Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,198 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
(* ========================================================================= *)
(* The NIST-recommended elliptic curve P-384, aka secp384r1. *)
(* ========================================================================= *)
needs "EC/weierstrass.ml";;
needs "EC/excluderoots.ml";;
needs "EC/computegroup.ml";;
add_curve weierstrass_curve;;
add_curveneg weierstrass_neg;;
add_curveadd weierstrass_add;;
(* ------------------------------------------------------------------------- *)
(* The NIST curve parameters, copied from the NIST FIPS 186-4 document. *)
(* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf *)
(* ------------------------------------------------------------------------- *)
let p_384 = new_definition `p_384 = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319`;;
let n_384 = new_definition `n_384 = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643`;;
let SEED_384 = new_definition `SEED_384 = 0xa335926aa319a27a1d00896a6773a4827acdac73`;;
let c_384 = new_definition `c_384 = 0x79d1e655f868f02fff48dcdee14151ddb80643c1406d0ca10dfe6fc52009540a495e8042ea5f744f6e184667cc722483`;;
let b_384 = new_definition `b_384 = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef`;;
let G_384 = new_definition `G_384 = SOME(&0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7:int,&0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f:int)`;;
(* ------------------------------------------------------------------------- *)
(* Primality of the field characteristic and group order. *)
(* ------------------------------------------------------------------------- *)
let P_384 = prove
(`p_384 = 2 EXP 384 - 2 EXP 128 - 2 EXP 96 + 2 EXP 32 - 1`,
REWRITE_TAC[p_384] THEN CONV_TAC NUM_REDUCE_CONV);;
let PRIME_P384 = time prove
(`prime p_384`,
REWRITE_TAC[p_384] THEN CONV_TAC NUM_REDUCE_CONV THEN
(CONV_TAC o PRIME_RULE)
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "41"; "43"; "47";
"59"; "61"; "67"; "73"; "79"; "97"; "131"; "139"; "157"; "181"; "211";
"233"; "263"; "271"; "293"; "599"; "661"; "881"; "937"; "1033"; "1373";
"1579"; "2213"; "3253"; "3517"; "6317"; "8389"; "21407"; "38557";
"312289"; "336757"; "363557"; "568151"; "6051631"; "105957871";
"246608641"; "513928823"; "532247449"; "2862218959"; "53448597593";
"807145746439"; "44925942675193"; "1357291859799823621";
"529709925838459440593"; "35581458644053887931343";
"23964610537191310276190549303"; "862725979338887169942859774909";
"20705423504133292078628634597817";
"413244619895455989650825325680172591660047";
"12397338596863679689524759770405177749801411";
"19173790298027098165721053155794528970226934547887232785722672956982046098136719667167519737147526097"]);;
let PRIME_N384 = time prove
(`prime n_384`,
REWRITE_TAC[n_384] THEN CONV_TAC NUM_REDUCE_CONV THEN
(CONV_TAC o PRIME_RULE)
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "31"; "37"; "41";
"43"; "47"; "53"; "59"; "73"; "79"; "89"; "97"; "107"; "113"; "149";
"151"; "163"; "173"; "179"; "181"; "233"; "251"; "311"; "347"; "421";
"491"; "653"; "659"; "881"; "1087"; "1117"; "1553"; "3739"; "4349";
"8699"; "16979"; "34429"; "37447"; "64901"; "248431"; "330563"; "455737";
"1276987"; "8463023"; "9863677"; "154950581"; "272109983"; "290064143";
"228572385721"; "1436833069313"; "23314383343543"; "37344768852931";
"55942463741690639"; "426632512014427833817"; "120699720968197491947347";
"1124679999981664229965379347"; "1495199339761412565498084319";
"17942392077136950785977011829";
"1059392654943455286185473617842338478315215895509773412096307";
"3055465788140352002733946906144561090641249606160407884365391979704929268480326390471"]);;
(* ------------------------------------------------------------------------- *)
(* Basic sanity check on the (otherwise unused) c parameter. *)
(* ------------------------------------------------------------------------- *)
let SANITY_CHECK_384 = prove
(`(&b_384 pow 2 * &c_384:int == -- &27) (mod &p_384)`,
REWRITE_TAC[G_384; p_384; b_384; c_384] THEN
REWRITE_TAC[GSYM INT_REM_EQ] THEN CONV_TAC INT_REDUCE_CONV);;
(* ------------------------------------------------------------------------- *)
(* Definition of the curve group and proof of its key properties. *)
(* ------------------------------------------------------------------------- *)
let p384_group = define
`p384_group =
weierstrass_group
(integer_mod_ring p_384,
ring_neg (integer_mod_ring p_384) (&3),
&b_384)`;;
let P384_GROUP = prove
(`group_carrier p384_group =
weierstrass_curve
(integer_mod_ring p_384,ring_neg (integer_mod_ring p_384) (&3),&b_384) /\
group_id p384_group =
NONE /\
group_inv p384_group =
weierstrass_neg
(integer_mod_ring p_384,ring_neg (integer_mod_ring p_384) (&3),&b_384) /\
group_mul p384_group =
weierstrass_add
(integer_mod_ring p_384,ring_neg (integer_mod_ring p_384) (&3),&b_384)`,
REWRITE_TAC[p384_group] THEN
MATCH_MP_TAC WEIERSTRASS_GROUP THEN
REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P384] THEN
REWRITE_TAC[p_384; b_384; weierstrass_nonsingular] THEN
SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN
CONV_TAC INT_REDUCE_CONV);;
add_ecgroup [p_384; b_384] P384_GROUP;;
let NO_ROOTS_P384 = prove
(`!x:int. ~((x pow 3 - &3 * x + &b_384 == &0) (mod &p_384))`,
EXCLUDE_MODULAR_CUBIC_ROOTS_TAC PRIME_P384 [p_384;b_384]);;
let GENERATOR_IN_GROUP_CARRIER_384 = prove
(`G_384 IN group_carrier p384_group`,
REWRITE_TAC[G_384] THEN CONV_TAC ECGROUP_CARRIER_CONV);;
let GROUP_ELEMENT_ORDER_G384 = prove
(`group_element_order p384_group G_384 = n_384`,
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; GENERATOR_IN_GROUP_CARRIER_384;
PRIME_N384] THEN
REWRITE_TAC[G_384; el 1 (CONJUNCTS P384_GROUP); option_DISTINCT] THEN
REWRITE_TAC[n_384] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN
REFL_TAC);;
let FINITE_GROUP_CARRIER_384 = prove
(`FINITE(group_carrier p384_group)`,
REWRITE_TAC[P384_GROUP] THEN MATCH_MP_TAC FINITE_WEIERSTRASS_CURVE THEN
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING; PRIME_P384] THEN
REWRITE_TAC[p_384] THEN CONV_TAC NUM_REDUCE_CONV);;
let SIZE_P384_GROUP = prove
(`group_carrier p384_group HAS_SIZE n_384`,
MATCH_MP_TAC GROUP_ADHOC_ORDER_UNIQUE_LEMMA THEN
EXISTS_TAC `G_384:(int#int)option` THEN
REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_384; GROUP_ELEMENT_ORDER_G384;
FINITE_GROUP_CARRIER_384] THEN
REWRITE_TAC[P384_GROUP] THEN CONJ_TAC THENL
[W(MP_TAC o PART_MATCH (lhand o rand)
CARD_BOUND_WEIERSTRASS_CURVE o lhand o snd) THEN
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING] THEN
REWRITE_TAC[PRIME_P384] THEN ANTS_TAC THENL
[REWRITE_TAC[p_384] THEN CONV_TAC NUM_REDUCE_CONV;
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)] THEN
SIMP_TAC[CARD_INTEGER_MOD_RING; p_384; ARITH] THEN
REWRITE_TAC[n_384] THEN CONV_TAC NUM_REDUCE_CONV;
REWRITE_TAC[FORALL_OPTION_THM; IN; FORALL_PAIR_THM] THEN
REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_DISTINCT] THEN
MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[option_INJ] THEN
REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN
CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[p_384; PAIR_EQ] THEN
CONV_TAC INT_REDUCE_CONV] THEN
ASM_CASES_TAC `y:int = &0` THENL
[ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (MP_TAC o SYM)) THEN
CONV_TAC INT_REM_DOWN_CONV THEN MP_TAC(SPEC `x:int` NO_ROOTS_P384) THEN
REWRITE_TAC[INT_ARITH `y - &3 * x + b:int = y + (-- &3) * x + b`] THEN
REWRITE_TAC[GSYM INT_REM_EQ; p_384; INT_REM_ZERO];
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH
`--y rem p = y ==> y rem p = y ==> (--y rem p = y rem p)`)) THEN
ANTS_TAC THENL [ASM_SIMP_TAC[INT_REM_LT]; ALL_TAC] THEN
REWRITE_TAC[INT_REM_EQ; INTEGER_RULE
`(--y:int == y) (mod p) <=> p divides (&2 * y)`] THEN
DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
`p divides (a * b:int) ==> coprime(a,p) ==> p divides b`)) THEN
REWRITE_TAC[GSYM num_coprime; ARITH; COPRIME_2] THEN
DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC]);;
let GENERATED_P384_GROUP = prove
(`subgroup_generated p384_group {G_384} = p384_group`,
SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER;
GENERATOR_IN_GROUP_CARRIER_384;
FINITE_GROUP_CARRIER_384] THEN
REWRITE_TAC[GROUP_ELEMENT_ORDER_G384;
REWRITE_RULE[HAS_SIZE] SIZE_P384_GROUP]);;
let CYCLIC_P384_GROUP = prove
(`cyclic_group p384_group`,
MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_P384_GROUP]);;
let ABELIAN_P384_GROUP = prove
(`abelian_group p384_group`,
MESON_TAC[CYCLIC_P384_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);;
|