Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,934 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
(* ========================================================================= *)
(* The NIST-recommended elliptic curve P-224, aka secp224r1.                 *)
(* ========================================================================= *)

needs "EC/weierstrass.ml";;
needs "EC/excluderoots.ml";;
needs "EC/computegroup.ml";;

add_curve weierstrass_curve;;
add_curveneg weierstrass_neg;;
add_curveadd weierstrass_add;;

(* ------------------------------------------------------------------------- *)
(* The NIST curve parameters, copied from the NIST FIPS 186-4 document.      *)
(* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf            *)
(* ------------------------------------------------------------------------- *)

let p_224 = new_definition `p_224 = 26959946667150639794667015087019630673557916260026308143510066298881`;;
let n_224 = new_definition `n_224 = 26959946667150639794667015087019625940457807714424391721682722368061`;;
let SEED_224 = new_definition `SEED_224 = 0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5`;;
let c_224 = new_definition `c_224 = 0x5b056c7e11dd68f40469ee7f3c7a7d74f7d121116506d031218291fb`;;
let b_224 = new_definition `b_224 = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4`;;
let G_224 = new_definition `G_224 = SOME(&0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21:int,&0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34:int)`;;

(* ------------------------------------------------------------------------- *)
(* Primality of the field characteristic and group order.                    *)
(* ------------------------------------------------------------------------- *)

let P_224 = prove
 (`p_224 = 2 EXP 224 - 2 EXP 96 + 1`,
  REWRITE_TAC[p_224] THEN CONV_TAC NUM_REDUCE_CONV);;

let PRIME_P224 = time prove
 (`prime p_224`,
  REWRITE_TAC[p_224] THEN CONV_TAC NUM_REDUCE_CONV THEN
  (CONV_TAC o PRIME_RULE)
  ["2"; "3"; "5"; "7"; "11"; "17"; "23"; "31"; "43"; "47"; "173"; "257";
   "347"; "373"; "641"; "727"; "16657"; "17449"; "65537"; "166571"; "274177";
   "2998279"; "6700417"; "67280421310721"]);;

let PRIME_N224 = time prove
 (`prime n_224`,
  REWRITE_TAC[n_224] THEN CONV_TAC NUM_REDUCE_CONV THEN
  (CONV_TAC o PRIME_RULE)
  ["2"; "3"; "5"; "7"; "11"; "13"; "17"; "23"; "29"; "31"; "37"; "41"; "43";
   "47"; "61"; "67"; "89"; "101"; "127"; "139"; "173"; "239"; "269"; "347";
   "349"; "509"; "631"; "659"; "1303"; "1319"; "2089"; "2153"; "2707";
   "3433"; "10909"; "20599"; "30859"; "85999"; "87739"; "145091"; "166823";
   "11105363"; "13928737"; "821796863"; "432621809776543";
   "136401162692544977256234449"; "34646440928557194402992574983797";
   "375503554633724504423937478103159147573209";
   "50520606258875818707470860153287666700917696099933389351507"]);;

(* ------------------------------------------------------------------------- *)
(* Basic sanity check on the (otherwise unused) c parameter.                 *)
(* ------------------------------------------------------------------------- *)

let SANITY_CHECK_224 = prove
 (`(&b_224 pow 2 * &c_224:int == -- &27) (mod &p_224)`,
  REWRITE_TAC[G_224; p_224; b_224; c_224] THEN
  REWRITE_TAC[GSYM INT_REM_EQ] THEN CONV_TAC INT_REDUCE_CONV);;

(* ------------------------------------------------------------------------- *)
(* Definition of the curve group and proof of its key properties.            *)
(* ------------------------------------------------------------------------- *)

let p224_group = define
 `p224_group =
   weierstrass_group
    (integer_mod_ring p_224,
     ring_neg (integer_mod_ring p_224) (&3),
     &b_224)`;;

let P224_GROUP = prove
 (`group_carrier p224_group =
     weierstrass_curve
      (integer_mod_ring p_224,ring_neg (integer_mod_ring p_224) (&3),&b_224) /\
   group_id p224_group =
     NONE /\
   group_inv p224_group =
     weierstrass_neg
      (integer_mod_ring p_224,ring_neg (integer_mod_ring p_224) (&3),&b_224) /\
   group_mul p224_group =
     weierstrass_add
      (integer_mod_ring p_224,ring_neg (integer_mod_ring p_224) (&3),&b_224)`,
  REWRITE_TAC[p224_group] THEN
  MATCH_MP_TAC WEIERSTRASS_GROUP THEN
  REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P224] THEN
  REWRITE_TAC[p_224; b_224; weierstrass_nonsingular] THEN
  SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN
  CONV_TAC INT_REDUCE_CONV);;

add_ecgroup [p_224; b_224] P224_GROUP;;

let NO_ROOTS_P224 = prove
 (`!x:int. ~((x pow 3 - &3 * x + &b_224 == &0) (mod &p_224))`,
  EXCLUDE_MODULAR_CUBIC_ROOTS_TAC PRIME_P224 [p_224;b_224]);;

let GENERATOR_IN_GROUP_CARRIER_224 = prove
 (`G_224 IN group_carrier p224_group`,
  REWRITE_TAC[G_224] THEN CONV_TAC ECGROUP_CARRIER_CONV);;

let GROUP_ELEMENT_ORDER_G224 = prove
 (`group_element_order p224_group G_224 = n_224`,
  SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; GENERATOR_IN_GROUP_CARRIER_224;
           PRIME_N224] THEN
  REWRITE_TAC[G_224; el 1 (CONJUNCTS P224_GROUP); option_DISTINCT] THEN
  REWRITE_TAC[n_224] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN
  REFL_TAC);;

let FINITE_GROUP_CARRIER_224 = prove
 (`FINITE(group_carrier p224_group)`,
  REWRITE_TAC[P224_GROUP] THEN MATCH_MP_TAC FINITE_WEIERSTRASS_CURVE THEN
  REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING; PRIME_P224] THEN
  REWRITE_TAC[p_224] THEN CONV_TAC NUM_REDUCE_CONV);;

let SIZE_P224_GROUP = prove
 (`group_carrier p224_group HAS_SIZE n_224`,
  MATCH_MP_TAC GROUP_ADHOC_ORDER_UNIQUE_LEMMA THEN
  EXISTS_TAC `G_224:(int#int)option` THEN
  REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_224; GROUP_ELEMENT_ORDER_G224;
              FINITE_GROUP_CARRIER_224] THEN
  REWRITE_TAC[P224_GROUP] THEN CONJ_TAC THENL
   [W(MP_TAC o PART_MATCH (lhand o rand)
      CARD_BOUND_WEIERSTRASS_CURVE o lhand o snd) THEN
    REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING] THEN
    REWRITE_TAC[PRIME_P224] THEN ANTS_TAC THENL
     [REWRITE_TAC[p_224] THEN CONV_TAC NUM_REDUCE_CONV;
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)] THEN
    SIMP_TAC[CARD_INTEGER_MOD_RING; p_224; ARITH] THEN
    REWRITE_TAC[n_224] THEN CONV_TAC NUM_REDUCE_CONV;
    REWRITE_TAC[FORALL_OPTION_THM; IN; FORALL_PAIR_THM] THEN
    REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_DISTINCT] THEN
    MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[option_INJ] THEN
    REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN
    CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[p_224; PAIR_EQ] THEN
    CONV_TAC INT_REDUCE_CONV] THEN
  ASM_CASES_TAC `y:int = &0` THENL
   [ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV THEN
    DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (MP_TAC o SYM)) THEN
    CONV_TAC INT_REM_DOWN_CONV THEN MP_TAC(SPEC `x:int` NO_ROOTS_P224) THEN
    REWRITE_TAC[INT_ARITH `y - &3 * x + b:int = y + (-- &3) * x + b`] THEN
    REWRITE_TAC[GSYM INT_REM_EQ; p_224; INT_REM_ZERO];
    STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH
     `--y rem p = y ==> y rem p = y ==> (--y rem p = y rem p)`)) THEN
    ANTS_TAC THENL [ASM_SIMP_TAC[INT_REM_LT]; ALL_TAC] THEN
    REWRITE_TAC[INT_REM_EQ; INTEGER_RULE
     `(--y:int == y) (mod p) <=> p divides (&2 * y)`] THEN
    DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
     `p divides (a * b:int) ==> coprime(a,p) ==> p divides b`)) THEN
    REWRITE_TAC[GSYM num_coprime; ARITH; COPRIME_2] THEN
    DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC]);;

let GENERATED_P224_GROUP = prove
 (`subgroup_generated p224_group {G_224} = p224_group`,
  SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER;
           GENERATOR_IN_GROUP_CARRIER_224;
           FINITE_GROUP_CARRIER_224] THEN
  REWRITE_TAC[GROUP_ELEMENT_ORDER_G224;
              REWRITE_RULE[HAS_SIZE] SIZE_P224_GROUP]);;

let CYCLIC_P224_GROUP = prove
 (`cyclic_group p224_group`,
  MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_P224_GROUP]);;

let ABELIAN_P224_GROUP = prove
 (`abelian_group p224_group`,
  MESON_TAC[CYCLIC_P224_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);;