Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 34,940 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
(* ========================================================================= *)
(* Fundamental theorem of algebra.                                           *)
(* ========================================================================= *)

needs "Complex/complex_transc.ml";;
needs "Complex/cpoly.ml";;

prioritize_complex();;

(* ------------------------------------------------------------------------- *)
(* A cute trick to reduce magnitude of unimodular number.                    *)
(* ------------------------------------------------------------------------- *)

let SQRT_SOS_LT_1 = prove
 (`!x y. sqrt(x pow 2 + y pow 2) < &1 <=> x pow 2 + y pow 2 < &1`,
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM SQRT_1] THEN
  REWRITE_TAC[REAL_POW_2] THEN
  SIMP_TAC[SQRT_MONO_LT_EQ; REAL_POS; REAL_LE_ADD; REAL_LE_SQUARE]);;

let SQRT_SOS_EQ_1 = prove
 (`!x y. (sqrt(x pow 2 + y pow 2) = &1) <=> (x pow 2 + y pow 2 = &1)`,
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM SQRT_1] THEN
  REWRITE_TAC[REAL_POW_2] THEN
  SIMP_TAC[SQRT_INJ; REAL_POS; REAL_LE_ADD; REAL_LE_SQUARE]);;

let UNIMODULAR_REDUCE_NORM = prove
 (`!z. (norm(z) = &1)
       ==> norm(z + Cx(&1)) < &1 \/
           norm(z - Cx(&1)) < &1 \/
           norm(z + ii) < &1 \/
           norm(z - ii) < &1`,
  GEN_TAC THEN
  REWRITE_TAC[ii; CX_DEF; complex_add; complex_sub; complex_neg; complex_norm;
        RE; IM; REAL_ADD_RID; REAL_NEG_0; SQRT_SOS_LT_1; SQRT_SOS_EQ_1] THEN
  SIMP_TAC[REAL_POW_2;
           REAL_ARITH `a * a + (b + c) * (b + c) =
                       (a * a + b * b) + (&2 * b * c + c * c)`;
           REAL_ARITH `(b + c) * (b + c) + a * a =
                       (b * b + a * a) + (&2 * b * c + c * c)`] THEN
  DISCH_TAC THEN REWRITE_TAC[REAL_ARITH `&1 + x < &1 <=> &0 < --x`] THEN
  REWRITE_TAC[REAL_NEG_ADD; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN
  REWRITE_TAC[REAL_MUL_RID] THEN
  MATCH_MP_TAC(REAL_ARITH
    `~(abs(a) <= &1 /\ abs(b) <= &1)
     ==> &0 < --a + --(&1) \/ &0 < a + --(&1) \/
         &0 < --b + --(&1) \/ &0 < b + --(&1)`) THEN
  STRIP_TAC THEN UNDISCH_TAC `Re z * Re z + Im z * Im z = &1` THEN
  REWRITE_TAC[] THEN
  MATCH_MP_TAC(REAL_ARITH
   `(&2 * r) * (&2 * r) <= &1 /\ (&2 * i) * (&2 * i) <= &1
    ==> ~(r * r + i * i = &1)`) THEN
  REWRITE_TAC[GSYM REAL_POW_2] THEN ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN
  ASM_SIMP_TAC[REAL_POW_1_LE; REAL_ABS_POS]);;

(* ------------------------------------------------------------------------- *)
(* Hence we can always reduce modulus of 1 + b z^n if nonzero                *)
(* ------------------------------------------------------------------------- *)

let REDUCE_POLY_SIMPLE = prove
 (`!b n. ~(b = Cx(&0)) /\ ~(n = 0)
         ==> ?z. norm(Cx(&1) + b * z pow n) < &1`,
  GEN_TAC THEN MATCH_MP_TAC num_WF THEN REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `EVEN(n)` THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVEN_EXISTS]) THEN
    DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
    ASM_SIMP_TAC[ARITH_RULE `~(2 * m = 0) ==> m < 2 * m /\ ~(m = 0)`] THEN
    DISCH_THEN(X_CHOOSE_TAC `w:complex`) THEN EXISTS_TAC `csqrt w` THEN
    ASM_REWRITE_TAC[GSYM COMPLEX_POW_POW; CSQRT]; ALL_TAC] THEN
  MP_TAC(SPEC `Cx(norm b) / b` UNIMODULAR_REDUCE_NORM) THEN ANTS_TAC THENL
   [REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX] THEN
    ASM_SIMP_TAC[COMPLEX_ABS_NORM; REAL_DIV_REFL; COMPLEX_NORM_ZERO];
    ALL_TAC] THEN DISCH_TAC THEN
  SUBGOAL_THEN `?v. norm(Cx(norm b) / b + v pow n) < &1` MP_TAC THENL
   [SUBGOAL_THEN `(Cx(&1) pow n = Cx(&1)) /\
                  (--Cx(&1) pow n = --Cx(&1)) /\
                  (((ii pow n = ii) /\ (--ii pow n = --ii)) \/
                   ((ii pow n = --ii) /\ (--ii pow n = ii)))`
    MP_TAC THENL
     [ALL_TAC;
      RULE_ASSUM_TAC(REWRITE_RULE[complex_sub]) THEN ASM_MESON_TAC[]] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EVEN]) THEN
    SIMP_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `m:num` THEN DISCH_THEN(K ALL_TAC) THEN
    REWRITE_TAC[complex_pow; COMPLEX_POW_NEG; EVEN; EVEN_MULT; ARITH_EVEN] THEN
    REWRITE_TAC[GSYM COMPLEX_POW_POW] THEN
    REWRITE_TAC[COMPLEX_POW_ONE; COMPLEX_POW_II_2; COMPLEX_MUL_LID;
                COMPLEX_POW_NEG] THEN
    COND_CASES_TAC THEN
    REWRITE_TAC[COMPLEX_MUL_RID; COMPLEX_MUL_RNEG; COMPLEX_NEG_NEG];
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `v:complex` ASSUME_TAC) THEN
  EXISTS_TAC `v / Cx(root(n) (norm b))` THEN
  REWRITE_TAC[COMPLEX_POW_DIV; GSYM CX_POW] THEN
  SUBGOAL_THEN `root n (norm b) pow n = norm b` SUBST1_TAC THENL
   [UNDISCH_TAC `~(EVEN n)` THEN SPEC_TAC(`n:num`,`n:num`) THEN
    INDUCT_TAC THEN SIMP_TAC[EVEN; ROOT_POW_POS; COMPLEX_NORM_POS];
    ALL_TAC] THEN
  MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `norm(Cx(norm b) / b)` THEN
  REWRITE_TAC[GSYM COMPLEX_NORM_MUL; COMPLEX_ADD_LDISTRIB] THEN
  REWRITE_TAC[COMPLEX_MUL_RID; REAL_MUL_RID] THEN
  SUBGOAL_THEN `norm(Cx(norm b) / b) = &1` SUBST1_TAC THENL
   [REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; COMPLEX_ABS_NORM] THEN
    ASM_SIMP_TAC[REAL_DIV_REFL; COMPLEX_NORM_ZERO]; ALL_TAC] THEN
  REWRITE_TAC[REAL_LT_01; complex_div] THEN
  ONCE_REWRITE_TAC[AC COMPLEX_MUL_AC
   `(m * b') * b * p * m' = (m * m') * (b * b') * p`] THEN
  ASM_SIMP_TAC[COMPLEX_MUL_RINV; COMPLEX_MUL_LID;
               CX_INJ; COMPLEX_NORM_ZERO] THEN
  ASM_REWRITE_TAC[GSYM complex_div]);;

(* ------------------------------------------------------------------------- *)
(* Basic lemmas about polynomials.                                           *)
(* ------------------------------------------------------------------------- *)

let POLY_CMUL_MAP = prove
 (`!p c x. poly (MAP (( * ) c) p) x = c * poly p x`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; poly; COMPLEX_MUL_RZERO] THEN
  ASM_REWRITE_TAC[COMPLEX_ADD_LDISTRIB] THEN REWRITE_TAC[COMPLEX_MUL_AC]);;

let POLY_0 = prove
 (`!p x. ALL (\b. b = Cx(&0)) p ==> (poly p x = Cx(&0))`,
  LIST_INDUCT_TAC THEN
  ASM_SIMP_TAC[ALL; poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID]);;

let POLY_BOUND_EXISTS = prove
 (`!p r. ?m. &0 < m /\ !z. norm(z) <= r ==> norm(poly p z) <= m`,
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN
  LIST_INDUCT_TAC THENL
   [EXISTS_TAC `&1` THEN REWRITE_TAC[poly; COMPLEX_NORM_CX] THEN
    REWRITE_TAC[REAL_ABS_NUM; REAL_LT_01; REAL_POS]; ALL_TAC] THEN
  POP_ASSUM(X_CHOOSE_THEN `m:real` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `&1 + norm(h) + abs(r * m)` THEN
  ASM_SIMP_TAC[REAL_ARITH `&0 <= x /\ &0 <= y ==> &0 < &1 + x + y`;
               REAL_ABS_POS; COMPLEX_NORM_POS] THEN
  X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
  REWRITE_TAC[poly] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `norm(h) + norm(z * poly t z)` THEN
  REWRITE_TAC[COMPLEX_NORM_TRIANGLE] THEN
  MATCH_MP_TAC(REAL_ARITH `y <= z ==> x + y <= &1 + x + abs(z)`) THEN
  REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN
  ASM_SIMP_TAC[COMPLEX_NORM_POS]);;

(* ------------------------------------------------------------------------- *)
(* Offsetting the variable in a polynomial gives another of same degree.     *)
(* ------------------------------------------------------------------------- *)

let POLY_OFFSET_LEMMA = prove
 (`!a p. ?b q. (LENGTH q = LENGTH p) /\
               !x. poly (CONS b q) x = (a + x) * poly p x`,
  GEN_TAC THEN LIST_INDUCT_TAC THENL
   [EXISTS_TAC `Cx(&0)` THEN EXISTS_TAC `[]:complex list` THEN
    REWRITE_TAC[poly; LENGTH; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID];
    ALL_TAC] THEN
  POP_ASSUM STRIP_ASSUME_TAC THEN
  EXISTS_TAC `a * h` THEN EXISTS_TAC `CONS (b + h) q` THEN
  ASM_REWRITE_TAC[LENGTH; poly] THEN X_GEN_TAC `x:complex ` THEN
  FIRST_ASSUM(MP_TAC o SPEC `x:complex`) THEN
  REWRITE_TAC[poly] THEN DISCH_THEN(MP_TAC o AP_TERM `( * ) x`) THEN
  SIMPLE_COMPLEX_ARITH_TAC);;

let POLY_OFFSET = prove
 (`!a p. ?q. (LENGTH q = LENGTH p) /\ !x. poly q x = poly p (a + x)`,
  GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; poly] THENL
   [EXISTS_TAC `[]:complex list` THEN REWRITE_TAC[poly; LENGTH]; ALL_TAC] THEN
  POP_ASSUM(X_CHOOSE_THEN `p:complex list` (STRIP_ASSUME_TAC o GSYM)) THEN
  ASM_REWRITE_TAC[] THEN
  MP_TAC(SPECL [`a:complex`; `p:complex list`] POLY_OFFSET_LEMMA) THEN
  DISCH_THEN(X_CHOOSE_THEN `b:complex` (X_CHOOSE_THEN `r: complex list`
        (STRIP_ASSUME_TAC o GSYM))) THEN
  EXISTS_TAC `CONS (h + b) r` THEN ASM_REWRITE_TAC[LENGTH] THEN
  REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Bolzano-Weierstrass type property for closed disc in complex plane.       *)
(* ------------------------------------------------------------------------- *)

let METRIC_BOUND_LEMMA = prove
 (`!x y. norm(x - y) <= abs(Re(x) - Re(y)) + abs(Im(x) - Im(y))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[complex_norm] THEN
  MATCH_MP_TAC(REAL_ARITH
   `a <= abs(abs x + abs y) ==> a <= abs x + abs y`) THEN
  GEN_REWRITE_TAC RAND_CONV [GSYM POW_2_SQRT_ABS] THEN
  MATCH_MP_TAC SQRT_MONO_LE THEN
  SIMP_TAC[REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN
  REWRITE_TAC[complex_add; complex_sub; complex_neg; RE; IM] THEN
  REWRITE_TAC[GSYM real_sub] THEN
  REWRITE_TAC[REAL_ARITH `(a + b) * (a + b) = a * a + b * b + &2 * a * b`] THEN
  REWRITE_TAC[GSYM REAL_ABS_MUL] THEN
  REWRITE_TAC[REAL_ARITH `a + b <= abs a + abs b + &2 * abs c`]);;

let BOLZANO_WEIERSTRASS_COMPLEX_DISC = prove
 (`!s r. (!n. norm(s n) <= r)
         ==> ?f z. subseq f /\
                   !e. &0 < e ==> ?N. !n. n >= N ==> norm(s(f n) - z) < e`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `Re o (s:num->complex)` SEQ_MONOSUB) THEN
  DISCH_THEN(X_CHOOSE_THEN `f:num->num` MP_TAC) THEN
  REWRITE_TAC[o_THM] THEN STRIP_TAC THEN
  MP_TAC(SPEC `Im o (s:num->complex) o (f:num->num)` SEQ_MONOSUB) THEN
  DISCH_THEN(X_CHOOSE_THEN `g:num->num` MP_TAC) THEN
  REWRITE_TAC[o_THM] THEN STRIP_TAC THEN
  EXISTS_TAC `(f:num->num) o (g:num->num)` THEN
  SUBGOAL_THEN `convergent (\n. Re(s(f n :num))) /\
                convergent (\n. Im(s((f:num->num)(g n))))`
  MP_TAC THENL
   [CONJ_TAC THEN MATCH_MP_TAC SEQ_BCONV THEN ASM_REWRITE_TAC[bounded] THEN
    MAP_EVERY EXISTS_TAC [`r + &1`; `&0`; `0`] THEN
    REWRITE_TAC[GE; LE_0; MR1_DEF; REAL_SUB_LZERO; REAL_ABS_NEG] THEN
    X_GEN_TAC `n:num` THEN
    W(fun (_,w) -> FIRST_ASSUM(MP_TAC o SPEC (funpow 3 rand (lhand w)))) THEN
    REWRITE_TAC[complex_norm] THEN
    MATCH_MP_TAC(REAL_ARITH `a <= b ==> b <= r ==> a < r + &1`) THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM POW_2_SQRT_ABS] THEN
    MATCH_MP_TAC SQRT_MONO_LE THEN
    REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE; REAL_LE_ADDR; REAL_LE_ADDL];
    ALL_TAC] THEN
  REWRITE_TAC[convergent; SEQ; GE] THEN
  DISCH_THEN(CONJUNCTS_THEN2
    (X_CHOOSE_TAC `x:real`) (X_CHOOSE_TAC `y:real`)) THEN
  EXISTS_TAC `complex(x,y)` THEN CONJ_TAC THENL
   [MAP_EVERY UNDISCH_TAC [`subseq f`; `subseq g`] THEN
    REWRITE_TAC[subseq; o_THM] THEN MESON_TAC[]; ALL_TAC] THEN
  X_GEN_TAC `e:real` THEN DISCH_TAC THEN
  UNDISCH_TAC
   `!e. &0 < e
        ==> (?N. !n. N <= n ==> abs(Re(s ((f:num->num) n)) - x) < e)` THEN
  DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN
  ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
  DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN DISCH_THEN(X_CHOOSE_TAC `N1:num`) THEN
  EXISTS_TAC `N1 + N2:num` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&2 * e / &2` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH; REAL_LE_REFL]] THEN
  W(MP_TAC o PART_MATCH lhand METRIC_BOUND_LEMMA o lhand o snd) THEN
  MATCH_MP_TAC(REAL_ARITH
    `a < c /\ b < c ==> x <= a + b ==> x < &2 * c`) THEN
  REWRITE_TAC[o_THM; RE; IM] THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
  ASM_MESON_TAC[LE_ADD; SEQ_SUBLE; LE_TRANS; ADD_SYM]);;

(* ------------------------------------------------------------------------- *)
(* Polynomial is continuous.                                                 *)
(* ------------------------------------------------------------------------- *)

let POLY_CONT = prove
 (`!p z e. &0 < e
           ==> ?d. &0 < d /\ !w. &0 < norm(w - z) /\ norm(w - z) < d
                   ==> norm(poly p w - poly p z) < e`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`z:complex`; `p:complex list`] POLY_OFFSET) THEN
  DISCH_THEN(X_CHOOSE_THEN `q:complex list` (MP_TAC o CONJUNCT2)) THEN
  DISCH_THEN(MP_TAC o GEN `w:complex` o SYM o SPEC `w - z`) THEN
  REWRITE_TAC[COMPLEX_SUB_ADD2] THEN
  DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN
  REWRITE_TAC[COMPLEX_SUB_REFL] THEN
  SPEC_TAC(`q:complex list`,`p:complex list`) THEN
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly] THENL
   [EXISTS_TAC `e:real` THEN
    ASM_REWRITE_TAC[COMPLEX_SUB_REFL; COMPLEX_NORM_CX; REAL_ABS_NUM];
    ALL_TAC] THEN
  REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_ADD_RID; COMPLEX_ADD_SUB] THEN
  MP_TAC(SPECL [`t:complex list`; `&1`] POLY_BOUND_EXISTS) THEN
  DISCH_THEN(X_CHOOSE_THEN `m:real` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPECL [`&1`; `e / m:real`] REAL_DOWN2) THEN
  ASM_SIMP_TAC[REAL_LT_DIV; REAL_LT_01] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `w:complex` THEN
  STRIP_TAC THEN REWRITE_TAC[COMPLEX_NORM_MUL] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `d * m:real` THEN
  ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN
  ASM_MESON_TAC[REAL_LT_TRANS; REAL_LT_IMP_LE; COMPLEX_NORM_POS]);;

(* ------------------------------------------------------------------------- *)
(* Hence a polynomial attains minimum on a closed disc in the complex plane. *)
(* ------------------------------------------------------------------------- *)

let POLY_MINIMUM_MODULUS_DISC = prove
 (`!p r. ?z. !w. norm(w) <= r ==> norm(poly p z) <= norm(poly p w)`,
  let lemma = prove
   (`P /\ (m = --x) /\ --x < y <=> (--x = m) /\ P /\ m < y`,
    MESON_TAC[]) in
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `&0 <= r` THENL
   [ALL_TAC; ASM_MESON_TAC[COMPLEX_NORM_POS; REAL_LE_TRANS]] THEN
  MP_TAC(SPEC `\x. ?z. norm(z) <= r /\ (norm(poly p z) = --x)`
    REAL_SUP_EXISTS) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL
   [CONJ_TAC THENL
     [MAP_EVERY EXISTS_TAC [`--norm(poly p (Cx(&0)))`; `Cx(&0)`] THEN
      ASM_REWRITE_TAC[REAL_NEG_NEG; COMPLEX_NORM_CX; REAL_ABS_NUM];
      EXISTS_TAC `&1` THEN
      REWRITE_TAC[REAL_ARITH `(a = --b) <=> (--b = a:real)`] THEN
      REWRITE_TAC[REAL_ARITH `x < &1 <=>  --(&1) < --x`] THEN
      SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN
      SIMP_TAC[REAL_ARITH `&0 <= x ==> --(&1) < x`; COMPLEX_NORM_POS]];
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `s:real` MP_TAC) THEN
  ONCE_REWRITE_TAC[REAL_ARITH `a < b <=> --b < --a:real`] THEN
  ABBREV_TAC `m = --s:real` THEN
  DISCH_THEN(MP_TAC o GEN `y:real` o SPEC `--y:real`) THEN
  REWRITE_TAC[REAL_NEG_NEG] THEN
  REWRITE_TAC[LEFT_AND_EXISTS_THM; GSYM CONJ_ASSOC; lemma] THEN
  ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[REAL_ARITH `(--a = b) <=> (a = --b:real)`] THEN
  REWRITE_TAC[LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC(SPEC `m:real` th)) THEN
  REWRITE_TAC[REAL_LT_REFL; NOT_EXISTS_THM] THEN
  REWRITE_TAC[TAUT `~(a /\ b) <=> a ==> ~b`] THEN
  REWRITE_TAC[REAL_NOT_LT] THEN DISCH_TAC THEN
  DISCH_THEN(MP_TAC o GEN `n:num` o SPEC `m + inv(&(SUC n))`) THEN
  REWRITE_TAC[REAL_LT_ADDR; REAL_LT_INV_EQ; REAL_OF_NUM_LT; LT_0] THEN
  REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM] THEN
  DISCH_THEN(X_CHOOSE_THEN `s:num->complex` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPECL [`s:num->complex`; `r:real`]
    BOLZANO_WEIERSTRASS_COMPLEX_DISC) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:num->num` (X_CHOOSE_THEN `z:complex`
    STRIP_ASSUME_TAC)) THEN
  EXISTS_TAC `z:complex` THEN X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
  SUBGOAL_THEN `norm(poly p z) = m` (fun th -> ASM_SIMP_TAC[th]) THEN
  MATCH_MP_TAC(REAL_ARITH `~(&0 < abs(a - b)) ==> (a = b)`) THEN DISCH_TAC THEN
  ABBREV_TAC `e = abs(norm(poly p z) - m)` THEN
  MP_TAC(SPECL [`p:complex list`; `z:complex`; `e / &2`] POLY_CONT) THEN
  ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `!w. norm(w - z) < d ==> norm(poly p w - poly p z) < e / &2`
  MP_TAC THENL
   [X_GEN_TAC `u:complex` THEN
    ASM_CASES_TAC `u = z:complex` THEN
    ASM_SIMP_TAC[COMPLEX_SUB_REFL; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH;
                 COMPLEX_NORM_CX; REAL_ABS_NUM] THEN
    DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
    ASM_REWRITE_TAC[COMPLEX_NORM_NZ; COMPLEX_SUB_0]; ALL_TAC] THEN
  FIRST_ASSUM(K ALL_TAC o check (is_conj o lhand o
    snd o dest_forall o concl)) THEN
  DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[GE] THEN
  DISCH_THEN(X_CHOOSE_THEN `N1:num` ASSUME_TAC) THEN
  MP_TAC(SPEC `&2 / e` REAL_ARCH_SIMPLE) THEN
  DISCH_THEN(X_CHOOSE_THEN `N2:num` ASSUME_TAC) THEN
  SUBGOAL_THEN `norm(poly p (s((f:num->num) (N1 + N2))) - poly p z) < e / &2`
  MP_TAC THENL
   [FIRST_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[LE_ADD]; ALL_TAC] THEN
  MATCH_MP_TAC(REAL_ARITH
   `!m. abs(norm(psfn) - m) < e2 /\
        &2 * e2 <= abs(norm(psfn) - m) + norm(psfn - pz)
        ==> norm(psfn - pz) < e2 ==> F`) THEN
  EXISTS_TAC `m:real` THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `inv(&(SUC(N1 + N2)))` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC(REAL_ARITH
       `m <= x /\ x < m + e ==> abs(x - m:real) < e`) THEN
      ASM_SIMP_TAC[] THEN
      MATCH_MP_TAC REAL_LTE_TRANS THEN
      EXISTS_TAC `m + inv(&(SUC(f(N1 + N2:num))))` THEN
      ASM_REWRITE_TAC[REAL_LE_LADD] THEN MATCH_MP_TAC REAL_LE_INV2 THEN
      ASM_SIMP_TAC[REAL_OF_NUM_LT; REAL_OF_NUM_LE; LT_0; LE_SUC; SEQ_SUBLE];
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_DIV] THEN
      MATCH_MP_TAC REAL_LE_INV2 THEN
      ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
      MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&N2` THEN
      ASM_REWRITE_TAC[REAL_OF_NUM_LE] THEN ARITH_TAC]; ALL_TAC] THEN
  SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH] THEN
  EXPAND_TAC "e" THEN
  MATCH_MP_TAC(REAL_ARITH
   `abs(norm(psfn) - norm(pz)) <= norm(psfn - pz)
    ==> abs(norm(pz) - m) <= abs(norm(psfn) - m) + norm(psfn - pz)`) THEN
  REWRITE_TAC[COMPLEX_NORM_ABS_NORM]);;

(* ------------------------------------------------------------------------- *)
(* Nonzero polynomial in z goes to infinity as z does.                       *)
(* ------------------------------------------------------------------------- *)

let POLY_INFINITY = prove
 (`!p a. EX (\b. ~(b = Cx(&0))) p
         ==> !d. ?r. !z. r <= norm(z) ==> d <= norm(poly (CONS a p) z)`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[EX] THEN X_GEN_TAC `a:complex` THEN
  ASM_CASES_TAC `EX (\b. ~(b = Cx(&0))) t` THEN ASM_REWRITE_TAC[] THENL
   [X_GEN_TAC `d:real` THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `h:complex`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_TAC `r:real` o SPEC `d + norm(a)`) THEN
    EXISTS_TAC `&1 + abs(r)` THEN X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
    ONCE_REWRITE_TAC[poly] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `norm(z * poly (CONS h t) z) - norm(a)` THEN CONJ_TAC THENL
     [ALL_TAC;
      ONCE_REWRITE_TAC[COMPLEX_ADD_SYM] THEN
      REWRITE_TAC[REAL_LE_SUB_RADD; COMPLEX_NORM_TRIANGLE_SUB]] THEN
    REWRITE_TAC[REAL_LE_SUB_LADD] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `&1 * norm(poly (CONS h t) z)` THEN CONJ_TAC THENL
     [REWRITE_TAC[REAL_MUL_LID] THEN FIRST_ASSUM MATCH_MP_TAC THEN
      ASM_SIMP_TAC[REAL_ARITH `&1 + abs(r) <= x ==> r <= x`];
      REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
      REWRITE_TAC[COMPLEX_NORM_POS] THEN
      ASM_MESON_TAC[REAL_ARITH `&1 + abs(r) <= x ==> &1 <= x`]];
    RULE_ASSUM_TAC(REWRITE_RULE[NOT_EX]) THEN
    ASM_SIMP_TAC[poly; POLY_0; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
    DISCH_TAC THEN X_GEN_TAC `d:real` THEN
    EXISTS_TAC `(abs(d) + norm(a)) / norm(h)` THEN X_GEN_TAC `z:complex` THEN
    ASM_SIMP_TAC[REAL_LE_LDIV_EQ; COMPLEX_NORM_NZ; GSYM COMPLEX_NORM_MUL] THEN
    MATCH_MP_TAC(REAL_ARITH
     `mzh <= mazh + ma ==> abs(d) + ma <= mzh ==> d <= mazh`) THEN
    ONCE_REWRITE_TAC[COMPLEX_ADD_SYM] THEN
    REWRITE_TAC[COMPLEX_NORM_TRIANGLE_SUB]]);;

(* ------------------------------------------------------------------------- *)
(* Hence polynomial's modulus attains its minimum somewhere.                 *)
(* ------------------------------------------------------------------------- *)

let POLY_MINIMUM_MODULUS = prove
 (`!p. ?z. !w. norm(poly p z) <= norm(poly p w)`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[poly; REAL_LE_REFL] THEN
  ASM_CASES_TAC `EX (\b. ~(b = Cx(&0))) t` THENL
   [FIRST_ASSUM(MP_TAC o SPEC `h:complex` o MATCH_MP POLY_INFINITY) THEN
    DISCH_THEN(MP_TAC o SPEC `norm(poly (CONS h t) (Cx(&0)))`) THEN
    DISCH_THEN(X_CHOOSE_THEN `r:real` ASSUME_TAC) THEN
    MP_TAC(SPECL [`CONS (h:complex) t`; `abs(r)`]
       POLY_MINIMUM_MODULUS_DISC) THEN
    REWRITE_TAC[GSYM(CONJUNCT2 poly)] THEN
    ASM_MESON_TAC[REAL_ARITH `r <= z \/ z <= abs(r)`; REAL_LE_TRANS;
                  COMPLEX_NORM_CX; REAL_ABS_NUM; REAL_ABS_POS];
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EX]) THEN
    REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o MATCH_MP POLY_0) THEN
    ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; REAL_LE_REFL]]);;

(* ------------------------------------------------------------------------- *)
(* Constant function (non-syntactic characterization).                       *)
(* ------------------------------------------------------------------------- *)

let constant = new_definition
  `constant f = !w z. f(w) = f(z)`;;

let NONCONSTANT_LENGTH = prove
 (`!p. ~constant(poly p) ==> 2 <= LENGTH p`,
  REWRITE_TAC[constant] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[poly] THEN
  REWRITE_TAC[LENGTH; ARITH_RULE `2 <= SUC n <=> ~(n = 0)`] THEN
  SIMP_TAC[TAUT `~a ==> ~b <=> b ==> a`; LENGTH_EQ_NIL; poly] THEN
  REWRITE_TAC[COMPLEX_MUL_RZERO]);;

(* ------------------------------------------------------------------------- *)
(* Decomposition of polynomial, skipping zero coefficients after the first.  *)
(* ------------------------------------------------------------------------- *)

let POLY_DECOMPOSE_LEMMA = prove
 (`!p. ~(!z. ~(z = Cx(&0)) ==> (poly p z = Cx(&0)))
       ==> ?k a q. ~(a = Cx(&0)) /\
                   (SUC(LENGTH q + k) = LENGTH p) /\
                   !z. poly p z = z pow k * poly (CONS a q) z`,
  LIST_INDUCT_TAC THENL [REWRITE_TAC[poly]; ALL_TAC] THEN
  ASM_CASES_TAC `h = Cx(&0)` THENL
   [GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [poly] THEN
    ASM_SIMP_TAC[COMPLEX_ADD_LID; COMPLEX_ENTIRE] THEN
    DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `k:num` (X_CHOOSE_THEN `a:complex`
     (X_CHOOSE_THEN `q:complex list` STRIP_ASSUME_TAC))) THEN
    MAP_EVERY EXISTS_TAC [`k + 1`; `a:complex`; `q:complex list`] THEN
    ASM_REWRITE_TAC[poly; LENGTH; GSYM ADD1; ADD_CLAUSES] THEN
    REWRITE_TAC[COMPLEX_ADD_LID; complex_pow; GSYM COMPLEX_MUL_ASSOC];
    DISCH_THEN(K ALL_TAC) THEN
    MAP_EVERY EXISTS_TAC [`0`; `h:complex`; `t:complex list`] THEN
    ASM_REWRITE_TAC[complex_pow; COMPLEX_MUL_LID; ADD_CLAUSES; LENGTH]]);;

let POLY_DECOMPOSE = prove
 (`!p. ~constant(poly p)
       ==> ?k a q. ~(a = Cx(&0)) /\ ~(k = 0) /\
                   (LENGTH q + k + 1 = LENGTH p) /\
                   !z. poly p z = poly p (Cx(&0)) +
                                  z pow k * poly (CONS a q) z`,
  LIST_INDUCT_TAC THENL [REWRITE_TAC[constant; poly]; ALL_TAC] THEN
  POP_ASSUM(K ALL_TAC) THEN DISCH_TAC THEN
  MP_TAC(SPEC `t:complex list` POLY_DECOMPOSE_LEMMA) THEN ANTS_TAC THENL
   [POP_ASSUM MP_TAC THEN REWRITE_TAC[constant; poly] THEN
    REWRITE_TAC[TAUT `~b ==> ~a <=> a ==> b`; COMPLEX_EQ_ADD_LCANCEL] THEN
    SIMP_TAC[TAUT `~a ==> b <=> a \/ b`; GSYM COMPLEX_ENTIRE]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `k:num` (X_CHOOSE_THEN `a:complex`
     (X_CHOOSE_THEN `q:complex list` STRIP_ASSUME_TAC))) THEN
  MAP_EVERY EXISTS_TAC [`SUC k`; `a:complex`; `q:complex list`] THEN
  ASM_REWRITE_TAC[ADD_CLAUSES; GSYM ADD1; LENGTH; NOT_SUC] THEN
  ASM_REWRITE_TAC[poly; COMPLEX_MUL_LZERO; COMPLEX_ADD_RID; complex_pow] THEN
  REWRITE_TAC[GSYM COMPLEX_MUL_ASSOC]);;

let POLY_REPLICATE_APPEND = prove
 (`!n p x. poly (APPEND (REPLICATE n (Cx(&0))) p) x = x pow n * poly p x`,
  INDUCT_TAC THEN
  REWRITE_TAC[REPLICATE; APPEND; complex_pow; COMPLEX_MUL_LID] THEN
  ASM_REWRITE_TAC[poly; COMPLEX_ADD_LID] THEN REWRITE_TAC[COMPLEX_MUL_ASSOC]);;

(* ------------------------------------------------------------------------- *)
(* Fundamental theorem.                                                      *)
(* ------------------------------------------------------------------------- *)

let FUNDAMENTAL_THEOREM_OF_ALGEBRA = prove
 (`!p. ~constant(poly p) ==> ?z. poly p z = Cx(&0)`,
  SUBGOAL_THEN
   `!n p. (LENGTH p = n) /\ ~constant(poly p) ==> ?z. poly p z = Cx(&0)`
   (fun th -> MESON_TAC[th]) THEN
  MATCH_MP_TAC num_WF THEN
  X_GEN_TAC `n:num` THEN STRIP_TAC THEN
  X_GEN_TAC `p:complex list` THEN STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP NONCONSTANT_LENGTH) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  X_CHOOSE_TAC `c:complex` (SPEC `p:complex list` POLY_MINIMUM_MODULUS) THEN
  ASM_CASES_TAC `poly p c = Cx(&0)` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  MP_TAC(SPECL [`c:complex`; `p:complex list`] POLY_OFFSET) THEN
  DISCH_THEN(X_CHOOSE_THEN `q:complex list` MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) ASSUME_TAC) THEN
  SUBGOAL_THEN `~constant(poly q)` ASSUME_TAC THENL
   [UNDISCH_TAC `~(constant(poly p))` THEN
    SUBGOAL_THEN `!z. poly q (z - c) = poly p z`
      (fun th -> MESON_TAC[th; constant]) THEN
    ASM_MESON_TAC[SIMPLE_COMPLEX_ARITH `a + (x - a) = x`]; ALL_TAC] THEN
  SUBGOAL_THEN `poly p c = poly q (Cx(&0))` SUBST_ALL_TAC THENL
   [ASM_MESON_TAC[COMPLEX_ADD_RID]; ALL_TAC] THEN
  SUBGOAL_THEN `!w. norm(poly q (Cx(&0))) <= norm(poly q w)` MP_TAC THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  POP_ASSUM_LIST(MAP_EVERY (fun th ->
    if free_in `p:complex list` (concl th)
    then ALL_TAC else ASSUME_TAC th)) THEN
  MATCH_MP_TAC(TAUT `~a ==> a ==> b`) THEN
  REWRITE_TAC[NOT_FORALL_THM; REAL_NOT_LE] THEN
  ABBREV_TAC `a0 = poly q (Cx(&0))` THEN
  SUBGOAL_THEN
   `!z. poly q z = poly (MAP (( * ) (inv(a0))) q) z * a0`
  ASSUME_TAC THENL
   [REWRITE_TAC[POLY_CMUL_MAP] THEN
    ONCE_REWRITE_TAC[AC COMPLEX_MUL_AC `(a * b) * c = b * c * a`] THEN
    ASM_SIMP_TAC[COMPLEX_MUL_RINV; COMPLEX_MUL_RID];
    ALL_TAC] THEN
  ABBREV_TAC `r = MAP (( * ) (inv(a0))) q` THEN
  SUBGOAL_THEN `LENGTH(q:complex list) = LENGTH(r:complex list)`
  SUBST_ALL_TAC THENL
   [EXPAND_TAC "r" THEN REWRITE_TAC[LENGTH_MAP]; ALL_TAC] THEN
  SUBGOAL_THEN `~(constant(poly r))` ASSUME_TAC THENL
   [UNDISCH_TAC `~constant(poly q)` THEN
    ASM_REWRITE_TAC[constant; COMPLEX_EQ_MUL_RCANCEL] THEN MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `poly r (Cx(&0)) = Cx(&1)` ASSUME_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o SPEC `Cx(&0)`) THEN
    ASM_REWRITE_TAC[] THEN
    GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM COMPLEX_MUL_LID] THEN
    ASM_SIMP_TAC[COMPLEX_EQ_MUL_RCANCEL]; ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN
  POP_ASSUM_LIST(MAP_EVERY (fun th ->
    if free_in `q:complex list` (concl th)
    then ALL_TAC else ASSUME_TAC th)) THEN
  ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; COMPLEX_NORM_NZ; COMPLEX_NORM_MUL;
               REAL_DIV_REFL; COMPLEX_NORM_ZERO] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP POLY_DECOMPOSE) THEN
  DISCH_THEN(X_CHOOSE_THEN `k:num` (X_CHOOSE_THEN `a:complex`
        (X_CHOOSE_THEN `s:complex list` MP_TAC))) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) MP_TAC) THEN
  DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `k + 1 = n` THENL
   [UNDISCH_TAC `LENGTH(s:complex list) + k + 1 = n` THEN
    ASM_REWRITE_TAC[ARITH_RULE `(s + m = m) <=> (s = 0)`; LENGTH_EQ_NIL] THEN
    REWRITE_TAC[LENGTH_EQ_NIL] THEN DISCH_THEN SUBST1_TAC THEN
    REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
    ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN
    MATCH_MP_TAC REDUCE_POLY_SIMPLE THEN ASM_REWRITE_TAC[] THEN
    MAP_EVERY UNDISCH_TAC [`k + 1 = n`; `2 <= n`] THEN ARITH_TAC; ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `k + 1`) THEN ANTS_TAC THENL
   [UNDISCH_TAC `~(k + 1 = n)` THEN
    UNDISCH_TAC `LENGTH(s:complex list) + k + 1 = n` THEN ARITH_TAC;
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o SPEC
   `CONS (Cx(&1)) (APPEND (REPLICATE (k - 1) (Cx(&0))) [a])`) THEN
  ANTS_TAC THENL
   [CONJ_TAC THENL
     [REWRITE_TAC[LENGTH; LENGTH_APPEND; LENGTH_REPLICATE] THEN
      UNDISCH_TAC `~(k = 0)` THEN ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[constant; POLY_REPLICATE_APPEND; poly] THEN
    REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
    DISCH_THEN(MP_TAC o SPECL [`Cx(&0)`; `Cx(&1)`]) THEN
    REWRITE_TAC[COMPLEX_MUL_LID; COMPLEX_MUL_LZERO; COMPLEX_ADD_RID] THEN
    ASM_REWRITE_TAC[COMPLEX_ENTIRE; COMPLEX_POW_ONE; SIMPLE_COMPLEX_ARITH
                  `(a = a + b) <=> (b = Cx(&0))`] THEN
    REWRITE_TAC[CX_INJ; REAL_OF_NUM_EQ; ARITH_EQ]; ALL_TAC] THEN
  REWRITE_TAC[constant; POLY_REPLICATE_APPEND; poly] THEN
  REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
  ONCE_REWRITE_TAC[AC COMPLEX_MUL_AC `a * b * c = (a * b) * c`] THEN
  REWRITE_TAC[GSYM(CONJUNCT2 complex_pow)] THEN
  ASM_SIMP_TAC[ARITH_RULE `~(k = 0) ==> (SUC(k - 1) = k)`] THEN
  DISCH_THEN(X_CHOOSE_TAC `w:complex`) THEN
  MP_TAC(SPECL [`s:complex list`; `norm(w)`] POLY_BOUND_EXISTS) THEN
  DISCH_THEN(X_CHOOSE_THEN `m:real` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `~(w = Cx(&0))` ASSUME_TAC THENL
   [UNDISCH_TAC `Cx(&1) + w pow k * a = Cx(&0)` THEN
    ONCE_REWRITE_TAC[TAUT `a ==> ~b <=> b ==> ~a`] THEN
    DISCH_THEN SUBST1_TAC THEN
    UNDISCH_TAC `~(k = 0)` THEN SPEC_TAC(`k:num`,`k:num`) THEN
    INDUCT_TAC THEN REWRITE_TAC[complex_pow; COMPLEX_MUL_LZERO] THEN
    REWRITE_TAC[COMPLEX_ADD_RID; CX_INJ; REAL_OF_NUM_EQ; ARITH_EQ];
    ALL_TAC] THEN
  MP_TAC(SPECL [`&1`; `inv(norm(w) pow (k + 1) * m)`] REAL_DOWN2) THEN
  ASM_SIMP_TAC[REAL_LT_01; REAL_LT_INV_EQ; REAL_LT_MUL; REAL_POW_LT;
               COMPLEX_NORM_NZ] THEN
  DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `Cx(t) * w` THEN REWRITE_TAC[COMPLEX_POW_MUL] THEN
  REWRITE_TAC[COMPLEX_ADD_LDISTRIB; GSYM COMPLEX_MUL_ASSOC] THEN
  FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SIMPLE_COMPLEX_ARITH
   `(a + w = Cx(&0)) ==> (w = --a)`)) THEN
  REWRITE_TAC[GSYM CX_NEG; GSYM CX_POW; GSYM CX_MUL] THEN
  REWRITE_TAC[COMPLEX_ADD_ASSOC; GSYM CX_ADD] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN
  EXISTS_TAC `norm(Cx(&1 + t pow k * -- &1)) +
              norm(Cx(t pow k) * w pow k * Cx t * w * poly s (Cx t * w))` THEN
  REWRITE_TAC[COMPLEX_NORM_TRIANGLE] THEN REWRITE_TAC[COMPLEX_NORM_CX] THEN
  MATCH_MP_TAC(REAL_ARITH
   `&0 <= x /\ x < t /\ t <= &1 ==> abs(&1 + t * --(&1)) + x < &1`) THEN
  REWRITE_TAC[COMPLEX_NORM_POS] THEN
  ASM_SIMP_TAC[REAL_POW_1_LE; REAL_LT_IMP_LE] THEN
  ONCE_REWRITE_TAC[COMPLEX_NORM_MUL] THEN REWRITE_TAC[COMPLEX_NORM_CX] THEN
  ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE; REAL_POW_LE] THEN
  GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
  MATCH_MP_TAC REAL_LT_LMUL THEN ASM_SIMP_TAC[REAL_POW_LT] THEN
  ONCE_REWRITE_TAC[AC COMPLEX_MUL_AC `a * b * c * d = b * (c * a) * d`] THEN
  REWRITE_TAC[GSYM(CONJUNCT2 complex_pow)] THEN
  REWRITE_TAC[COMPLEX_NORM_MUL; ADD1; COMPLEX_NORM_CX] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN
  EXISTS_TAC `abs t * norm(w pow (k + 1)) * m` THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[COMPLEX_NORM_POS] THEN
    FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[COMPLEX_NORM_MUL] THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
    MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[COMPLEX_NORM_POS] THEN
    ASM_SIMP_TAC[COMPLEX_NORM_CX; REAL_ARITH
      `&0 < t /\ t < &1 ==> abs(t) <= &1`]; ALL_TAC] THEN
  ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_LT_MUL; COMPLEX_NORM_POW;
               REAL_POW_LT; COMPLEX_NORM_NZ] THEN
  ASM_SIMP_TAC[real_div; REAL_MUL_LID;
               REAL_ARITH `&0 < t /\ t < x ==> abs(t) < x`]);;

(* ------------------------------------------------------------------------- *)
(* Alternative version with a syntactic notion of constant polynomial.       *)
(* ------------------------------------------------------------------------- *)

let FUNDAMENTAL_THEOREM_OF_ALGEBRA_ALT = prove
 (`!p. ~(?a l. ~(a = Cx(&0)) /\ ALL (\b. b = Cx(&0)) l /\ (p = CONS a l))
       ==> ?z. poly p z = Cx(&0)`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[poly; CONS_11] THEN
  POP_ASSUM_LIST(K ALL_TAC) THEN
  ONCE_REWRITE_TAC[AC CONJ_ACI `a /\ b /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
  REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
  ASM_CASES_TAC `h = Cx(&0)` THEN ASM_REWRITE_TAC[COMPLEX_ADD_LID] THENL
   [EXISTS_TAC `Cx(&0)` THEN ASM_REWRITE_TAC[COMPLEX_MUL_LZERO]; ALL_TAC] THEN
  DISCH_TAC THEN REWRITE_TAC[GSYM(CONJUNCT2 poly)] THEN
  MATCH_MP_TAC FUNDAMENTAL_THEOREM_OF_ALGEBRA THEN
  UNDISCH_TAC `~ALL (\b. b = Cx (&0)) t` THEN
  REWRITE_TAC[TAUT `~b ==> ~a <=> a ==> b`] THEN POP_ASSUM(K ALL_TAC) THEN
  REWRITE_TAC[constant; poly; REAL_EQ_LADD] THEN
  DISCH_THEN(MP_TAC o SPEC `Cx(&0)` o ONCE_REWRITE_RULE[SWAP_FORALL_THM]) THEN
  REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_EQ_ADD_LCANCEL] THEN
  REWRITE_TAC[COMPLEX_ENTIRE; TAUT `a \/ b <=> ~a ==> b`] THEN
  SPEC_TAC(`t:complex list`,`p:complex list`) THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[ALL] THEN
  ASM_CASES_TAC `h = Cx(&0)` THEN
  ASM_SIMP_TAC[poly; COMPLEX_ADD_LID; COMPLEX_ENTIRE] THEN
  MP_TAC(SPECL [`t:complex list`; `&1`] POLY_BOUND_EXISTS) THEN
  DISCH_THEN(X_CHOOSE_THEN `m:real` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPECL [`norm(h) / m`; `&1`] REAL_DOWN2) THEN
  ASM_SIMP_TAC[REAL_LT_01; REAL_LT_DIV; COMPLEX_NORM_NZ] THEN
  DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN
  DISCH_THEN(MP_TAC o SPEC `Cx(x)`) THEN
  ASM_SIMP_TAC[CX_INJ; REAL_LT_IMP_NZ] THEN
  REWRITE_TAC[SIMPLE_COMPLEX_ARITH `(x + y = Cx(&0)) <=> (y = --x)`] THEN
  DISCH_THEN(MP_TAC o AP_TERM `norm`) THEN REWRITE_TAC[COMPLEX_NORM_NEG] THEN
  MATCH_MP_TAC(REAL_ARITH `abs(a) < abs(b) ==> ~(a = b)`) THEN
  REWRITE_TAC[real_abs; COMPLEX_NORM_POS] THEN
  REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
  MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `norm(h) / m * m` THEN
  CONJ_TAC THENL
   [ALL_TAC; ASM_SIMP_TAC[REAL_LE_REFL; REAL_DIV_RMUL; REAL_LT_IMP_NZ]] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(x) * m` THEN
  ASM_SIMP_TAC[REAL_LT_RMUL; REAL_ARITH `&0 < x /\ x < a ==> abs(x) < a`] THEN
  ASM_MESON_TAC[REAL_LE_LMUL; REAL_ABS_POS; COMPLEX_NORM_CX;
                REAL_ARITH `&0 < x /\ x < &1 ==> abs(x) <= &1`]);;