Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,384 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
(* ========================================================================= *)
(* Specific formulas for evaluating (X,Z)-only projective point operations.  *)
(* ========================================================================= *)

needs "EC/xzprojective.ml";;

(* ------------------------------------------------------------------------- *)
(* Montgomery ladder step, XZ-coordinate differential addition and doubling. *)
(*                                                                           *)
(* Source: Montgomery [1987] "Speeding the Pollard and elliptic curve..."    *)
(* ------------------------------------------------------------------------- *)

(***
 ***
http://hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
 ***)

let mladd_1987_m = new_definition
 `mladd_1987_m (f:A ring,a:A,b:A) a24 X1 (X2,Z2) (X3,Z3) =
        let A = ring_add f X2 Z2 in
        let AA = ring_pow f A 2 in
        let B = ring_sub f X2 Z2 in
        let BB = ring_pow f B 2 in
        let E = ring_sub f AA BB in
        let C = ring_add f X3 Z3 in
        let D = ring_sub f X3 Z3 in
        let DA = ring_mul f D A in
        let CB = ring_mul f C B in
        let t0 = ring_add f DA CB in
        let X5 = ring_pow f t0 2 in
        let t1 = ring_sub f DA CB in
        let t2 = ring_pow f t1 2 in
        let Z5 = ring_mul f X1 t2 in
        let X4 = ring_mul f AA BB in
        let t3 = ring_mul f a24 E in
        let t4 = ring_add f BB t3 in
        let Z4 = ring_mul f E t4 in
        (X4,Z4),(X5,Z5)`;;

let MLADD_1987_M = prove
 (`!f (a:A) b a24 X1 X2 Z2 X3 Z3.
        field f /\ ~(ring_char f = 2) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\
        a24 IN ring_carrier f /\ X1 IN ring_carrier f /\
        X2 IN ring_carrier f /\ Z2 IN ring_carrier f /\
        X3 IN ring_carrier f /\ Z3 IN ring_carrier f /\
        ring_mul f (ring_of_num f 4) a24 = ring_add f a (ring_of_num f 2)
        ==> mladd_1987_m (f,a,b) a24 X1 (X2,Z2) (X3,Z3) =
                (montgomery_xzdouble (f,a,b) (X2,Z2),
                 montgomery_xzdiffadd (f,a,b) (X1,ring_1 f) (X2,Z2) (X3,Z3))`,
  REWRITE_TAC[FIELD_CHAR_NOT2] THEN
  REWRITE_TAC[mladd_1987_m; montgomery_xzdouble; montgomery_xzdiffadd] THEN
  REPEAT STRIP_TAC THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN
  REWRITE_TAC[PAIR_EQ] THEN FIELD_TAC THEN
  NOT_RING_CHAR_DIVIDES_TAC);;

(* ------------------------------------------------------------------------- *)
(* Recovering y coordinate within the projective representation.             *)
(*                                                                           *)
(* Source: Okeya and Sakurai [2001] "Efficient Elliptic Curve...", Alg. 1.   *)
(* ------------------------------------------------------------------------- *)

let okeya_sakurai_1 = new_definition
 `okeya_sakurai_1 (f:A ring,a:A,b:A) (x,y) (X1,Z1) (X2,Z2) =
        let a2 = ring_add f a a
        and b2 = ring_add f b b in
        let t1 = ring_mul f x Z1 in
        let t2 = ring_add f X1 t1 in
        let t3 = ring_sub f X1 t1 in
        let t3 = ring_mul f t3 t3 in
        let t3 = ring_mul f t3 X2 in
        let t1 = ring_mul f a2 Z1 in
        let t2 = ring_add f t2 t1 in
        let t4 = ring_mul f x X1 in
        let t4 = ring_add f t4 Z1 in
        let t2 = ring_mul f t2 t4 in
        let t1 = ring_mul f t1 Z1 in
        let t2 = ring_sub f t2 t1 in
        let t2 = ring_mul f t2 Z2 in
        let y' = ring_sub f t2 t3 in
        let t1 = ring_mul f b2 y in
        let t1 = ring_mul f t1 Z1 in
        let t1 = ring_mul f t1 Z2 in
        let x' = ring_mul f t1 X1 in
        let z' = ring_mul f t1 Z1 in
        (x',y',z')`;;

(*** Note the overarching assumption that the initial point is non-trivial
 *** and has nonzero y coordinate, although we do handle degeneracy in the
 *** result point.
 ***)

let OKEYA_SAKURAI_1 = prove
 (`!f (a:A) b x y p X1 Z1 X2 Z2.
        field f /\ ~(ring_char f = 2) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\
        montgomery_curve (f,a,b) (SOME(x,y)) /\ ~(y = ring_0 f) /\
        montgomery_curve (f,a,b) p /\
        montgomery_xz f p (X1,Z1) /\
        montgomery_xz f (montgomery_add(f,a,b) (SOME(x,y)) p) (X2,Z2)
        ==> let x',y',z' = okeya_sakurai_1 (f,a,b) (x,y) (X1,Z1) (X2,Z2) in
            p = if z' = ring_0 f then
                 (if Z1 = ring_0 f then NONE else SOME(x,ring_neg f y))
                else SOME(ring_div f x' z',ring_div f y' z')`,
  MAP_EVERY X_GEN_TAC [`f:A ring`; `a:A`; `b:A`; `x:A`; `y:A`] THEN
  REWRITE_TAC[FIELD_CHAR_NOT2; FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
  REWRITE_TAC[montgomery_curve; montgomery_xz; okeya_sakurai_1] THEN
  CONJ_TAC THENL
   [REPEAT GEN_TAC THEN
    REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
    CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN
    SPEC_TAC(`montgomery_add (f,a:A,b) (SOME(x,y)) NONE`,`q:(A#A)option`) THEN
    REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; montgomery_xz] THEN
    REPEAT STRIP_TAC THEN
    ASM_SIMP_TAC[RING_MUL_LZERO; RING_MUL_RZERO; RING_0; RING_ADD; RING_MUL];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `X1:A`; `Z1:A`; `X2:A`; `Z2:A`] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
  CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN
  ASM_SIMP_TAC[FIELD_MUL_EQ_0; RING_ADD; RING_MUL] THEN
  ASM_CASES_TAC `(X2:A) IN ring_carrier f /\ Z2 IN ring_carrier f` THENL
   [FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC) THEN
   ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5)
     [FIELD_MUL_EQ_0; RING_ADD; RING_MUL; RING_OF_NUM; RING_OF_NUM_EQ_0;
      RING_RULE `ring_add f b b:A = ring_mul f (ring_of_num f 2) b`];
   ASM_REWRITE_TAC[montgomery_add; LET_DEF; LET_END_DEF] THEN
   REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[montgomery_xz]) THEN
   ASM_REWRITE_TAC[CONJ_ASSOC]] THEN
  REWRITE_TAC[montgomery_add; LET_DEF; LET_END_DEF] THEN
  REPEAT(COND_CASES_TAC THEN
    ASM_REWRITE_TAC[montgomery_xz; option_DISTINCT; option_INJ; PAIR_EQ])
  THENL [FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC; FIELD_TAC; ALL_TAC] THEN
  SUBGOAL_THEN `~(ring_of_num f 2:A = ring_0 f)` ASSUME_TAC THENL
   [FIELD_TAC; RING_PULL_DIV_TAC THEN DISCH_THEN SUBST1_TAC] THEN
  CONJ_TAC THENL [FIELD_TAC; ALL_TAC] THEN
  SUBGOAL_THEN `~(ring_sub f x1 x:A = ring_0 f)` ASSUME_TAC THENL
   [FIELD_TAC; RING_PULL_DIV_TAC THEN FIELD_TAC]);;