Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,552 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
(* ========================================================================= *)
(* edwards25519, an Edwards-coordinate version of curve25519. *)
(* ========================================================================= *)
needs "EC/edwards.ml";;
needs "EC/excluderoots.ml";;
needs "EC/computegroup.ml";;
add_curve edwards_curve;;
add_curvezero edwards_0;;
add_curveneg edwards_neg;;
add_curveadd edwards_add;;
(* ------------------------------------------------------------------------- *)
(* Parameters for the edwards25519 curve, mainly from the document *)
(* https://datatracker.ietf.org/doc/draft-ietf-lwig-curve-representations/ *)
(* Here n_25519 is the large prime factor of the group order, the full *)
(* group order being 8 * n_25519. Likewise E_25519 is the generator of the *)
(* prime order subgroup and EE_25519 is a generator for the full group. *)
(* We use e_25519 instead of a_25519 as the name, as the latter is also used *)
(* for the Weierstrass form parameter in the wei25519.ml file. *)
(* ------------------------------------------------------------------------- *)
let p_25519 = define`p_25519 = 57896044618658097711785492504343953926634992332820282019728792003956564819949`;;
let n_25519 = define`n_25519 = 7237005577332262213973186563042994240857116359379907606001950938285454250989`;;
let e_25519 = define`e_25519 = 57896044618658097711785492504343953926634992332820282019728792003956564819948`;;
let d_25519 = define`d_25519 = 37095705934669439343138083508754565189542113879843219016388785533085940283555`;;
let E_25519 = define `E_25519 = (&0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a:int,&0x6666666666666666666666666666666666666666666666666666666666666658:int)`;;
let EE_25519 = define `EE_25519 = (&31673755162551823185009131889882229316567966938545344397180697279978689160235:int, &44332021396607921014542692927380285321101622747762054416338596910403709737434:int)`;;
(* ------------------------------------------------------------------------- *)
(* Primality of the field characteristic and (sub)group order. *)
(* ------------------------------------------------------------------------- *)
let P_25519 = prove
(`p_25519 = 2 EXP 255 - 19`,
REWRITE_TAC[p_25519] THEN ARITH_TAC);;
let N_25519 = prove
(`n_25519 = 2 EXP 252 + 27742317777372353535851937790883648493`,
REWRITE_TAC[n_25519] THEN ARITH_TAC);;
let PRIME_P25519 = prove
(`prime p_25519`,
REWRITE_TAC[p_25519] THEN (CONV_TAC o PRIME_RULE)
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "31"; "37"; "41";
"43"; "47"; "53"; "59"; "83"; "97"; "103"; "107"; "127"; "131"; "173";
"223"; "239"; "353"; "419"; "479"; "487"; "991"; "1723"; "2437"; "3727";
"4153"; "9463"; "32573"; "37853"; "57467"; "65147"; "75707"; "132049";
"430751"; "569003"; "1923133"; "8574133"; "2773320623"; "72106336199";
"1919519569386763"; "31757755568855353";
"75445702479781427272750846543864801";
"74058212732561358302231226437062788676166966415465897661863160754340907";
"57896044618658097711785492504343953926634992332820282019728792003956564819949"]);;
let PRIME_N25519 = prove
(`prime n_25519`,
REWRITE_TAC[n_25519] THEN (CONV_TAC o PRIME_RULE)
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "41"; "43"; "47"; "67";
"73"; "79"; "113"; "269"; "307"; "1361"; "1723"; "2551"; "2851"; "2939";
"3797"; "5879"; "17231"; "22111"; "30703"; "34123"; "41081"; "82163";
"132667"; "137849"; "409477"; "531581"; "1224481"; "14741173"; "58964693";
"292386187"; "213441916511"; "1257559732178653"; "4434155615661930479";
"3044861653679985063343"; "172054593956031949258510691";
"198211423230930754013084525763697";
"19757330305831588566944191468367130476339";
"276602624281642239937218680557139826668747";
"7237005577332262213973186563042994240857116359379907606001950938285454250989"]);;
(* ------------------------------------------------------------------------- *)
(* Definition of the curve group and proof of its key properties. *)
(* ------------------------------------------------------------------------- *)
let edwards25519_group = define
`edwards25519_group =
edwards_group(integer_mod_ring p_25519,&e_25519,&d_25519)`;;
let EDWARD_NONSINGULAR_25519 = prove
(`edwards_nonsingular (integer_mod_ring p_25519,&e_25519,&d_25519)`,
REWRITE_TAC[edwards_nonsingular; INTEGER_MOD_RING_ROOT_EXISTS] THEN
SIMP_TAC[INTEGER_MOD_RING; INT_OF_NUM_EQ; e_25519; d_25519; p_25519] THEN
CONV_TAC NUM_REDUCE_CONV THEN
SIMP_TAC[EULER_CRITERION; REWRITE_RULE[p_25519] PRIME_P25519] THEN
CONV_TAC(DEPTH_CONV
(NUM_SUB_CONV ORELSEC NUM_DIV_CONV ORELSEC DIVIDES_CONV)) THEN
REWRITE_TAC[CONG] THEN CONV_TAC(ONCE_DEPTH_CONV EXP_MOD_CONV) THEN
CONV_TAC NUM_REDUCE_CONV);;
let EDWARDS25519_GROUP = prove
(`group_carrier edwards25519_group =
edwards_curve(integer_mod_ring p_25519,&e_25519,&d_25519) /\
group_id edwards25519_group =
edwards_0(integer_mod_ring p_25519,&e_25519,&d_25519) /\
group_inv edwards25519_group =
edwards_neg(integer_mod_ring p_25519,&e_25519,&d_25519) /\
group_mul edwards25519_group =
edwards_add(integer_mod_ring p_25519,&e_25519,&d_25519)`,
REWRITE_TAC[edwards25519_group] THEN MATCH_MP_TAC EDWARDS_GROUP THEN
REWRITE_TAC[EDWARD_NONSINGULAR_25519] THEN
REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P25519] THEN
REWRITE_TAC[e_25519; d_25519; p_25519] THEN
REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER] THEN CONV_TAC INT_REDUCE_CONV);;
add_ecgroup [e_25519; d_25519; p_25519] EDWARDS25519_GROUP;;
let FINITE_GROUP_CARRIER_EDWARDS25519 = prove
(`FINITE(group_carrier edwards25519_group)`,
REWRITE_TAC[EDWARDS25519_GROUP] THEN MATCH_MP_TAC FINITE_EDWARDS_CURVE THEN
REWRITE_TAC[FINITE_INTEGER_MOD_RING;
FIELD_INTEGER_MOD_RING; PRIME_P25519] THEN
REWRITE_TAC[p_25519] THEN CONV_TAC NUM_REDUCE_CONV);;
let GENERATOR_IN_GROUP_CARRIER_EDWARDS25519 = prove
(`E_25519 IN group_carrier edwards25519_group`,
REWRITE_TAC[E_25519] THEN CONV_TAC ECGROUP_CARRIER_CONV);;
let GROUP_ELEMENT_ORDER_EDWARDS25519_E25519 = prove
(`group_element_order edwards25519_group E_25519 = n_25519`,
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME;
GENERATOR_IN_GROUP_CARRIER_EDWARDS25519; PRIME_N25519] THEN
REWRITE_TAC[E_25519; el 1 (CONJUNCTS EDWARDS25519_GROUP)] THEN
REWRITE_TAC[edwards_0; PAIR_EQ; INTEGER_MOD_RING] THEN
REWRITE_TAC[n_25519; p_25519] THEN CONV_TAC INT_REDUCE_CONV THEN
CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN REFL_TAC);;
let FULLGENERATOR_IN_GROUP_CARRIER_EDWARDS25519 = prove
(`EE_25519 IN group_carrier edwards25519_group`,
REWRITE_TAC[EE_25519] THEN CONV_TAC ECGROUP_CARRIER_CONV);;
let GROUP_ELEMENT_ORDER_EDWARDS25519_EE25519 = prove
(`group_element_order edwards25519_group EE_25519 = 8 * n_25519`,
ABBREV_TAC
`h = (&14399317868200118260347934320527232580618823971194345261214217575416788799818,
&2707385501144840649318225287225658788936804267575313519463743609750303402022)
:(int#int)` THEN
SUBGOAL_THEN
`h IN group_carrier edwards25519_group /\
group_element_order edwards25519_group h = 8`
STRIP_ASSUME_TAC THENL
[EXPAND_TAC "h" THEN
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
[CONV_TAC ECGROUP_CARRIER_CONV;
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_ALT; ARITH]] THEN
DISCH_TAC THEN REWRITE_TAC[EDWARDS25519_GROUP; edwards_0; INTEGER_MOD_RING] THEN
CONJ_TAC THENL
[CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN
REWRITE_TAC[p_25519] THEN CONV_TAC INT_REDUCE_CONV;
ALL_TAC] THEN
REWRITE_TAC[IMP_CONJ_ALT] THEN CONV_TAC EXPAND_CASES_CONV THEN
CONV_TAC NUM_REDUCE_CONV THEN REPEAT CONJ_TAC THEN
CONV_TAC(RAND_CONV(LAND_CONV ECGROUP_POW_CONV)) THEN
REWRITE_TAC[PAIR_EQ; p_25519] THEN CONV_TAC INT_REDUCE_CONV;
ALL_TAC] THEN
SUBGOAL_THEN `EE_25519 = group_mul edwards25519_group h E_25519` SUBST1_TAC THENL
[EXPAND_TAC "h" THEN REWRITE_TAC[E_25519; EE_25519] THEN
CONV_TAC(RAND_CONV ECGROUP_MUL_CONV) THEN REFL_TAC;
ALL_TAC] THEN
W(MP_TAC o PART_MATCH (lhand o rand) GROUP_ELEMENT_ORDER_MUL_EQ o
lhand o snd) THEN
ASM_REWRITE_TAC[GROUP_ELEMENT_ORDER_EDWARDS25519_E25519] THEN
DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_EDWARDS25519] THEN CONJ_TAC THENL
[EXPAND_TAC "h" THEN REWRITE_TAC[E_25519] THEN
CONV_TAC(BINOP_CONV ECGROUP_MUL_CONV) THEN REFL_TAC;
REWRITE_TAC[n_25519] THEN CONV_TAC COPRIME_CONV]);;
let SIZE_EDWARDS25519_GROUP = prove
(`group_carrier edwards25519_group HAS_SIZE (8 * n_25519)`,
REWRITE_TAC[HAS_SIZE; FINITE_GROUP_CARRIER_EDWARDS25519] THEN
MP_TAC(ISPECL [`edwards25519_group`; `EE_25519`]
GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER) THEN
REWRITE_TAC[FINITE_GROUP_CARRIER_EDWARDS25519;
FULLGENERATOR_IN_GROUP_CARRIER_EDWARDS25519] THEN
REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM;
GROUP_ELEMENT_ORDER_EDWARDS25519_EE25519] THEN
X_GEN_TAC `d:num` THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(ARITH_RULE `d = 0 \/ d = 1 \/ 2 <= d`) THEN
ASM_SIMP_TAC[CARD_EQ_0; FINITE_GROUP_CARRIER_EDWARDS25519;
MULT_CLAUSES; GROUP_CARRIER_NONEMPTY] THEN
MATCH_MP_TAC(ARITH_RULE
`s < 16 * n /\ 2 * n <= d * n ==> s = (8 * n) * d ==> x = 8 * n`) THEN
REWRITE_TAC[LE_MULT_RCANCEL; n_25519; ARITH_EQ] THEN
ASM_REWRITE_TAC[GSYM n_25519; EDWARDS25519_GROUP] THEN
W(MP_TAC o PART_MATCH (lhand o rand) CARD_BOUND_EDWARDS_CURVE o
lhand o snd) THEN
REWRITE_TAC[EDWARD_NONSINGULAR_25519] THEN
REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P25519] THEN
SIMP_TAC[FINITE_INTEGER_MOD_RING; CARD_INTEGER_MOD_RING;
IN_INTEGER_MOD_RING_CARRIER; n_25519; p_25519; d_25519;
INTEGER_MOD_RING; e_25519; INT_OF_NUM_CLAUSES; ARITH_EQ] THEN
ARITH_TAC);;
let GENERATED_EDWARDS25519_GROUP = prove
(`subgroup_generated edwards25519_group {EE_25519} = edwards25519_group`,
SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER;
FULLGENERATOR_IN_GROUP_CARRIER_EDWARDS25519;
FINITE_GROUP_CARRIER_EDWARDS25519] THEN
REWRITE_TAC[GROUP_ELEMENT_ORDER_EDWARDS25519_EE25519;
REWRITE_RULE[HAS_SIZE] SIZE_EDWARDS25519_GROUP]);;
let CYCLIC_EDWARDS25519_GROUP = prove
(`cyclic_group edwards25519_group`,
MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_EDWARDS25519_GROUP]);;
let ABELIAN_EDWARDS25519_GROUP = prove
(`abelian_group edwards25519_group`,
MESON_TAC[CYCLIC_EDWARDS25519_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);;
|