for the square root of A
Return a value x that is always at most the actual square root
and such that abs (x - A/x ) < epsilon *)
let rec heron_sqrt depth A x eps =
let half = (Int 1)//(Int 2) in
if (depth <= 0) then raise (Failure "sqrt recursion depth exceeded") else
if (Num.abs_num (x -/ (A//x) ) </ eps) && (x*/ x >=/ A) then (A//x) else
let x' = half */ (x +/ (A//x)) in
heron_sqrt (depth -1) A x' eps;;
let INTERVAL_OF_TWOPOW = prove(
`!n. interval (twopow n) (float (&:1) n) (float (&:0) (&:0))`,
REWRITE_TAC[interval;float;int_of_num_th] THEN
REAL_ARITH_TAC
);;
(* ------------------------------------------------------------------ *)
let rec INTERVAL_OF_TERM bprec tm =
(* treat cached values first *)
if (can get_real_constant tm) then
begin
try(
let int_thm = get_real_constant tm in
if (can dest_interval (concl int_thm)) then int_thm
else (
let absthm = get_real_constant tm in
let (abst,k) = dest_binop `(<=.)` (concl absthm) in
let (absh,cmu) = dest_comb abst in
let (c,u) = dest_binop `(-.)` cmu in
let intk = INTERVAL_OF_TERM bprec k in
let intu = INTERVAL_OF_TERM bprec u in
let thm1 = MATCH_MP ABS_TO_INTERVAL absthm in
let thm2 = MATCH_MP thm1 (CONJ intu intk) in
let (_,f,ex)= dest_interval (concl thm2) in
let fthm = FLOAT_CONV f in
let exthm = FLOAT_CONV ex in
let thm3 = REWRITE_RULE[fthm;exthm] thm2 in
(add_real_constant thm3; thm3)
))
with _ -> failwith "INTERVAL_OF_TERM : CONSTANT"
end
else if (is_real_num_format tm) then (INTERVAL_OF_NUM tm)
else if (is_decimal_format tm) then (INTERVAL_OF_DECIMAL bprec tm)
(* treat negative terms *)
else if (is_neg_real tm) then
begin
try(
let (_,t) = dest_comb tm in
let int1 = INTERVAL_OF_TERM bprec t in
let (_,b,_) = dest_interval (concl int1) in
let thm1 = FLOAT_CONV (mk_comb (`--.`, b)) in
REWRITE_RULE[thm1] (ONCE_REWRITE_RULE[INTERVAL_NEG] int1))
with _ -> failwith "INTERVAL_OF_TERM : NEG"
end
(* treat abs value *)
else if (is_comb_of `||.` tm) then
begin
try(
let (_,b) = dest_comb tm in
let b_int = MATCH_MP INTERVAL_ABSV (INTERVAL_OF_TERM bprec b) in
let (_,f,_) = dest_interval (concl b_int) in
let thm1 = FLOAT_CONV f in
REWRITE_RULE[thm1] b_int)
with _ -> failwith "INTERVAL_OF_TERM : ABS"
end
(* treat twopow *)
else if (is_comb_of `twopow` tm) then
begin
try(
let (_,b) = dest_comb tm in
SPEC b INTERVAL_OF_TWOPOW
)
with _ -> failwith "INTERVAL_OF_TERM : TWOPOW"
end
(* treat addition *)
else if (can (dest_binop `(+.)`) tm) then
begin
try(
let (a,b) = dest_binop `(+.)` tm in
let a_int = INTERVAL_OF_TERM bprec a in
let b_int = INTERVAL_OF_TERM bprec b in
let c_int = MATCH_MP INTERVAL_ADD (CONJ a_int b_int) in
let (_,f,ex) = dest_interval (concl c_int) in
let thm1 = FLOAT_CONV f and thm2 = FLOAT_CONV ex in
REWRITE_RULE[thm1;thm2] c_int)
with _ -> failwith "INTERVAL_OF_TERM : ADD"
end
(* treat subtraction *)
else if (can (dest_binop `(-.)`) tm) then
begin
try(
let (a,b) = dest_binop `(-.)` tm in
let a_int = INTERVAL_OF_TERM bprec a in
let b_int = INTERVAL_OF_TERM bprec b in
let c_int = MATCH_MP INTERVAL_SUB (CONJ a_int b_int) in
let (_,f,ex) = dest_interval (concl c_int) in
let thm1 = FLOAT_CONV f and thm2 = FLOAT_CONV ex in
REWRITE_RULE[thm1;thm2] c_int)
with _ -> failwith "INTERVAL_OF_TERM : SUB"
end
(* treat multiplication *)
else if (can (dest_binop `( *. )`) tm) then
begin
try(
let (a,b) = dest_binop `( *. )` tm in
let a_int = INTERVAL_OF_TERM bprec a in
let b_int = INTERVAL_OF_TERM bprec b in
let c_int = MATCH_MP INTERVAL_MUL (CONJ a_int b_int) in
let (_,f,ex) = dest_interval (concl c_int) in
let thm1 = FLOAT_CONV f and thm2 = FLOAT_CONV ex in
REWRITE_RULE[thm1;thm2] c_int)
with _ -> failwith "INTERVAL_OF_TERM : MUL"
end
(* treat division : instantiate INTERVAL_DIV *)
else if (can (dest_binop `( / )`) tm) then
begin
try(
let (a,b) = dest_binop `( / )` tm in
let a_int = INTERVAL_OF_TERM bprec a in
let b_int = INTERVAL_OF_TERM bprec b in
let (_,f,ex) = dest_interval (concl a_int) in
let (_,g,ey) = dest_interval (concl b_int) in
let f_num = dest_float f in
let ex_num = dest_float ex in
let g_num = dest_float g in
let ey_num = dest_float ey in
let h_num = round_rat bprec (f_num//g_num) in
let h = mk_float h_num in
let ez_rat = (ex_num +/ abs_num (f_num -/ (h_num*/ g_num))
+/ (abs_num h_num */ ey_num))//((abs_num g_num) -/ (ey_num)) in
let ez_num = round_rat bprec (ez_rat) in
let _ = assert((ez_num >=/ (Int 0))) in
let ez = mk_float ez_num in
let hyp1 = a_int in
let hyp2 = b_int in
let hyp3 = FLOAT_INEQ_CONV (mk_binop `(<.)` ey (mk_comb (`||.`,g))) in
let thm = SPECL [a;f;ex;b;g;ey;h;ez] INTERVAL_DIV in
let conj2 x = snd (dest_conj x) in
let hyp4t = (conj2 (conj2 (conj2 (fst(dest_imp (concl thm)))))) in
let hyp4 = FLOAT_INEQ_CONV hyp4t in
let hyp_all = end_itlist CONJ [hyp1;hyp2;hyp3;hyp4] in
MATCH_MP thm hyp_all)
with _ -> failwith "INTERVAL_OF_TERM :DIV"
end
(* treat sqrt : instantiate INTERVAL_SSQRT *)
else if (can (dest_unary `ssqrt`) tm) then
begin
try(
let x = dest_unary `ssqrt` tm in
let x_int = INTERVAL_OF_TERM bprec x in
let (_,f,ex) = dest_interval (concl x_int) in
let f_num = dest_float f in
let ex_num = dest_float ex in
let fd_num = f_num -/ ex_num in
let fe_f = Num.float_of_num fd_num in
let apprx_sqrt = Pervasives.sqrt fe_f in
(* put in heron's formula *)
let v_num1 = round_inward_float 25 (apprx_sqrt) in
let v_num = round_inward_rat bprec
(heron_sqrt 10 fd_num v_num1 ((Int 2) **/ (Int (-bprec-4)))) in
let u_num1 = round_inward_float 25
(Pervasives.sqrt (float_of_num f_num)) in
let u_num = round_inward_rat bprec
(heron_sqrt 10 f_num u_num1 ((Int 2) **/ (Int (-bprec-4)))) in
let ey_num = round_rat bprec (abs_num (f_num -/ (u_num */ u_num))) in
let ez_num = round_rat bprec ((ex_num +/ ey_num)//(u_num +/ v_num)) in
let (v,u) = (mk_float v_num,mk_float u_num) in
let (ey,ez) = (mk_float ey_num,mk_float ez_num) in
let thm = SPECL [x;f;ex;u;ey;ez;v] INTERVAL_SSQRT in
let conjhyp = fst (dest_imp (concl thm)) in
let [hyp6;hyp5;hyp4;hyp3;hyp2;hyp1] =
let rec break_conj c acc =
if (not(is_conj c)) then (c::acc) else
let (u,v) = dest_conj c in break_conj v (u::acc) in
(break_conj conjhyp []) in
let thm2 = prove(hyp2,REWRITE_TAC[interval] THEN
(CONV_TAC FLOAT_INEQ_CONV)) in
let thm3 = FLOAT_INEQ_CONV hyp3 in
let thm4 = FLOAT_INEQ_CONV hyp4 in
let float_tac = REWRITE_TAC[FLOAT_NN;FLOAT_POS;INT_NN;INT_NN_NEG;
INT_POS';INT_POS_NEG] THEN ARITH_TAC in
let thm5 = prove( hyp5,float_tac) in
let thm6 = prove( hyp6,float_tac) in
let ant = end_itlist CONJ[x_int;thm2;thm3;thm4;thm5;thm6] in
MATCH_MP thm ant
)
with _ -> failwith "INTERVAL_OF_TERM : SSQRT"
end
else failwith "INTERVAL_OF_TERM : case not installed";;
let real_ineq bprec tm =
let (t1,t2) = dest_binop `(<.)` tm in
let int1 = INTERVAL_OF_TERM bprec t1 in
let int2 = INTERVAL_OF_TERM bprec t2 in
INTERVAL_TO_LESS_CONV int1 int2;;
pop_priority();;
|