Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,199 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
(* ========================================================================= *)
(* curve25519, in its plain Montgomery form. *)
(* ========================================================================= *)
needs "EC/montgomery.ml";;
needs "EC/excluderoots.ml";;
needs "EC/computegroup.ml";;
add_curve montgomery_curve;;
add_curveneg montgomery_neg;;
add_curveadd montgomery_add;;
(* ------------------------------------------------------------------------- *)
(* Parameters for curve25519. Here n_25519 is the large prime factor of the *)
(* group order, the full group order being 8 * n_25519. Likewise C_25519 is *)
(* the generator of the prime order subgroup and CC_25519 is a generator for *)
(* the full group. *)
(* ------------------------------------------------------------------------- *)
let p_25519 = define `p_25519 = 57896044618658097711785492504343953926634992332820282019728792003956564819949`;;
let n_25519 = define `n_25519 = 7237005577332262213973186563042994240857116359379907606001950938285454250989`;;
let A_25519 = define `A_25519 = 486662`;;
let B_25519 = define `B_25519 = 1`;;
let C_25519 = define `C_25519 = SOME(&0x09:int,&0x20ae19a1b8a086b4e01edd2c7748d14c923d4d7e6d7c61b229e9c5a27eced3d9:int)`;;
let CC_25519 = define `CC_25519 = SOME(&6911272784993971428141625084124731891523734454433518466500745240824540625972:int,&35197529511187359173101698576797651179158701633820552795916138355302448607023:int)`;;
(* ------------------------------------------------------------------------- *)
(* Primality of the field characteristic and (sub)group order. *)
(* ------------------------------------------------------------------------- *)
let P_25519 = prove
(`p_25519 = 2 EXP 255 - 19`,
REWRITE_TAC[p_25519] THEN ARITH_TAC);;
let N_25519 = prove
(`n_25519 = 2 EXP 252 + 27742317777372353535851937790883648493`,
REWRITE_TAC[n_25519] THEN ARITH_TAC);;
let PRIME_P25519 = prove
(`prime p_25519`,
REWRITE_TAC[p_25519] THEN (CONV_TAC o PRIME_RULE)
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "31"; "37"; "41";
"43"; "47"; "53"; "59"; "83"; "97"; "103"; "107"; "127"; "131"; "173";
"223"; "239"; "353"; "419"; "479"; "487"; "991"; "1723"; "2437"; "3727";
"4153"; "9463"; "32573"; "37853"; "57467"; "65147"; "75707"; "132049";
"430751"; "569003"; "1923133"; "8574133"; "2773320623"; "72106336199";
"1919519569386763"; "31757755568855353";
"75445702479781427272750846543864801";
"74058212732561358302231226437062788676166966415465897661863160754340907";
"57896044618658097711785492504343953926634992332820282019728792003956564819949"]);;
let PRIME_N25519 = prove
(`prime n_25519`,
REWRITE_TAC[n_25519] THEN (CONV_TAC o PRIME_RULE)
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "41"; "43"; "47"; "67";
"73"; "79"; "113"; "269"; "307"; "1361"; "1723"; "2551"; "2851"; "2939";
"3797"; "5879"; "17231"; "22111"; "30703"; "34123"; "41081"; "82163";
"132667"; "137849"; "409477"; "531581"; "1224481"; "14741173"; "58964693";
"292386187"; "213441916511"; "1257559732178653"; "4434155615661930479";
"3044861653679985063343"; "172054593956031949258510691";
"198211423230930754013084525763697";
"19757330305831588566944191468367130476339";
"276602624281642239937218680557139826668747";
"7237005577332262213973186563042994240857116359379907606001950938285454250989"]);;
(* ------------------------------------------------------------------------- *)
(* Definition of the curve group and proof of its key properties. *)
(* ------------------------------------------------------------------------- *)
let curve25519_group = define
`curve25519_group =
montgomery_group(integer_mod_ring p_25519,&A_25519,&1)`;;
let CURVE25519_GROUP = prove
(`group_carrier curve25519_group =
montgomery_curve(integer_mod_ring p_25519,&A_25519,&1) /\
group_id curve25519_group =
NONE /\
group_inv curve25519_group =
montgomery_neg(integer_mod_ring p_25519,&A_25519,&1) /\
group_mul curve25519_group =
montgomery_add(integer_mod_ring p_25519,&A_25519,&1)`,
REWRITE_TAC[curve25519_group] THEN MATCH_MP_TAC MONTGOMERY_GROUP THEN
REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P25519] THEN
REWRITE_TAC[A_25519; B_25519; p_25519; montgomery_nonsingular] THEN
SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN
CONV_TAC INT_REDUCE_CONV);;
add_ecgroup [A_25519; B_25519; p_25519] CURVE25519_GROUP;;
let FINITE_GROUP_CARRIER_CURVE25519 = prove
(`FINITE(group_carrier curve25519_group)`,
REWRITE_TAC[CURVE25519_GROUP] THEN MATCH_MP_TAC FINITE_MONTGOMERY_CURVE THEN
REWRITE_TAC[FINITE_INTEGER_MOD_RING;
FIELD_INTEGER_MOD_RING; PRIME_P25519] THEN
REWRITE_TAC[p_25519] THEN CONV_TAC NUM_REDUCE_CONV);;
let GENERATOR_IN_GROUP_CARRIER_CURVE25519 = prove
(`C_25519 IN group_carrier curve25519_group`,
REWRITE_TAC[C_25519] THEN CONV_TAC ECGROUP_CARRIER_CONV);;
let GROUP_ELEMENT_ORDER_CURVE25519_C25519 = prove
(`group_element_order curve25519_group C_25519 = n_25519`,
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME;
GENERATOR_IN_GROUP_CARRIER_CURVE25519; PRIME_N25519] THEN
REWRITE_TAC[C_25519; el 1 (CONJUNCTS CURVE25519_GROUP);
option_DISTINCT] THEN
REWRITE_TAC[n_25519] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN
REFL_TAC);;
let FULLGENERATOR_IN_GROUP_CARRIER_CURVE25519 = prove
(`CC_25519 IN group_carrier curve25519_group`,
REWRITE_TAC[CC_25519] THEN CONV_TAC ECGROUP_CARRIER_CONV);;
let GROUP_ELEMENT_ORDER_CURVE25519_CC25519 = prove
(`group_element_order curve25519_group CC_25519 = 8 * n_25519`,
ABBREV_TAC
`h = SOME
(&39382357235489614581723060781553021112529911719440698176882885853963445705823,
&10506421237558716435988711236408671798265365380393424752549290025458740468278)
:(int#int)option` THEN
SUBGOAL_THEN
`h IN group_carrier curve25519_group /\
group_element_order curve25519_group h = 8`
STRIP_ASSUME_TAC THENL
[EXPAND_TAC "h" THEN
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
[CONV_TAC ECGROUP_CARRIER_CONV;
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_ALT; ARITH]] THEN
DISCH_TAC THEN REWRITE_TAC[CURVE25519_GROUP] THEN CONJ_TAC THENL
[CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN REFL_TAC; ALL_TAC] THEN
REWRITE_TAC[IMP_CONJ_ALT] THEN CONV_TAC EXPAND_CASES_CONV THEN
CONV_TAC NUM_REDUCE_CONV THEN REPEAT CONJ_TAC THEN
CONV_TAC(RAND_CONV(LAND_CONV ECGROUP_POW_CONV)) THEN
REWRITE_TAC[option_DISTINCT];
ALL_TAC] THEN
SUBGOAL_THEN `CC_25519 = group_mul curve25519_group h C_25519` SUBST1_TAC THENL
[EXPAND_TAC "h" THEN REWRITE_TAC[C_25519; CC_25519] THEN
CONV_TAC(RAND_CONV ECGROUP_MUL_CONV) THEN REFL_TAC;
ALL_TAC] THEN
W(MP_TAC o PART_MATCH (lhand o rand) GROUP_ELEMENT_ORDER_MUL_EQ o
lhand o snd) THEN
ASM_REWRITE_TAC[GROUP_ELEMENT_ORDER_CURVE25519_C25519] THEN
DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_CURVE25519] THEN CONJ_TAC THENL
[EXPAND_TAC "h" THEN REWRITE_TAC[C_25519] THEN
CONV_TAC(BINOP_CONV ECGROUP_MUL_CONV) THEN REFL_TAC;
REWRITE_TAC[n_25519] THEN CONV_TAC COPRIME_CONV]);;
let SIZE_CURVE25519_GROUP = prove
(`group_carrier curve25519_group HAS_SIZE (8 * n_25519)`,
REWRITE_TAC[HAS_SIZE; FINITE_GROUP_CARRIER_CURVE25519] THEN
MP_TAC(ISPECL [`curve25519_group`; `CC_25519`]
GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER) THEN
REWRITE_TAC[FINITE_GROUP_CARRIER_CURVE25519;
FULLGENERATOR_IN_GROUP_CARRIER_CURVE25519] THEN
REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM;
GROUP_ELEMENT_ORDER_CURVE25519_CC25519] THEN
X_GEN_TAC `d:num` THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(ARITH_RULE `d = 0 \/ d = 1 \/ 2 <= d`) THEN
ASM_SIMP_TAC[CARD_EQ_0; FINITE_GROUP_CARRIER_CURVE25519;
MULT_CLAUSES; GROUP_CARRIER_NONEMPTY] THEN
MATCH_MP_TAC(ARITH_RULE
`s < 16 * n /\ 2 * n <= d * n ==> s = (8 * n) * d ==> x = 8 * n`) THEN
REWRITE_TAC[LE_MULT_RCANCEL; n_25519; ARITH_EQ] THEN
ASM_REWRITE_TAC[GSYM n_25519; CURVE25519_GROUP] THEN
W(MP_TAC o PART_MATCH (lhand o rand) CARD_BOUND_MONTGOMERY_CURVE o
lhand o snd) THEN
REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P25519] THEN
SIMP_TAC[FINITE_INTEGER_MOD_RING; CARD_INTEGER_MOD_RING;
IN_INTEGER_MOD_RING_CARRIER; n_25519; p_25519;
INTEGER_MOD_RING; A_25519; INT_OF_NUM_CLAUSES; ARITH_EQ] THEN
ARITH_TAC);;
let GENERATED_CURVE25519_GROUP = prove
(`subgroup_generated curve25519_group {CC_25519} = curve25519_group`,
SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER;
FULLGENERATOR_IN_GROUP_CARRIER_CURVE25519;
FINITE_GROUP_CARRIER_CURVE25519] THEN
REWRITE_TAC[GROUP_ELEMENT_ORDER_CURVE25519_CC25519;
REWRITE_RULE[HAS_SIZE] SIZE_CURVE25519_GROUP]);;
let CYCLIC_CURVE25519_GROUP = prove
(`cyclic_group curve25519_group`,
MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_CURVE25519_GROUP]);;
let ABELIAN_CURVE25519_GROUP = prove
(`abelian_group curve25519_group`,
MESON_TAC[CYCLIC_CURVE25519_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);;
|