Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 34,940 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
(* ========================================================================= *)
(* Fundamental theorem of algebra. *)
(* ========================================================================= *)
needs "Complex/complex_transc.ml";;
needs "Complex/cpoly.ml";;
prioritize_complex();;
(* ------------------------------------------------------------------------- *)
(* A cute trick to reduce magnitude of unimodular number. *)
(* ------------------------------------------------------------------------- *)
let SQRT_SOS_LT_1 = prove
(`!x y. sqrt(x pow 2 + y pow 2) < &1 <=> x pow 2 + y pow 2 < &1`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM SQRT_1] THEN
REWRITE_TAC[REAL_POW_2] THEN
SIMP_TAC[SQRT_MONO_LT_EQ; REAL_POS; REAL_LE_ADD; REAL_LE_SQUARE]);;
let SQRT_SOS_EQ_1 = prove
(`!x y. (sqrt(x pow 2 + y pow 2) = &1) <=> (x pow 2 + y pow 2 = &1)`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM SQRT_1] THEN
REWRITE_TAC[REAL_POW_2] THEN
SIMP_TAC[SQRT_INJ; REAL_POS; REAL_LE_ADD; REAL_LE_SQUARE]);;
let UNIMODULAR_REDUCE_NORM = prove
(`!z. (norm(z) = &1)
==> norm(z + Cx(&1)) < &1 \/
norm(z - Cx(&1)) < &1 \/
norm(z + ii) < &1 \/
norm(z - ii) < &1`,
GEN_TAC THEN
REWRITE_TAC[ii; CX_DEF; complex_add; complex_sub; complex_neg; complex_norm;
RE; IM; REAL_ADD_RID; REAL_NEG_0; SQRT_SOS_LT_1; SQRT_SOS_EQ_1] THEN
SIMP_TAC[REAL_POW_2;
REAL_ARITH `a * a + (b + c) * (b + c) =
(a * a + b * b) + (&2 * b * c + c * c)`;
REAL_ARITH `(b + c) * (b + c) + a * a =
(b * b + a * a) + (&2 * b * c + c * c)`] THEN
DISCH_TAC THEN REWRITE_TAC[REAL_ARITH `&1 + x < &1 <=> &0 < --x`] THEN
REWRITE_TAC[REAL_NEG_ADD; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN
REWRITE_TAC[REAL_MUL_RID] THEN
MATCH_MP_TAC(REAL_ARITH
`~(abs(a) <= &1 /\ abs(b) <= &1)
==> &0 < --a + --(&1) \/ &0 < a + --(&1) \/
&0 < --b + --(&1) \/ &0 < b + --(&1)`) THEN
STRIP_TAC THEN UNDISCH_TAC `Re z * Re z + Im z * Im z = &1` THEN
REWRITE_TAC[] THEN
MATCH_MP_TAC(REAL_ARITH
`(&2 * r) * (&2 * r) <= &1 /\ (&2 * i) * (&2 * i) <= &1
==> ~(r * r + i * i = &1)`) THEN
REWRITE_TAC[GSYM REAL_POW_2] THEN ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN
ASM_SIMP_TAC[REAL_POW_1_LE; REAL_ABS_POS]);;
(* ------------------------------------------------------------------------- *)
(* Hence we can always reduce modulus of 1 + b z^n if nonzero *)
(* ------------------------------------------------------------------------- *)
let REDUCE_POLY_SIMPLE = prove
(`!b n. ~(b = Cx(&0)) /\ ~(n = 0)
==> ?z. norm(Cx(&1) + b * z pow n) < &1`,
GEN_TAC THEN MATCH_MP_TAC num_WF THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `EVEN(n)` THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVEN_EXISTS]) THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
ASM_SIMP_TAC[ARITH_RULE `~(2 * m = 0) ==> m < 2 * m /\ ~(m = 0)`] THEN
DISCH_THEN(X_CHOOSE_TAC `w:complex`) THEN EXISTS_TAC `csqrt w` THEN
ASM_REWRITE_TAC[GSYM COMPLEX_POW_POW; CSQRT]; ALL_TAC] THEN
MP_TAC(SPEC `Cx(norm b) / b` UNIMODULAR_REDUCE_NORM) THEN ANTS_TAC THENL
[REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX] THEN
ASM_SIMP_TAC[COMPLEX_ABS_NORM; REAL_DIV_REFL; COMPLEX_NORM_ZERO];
ALL_TAC] THEN DISCH_TAC THEN
SUBGOAL_THEN `?v. norm(Cx(norm b) / b + v pow n) < &1` MP_TAC THENL
[SUBGOAL_THEN `(Cx(&1) pow n = Cx(&1)) /\
(--Cx(&1) pow n = --Cx(&1)) /\
(((ii pow n = ii) /\ (--ii pow n = --ii)) \/
((ii pow n = --ii) /\ (--ii pow n = ii)))`
MP_TAC THENL
[ALL_TAC;
RULE_ASSUM_TAC(REWRITE_RULE[complex_sub]) THEN ASM_MESON_TAC[]] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EVEN]) THEN
SIMP_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `m:num` THEN DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[complex_pow; COMPLEX_POW_NEG; EVEN; EVEN_MULT; ARITH_EVEN] THEN
REWRITE_TAC[GSYM COMPLEX_POW_POW] THEN
REWRITE_TAC[COMPLEX_POW_ONE; COMPLEX_POW_II_2; COMPLEX_MUL_LID;
COMPLEX_POW_NEG] THEN
COND_CASES_TAC THEN
REWRITE_TAC[COMPLEX_MUL_RID; COMPLEX_MUL_RNEG; COMPLEX_NEG_NEG];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `v:complex` ASSUME_TAC) THEN
EXISTS_TAC `v / Cx(root(n) (norm b))` THEN
REWRITE_TAC[COMPLEX_POW_DIV; GSYM CX_POW] THEN
SUBGOAL_THEN `root n (norm b) pow n = norm b` SUBST1_TAC THENL
[UNDISCH_TAC `~(EVEN n)` THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN SIMP_TAC[EVEN; ROOT_POW_POS; COMPLEX_NORM_POS];
ALL_TAC] THEN
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `norm(Cx(norm b) / b)` THEN
REWRITE_TAC[GSYM COMPLEX_NORM_MUL; COMPLEX_ADD_LDISTRIB] THEN
REWRITE_TAC[COMPLEX_MUL_RID; REAL_MUL_RID] THEN
SUBGOAL_THEN `norm(Cx(norm b) / b) = &1` SUBST1_TAC THENL
[REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; COMPLEX_ABS_NORM] THEN
ASM_SIMP_TAC[REAL_DIV_REFL; COMPLEX_NORM_ZERO]; ALL_TAC] THEN
REWRITE_TAC[REAL_LT_01; complex_div] THEN
ONCE_REWRITE_TAC[AC COMPLEX_MUL_AC
`(m * b') * b * p * m' = (m * m') * (b * b') * p`] THEN
ASM_SIMP_TAC[COMPLEX_MUL_RINV; COMPLEX_MUL_LID;
CX_INJ; COMPLEX_NORM_ZERO] THEN
ASM_REWRITE_TAC[GSYM complex_div]);;
(* ------------------------------------------------------------------------- *)
(* Basic lemmas about polynomials. *)
(* ------------------------------------------------------------------------- *)
let POLY_CMUL_MAP = prove
(`!p c x. poly (MAP (( * ) c) p) x = c * poly p x`,
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; poly; COMPLEX_MUL_RZERO] THEN
ASM_REWRITE_TAC[COMPLEX_ADD_LDISTRIB] THEN REWRITE_TAC[COMPLEX_MUL_AC]);;
let POLY_0 = prove
(`!p x. ALL (\b. b = Cx(&0)) p ==> (poly p x = Cx(&0))`,
LIST_INDUCT_TAC THEN
ASM_SIMP_TAC[ALL; poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID]);;
let POLY_BOUND_EXISTS = prove
(`!p r. ?m. &0 < m /\ !z. norm(z) <= r ==> norm(poly p z) <= m`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN
LIST_INDUCT_TAC THENL
[EXISTS_TAC `&1` THEN REWRITE_TAC[poly; COMPLEX_NORM_CX] THEN
REWRITE_TAC[REAL_ABS_NUM; REAL_LT_01; REAL_POS]; ALL_TAC] THEN
POP_ASSUM(X_CHOOSE_THEN `m:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `&1 + norm(h) + abs(r * m)` THEN
ASM_SIMP_TAC[REAL_ARITH `&0 <= x /\ &0 <= y ==> &0 < &1 + x + y`;
REAL_ABS_POS; COMPLEX_NORM_POS] THEN
X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
REWRITE_TAC[poly] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `norm(h) + norm(z * poly t z)` THEN
REWRITE_TAC[COMPLEX_NORM_TRIANGLE] THEN
MATCH_MP_TAC(REAL_ARITH `y <= z ==> x + y <= &1 + x + abs(z)`) THEN
REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN
ASM_SIMP_TAC[COMPLEX_NORM_POS]);;
(* ------------------------------------------------------------------------- *)
(* Offsetting the variable in a polynomial gives another of same degree. *)
(* ------------------------------------------------------------------------- *)
let POLY_OFFSET_LEMMA = prove
(`!a p. ?b q. (LENGTH q = LENGTH p) /\
!x. poly (CONS b q) x = (a + x) * poly p x`,
GEN_TAC THEN LIST_INDUCT_TAC THENL
[EXISTS_TAC `Cx(&0)` THEN EXISTS_TAC `[]:complex list` THEN
REWRITE_TAC[poly; LENGTH; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID];
ALL_TAC] THEN
POP_ASSUM STRIP_ASSUME_TAC THEN
EXISTS_TAC `a * h` THEN EXISTS_TAC `CONS (b + h) q` THEN
ASM_REWRITE_TAC[LENGTH; poly] THEN X_GEN_TAC `x:complex ` THEN
FIRST_ASSUM(MP_TAC o SPEC `x:complex`) THEN
REWRITE_TAC[poly] THEN DISCH_THEN(MP_TAC o AP_TERM `( * ) x`) THEN
SIMPLE_COMPLEX_ARITH_TAC);;
let POLY_OFFSET = prove
(`!a p. ?q. (LENGTH q = LENGTH p) /\ !x. poly q x = poly p (a + x)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; poly] THENL
[EXISTS_TAC `[]:complex list` THEN REWRITE_TAC[poly; LENGTH]; ALL_TAC] THEN
POP_ASSUM(X_CHOOSE_THEN `p:complex list` (STRIP_ASSUME_TAC o GSYM)) THEN
ASM_REWRITE_TAC[] THEN
MP_TAC(SPECL [`a:complex`; `p:complex list`] POLY_OFFSET_LEMMA) THEN
DISCH_THEN(X_CHOOSE_THEN `b:complex` (X_CHOOSE_THEN `r: complex list`
(STRIP_ASSUME_TAC o GSYM))) THEN
EXISTS_TAC `CONS (h + b) r` THEN ASM_REWRITE_TAC[LENGTH] THEN
REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Bolzano-Weierstrass type property for closed disc in complex plane. *)
(* ------------------------------------------------------------------------- *)
let METRIC_BOUND_LEMMA = prove
(`!x y. norm(x - y) <= abs(Re(x) - Re(y)) + abs(Im(x) - Im(y))`,
REPEAT GEN_TAC THEN REWRITE_TAC[complex_norm] THEN
MATCH_MP_TAC(REAL_ARITH
`a <= abs(abs x + abs y) ==> a <= abs x + abs y`) THEN
GEN_REWRITE_TAC RAND_CONV [GSYM POW_2_SQRT_ABS] THEN
MATCH_MP_TAC SQRT_MONO_LE THEN
SIMP_TAC[REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN
REWRITE_TAC[complex_add; complex_sub; complex_neg; RE; IM] THEN
REWRITE_TAC[GSYM real_sub] THEN
REWRITE_TAC[REAL_ARITH `(a + b) * (a + b) = a * a + b * b + &2 * a * b`] THEN
REWRITE_TAC[GSYM REAL_ABS_MUL] THEN
REWRITE_TAC[REAL_ARITH `a + b <= abs a + abs b + &2 * abs c`]);;
let BOLZANO_WEIERSTRASS_COMPLEX_DISC = prove
(`!s r. (!n. norm(s n) <= r)
==> ?f z. subseq f /\
!e. &0 < e ==> ?N. !n. n >= N ==> norm(s(f n) - z) < e`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `Re o (s:num->complex)` SEQ_MONOSUB) THEN
DISCH_THEN(X_CHOOSE_THEN `f:num->num` MP_TAC) THEN
REWRITE_TAC[o_THM] THEN STRIP_TAC THEN
MP_TAC(SPEC `Im o (s:num->complex) o (f:num->num)` SEQ_MONOSUB) THEN
DISCH_THEN(X_CHOOSE_THEN `g:num->num` MP_TAC) THEN
REWRITE_TAC[o_THM] THEN STRIP_TAC THEN
EXISTS_TAC `(f:num->num) o (g:num->num)` THEN
SUBGOAL_THEN `convergent (\n. Re(s(f n :num))) /\
convergent (\n. Im(s((f:num->num)(g n))))`
MP_TAC THENL
[CONJ_TAC THEN MATCH_MP_TAC SEQ_BCONV THEN ASM_REWRITE_TAC[bounded] THEN
MAP_EVERY EXISTS_TAC [`r + &1`; `&0`; `0`] THEN
REWRITE_TAC[GE; LE_0; MR1_DEF; REAL_SUB_LZERO; REAL_ABS_NEG] THEN
X_GEN_TAC `n:num` THEN
W(fun (_,w) -> FIRST_ASSUM(MP_TAC o SPEC (funpow 3 rand (lhand w)))) THEN
REWRITE_TAC[complex_norm] THEN
MATCH_MP_TAC(REAL_ARITH `a <= b ==> b <= r ==> a < r + &1`) THEN
GEN_REWRITE_TAC LAND_CONV [GSYM POW_2_SQRT_ABS] THEN
MATCH_MP_TAC SQRT_MONO_LE THEN
REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE; REAL_LE_ADDR; REAL_LE_ADDL];
ALL_TAC] THEN
REWRITE_TAC[convergent; SEQ; GE] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_TAC `x:real`) (X_CHOOSE_TAC `y:real`)) THEN
EXISTS_TAC `complex(x,y)` THEN CONJ_TAC THENL
[MAP_EVERY UNDISCH_TAC [`subseq f`; `subseq g`] THEN
REWRITE_TAC[subseq; o_THM] THEN MESON_TAC[]; ALL_TAC] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
UNDISCH_TAC
`!e. &0 < e
==> (?N. !n. N <= n ==> abs(Re(s ((f:num->num) n)) - x) < e)` THEN
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN DISCH_THEN(X_CHOOSE_TAC `N1:num`) THEN
EXISTS_TAC `N1 + N2:num` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&2 * e / &2` THEN
CONJ_TAC THENL
[ALL_TAC;
SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH; REAL_LE_REFL]] THEN
W(MP_TAC o PART_MATCH lhand METRIC_BOUND_LEMMA o lhand o snd) THEN
MATCH_MP_TAC(REAL_ARITH
`a < c /\ b < c ==> x <= a + b ==> x < &2 * c`) THEN
REWRITE_TAC[o_THM; RE; IM] THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_MESON_TAC[LE_ADD; SEQ_SUBLE; LE_TRANS; ADD_SYM]);;
(* ------------------------------------------------------------------------- *)
(* Polynomial is continuous. *)
(* ------------------------------------------------------------------------- *)
let POLY_CONT = prove
(`!p z e. &0 < e
==> ?d. &0 < d /\ !w. &0 < norm(w - z) /\ norm(w - z) < d
==> norm(poly p w - poly p z) < e`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`z:complex`; `p:complex list`] POLY_OFFSET) THEN
DISCH_THEN(X_CHOOSE_THEN `q:complex list` (MP_TAC o CONJUNCT2)) THEN
DISCH_THEN(MP_TAC o GEN `w:complex` o SYM o SPEC `w - z`) THEN
REWRITE_TAC[COMPLEX_SUB_ADD2] THEN
DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN
REWRITE_TAC[COMPLEX_SUB_REFL] THEN
SPEC_TAC(`q:complex list`,`p:complex list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly] THENL
[EXISTS_TAC `e:real` THEN
ASM_REWRITE_TAC[COMPLEX_SUB_REFL; COMPLEX_NORM_CX; REAL_ABS_NUM];
ALL_TAC] THEN
REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_ADD_RID; COMPLEX_ADD_SUB] THEN
MP_TAC(SPECL [`t:complex list`; `&1`] POLY_BOUND_EXISTS) THEN
DISCH_THEN(X_CHOOSE_THEN `m:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`&1`; `e / m:real`] REAL_DOWN2) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_LT_01] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `w:complex` THEN
STRIP_TAC THEN REWRITE_TAC[COMPLEX_NORM_MUL] THEN
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `d * m:real` THEN
ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN
ASM_MESON_TAC[REAL_LT_TRANS; REAL_LT_IMP_LE; COMPLEX_NORM_POS]);;
(* ------------------------------------------------------------------------- *)
(* Hence a polynomial attains minimum on a closed disc in the complex plane. *)
(* ------------------------------------------------------------------------- *)
let POLY_MINIMUM_MODULUS_DISC = prove
(`!p r. ?z. !w. norm(w) <= r ==> norm(poly p z) <= norm(poly p w)`,
let lemma = prove
(`P /\ (m = --x) /\ --x < y <=> (--x = m) /\ P /\ m < y`,
MESON_TAC[]) in
REPEAT GEN_TAC THEN
ASM_CASES_TAC `&0 <= r` THENL
[ALL_TAC; ASM_MESON_TAC[COMPLEX_NORM_POS; REAL_LE_TRANS]] THEN
MP_TAC(SPEC `\x. ?z. norm(z) <= r /\ (norm(poly p z) = --x)`
REAL_SUP_EXISTS) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[CONJ_TAC THENL
[MAP_EVERY EXISTS_TAC [`--norm(poly p (Cx(&0)))`; `Cx(&0)`] THEN
ASM_REWRITE_TAC[REAL_NEG_NEG; COMPLEX_NORM_CX; REAL_ABS_NUM];
EXISTS_TAC `&1` THEN
REWRITE_TAC[REAL_ARITH `(a = --b) <=> (--b = a:real)`] THEN
REWRITE_TAC[REAL_ARITH `x < &1 <=> --(&1) < --x`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN
SIMP_TAC[REAL_ARITH `&0 <= x ==> --(&1) < x`; COMPLEX_NORM_POS]];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `s:real` MP_TAC) THEN
ONCE_REWRITE_TAC[REAL_ARITH `a < b <=> --b < --a:real`] THEN
ABBREV_TAC `m = --s:real` THEN
DISCH_THEN(MP_TAC o GEN `y:real` o SPEC `--y:real`) THEN
REWRITE_TAC[REAL_NEG_NEG] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM; GSYM CONJ_ASSOC; lemma] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[REAL_ARITH `(--a = b) <=> (a = --b:real)`] THEN
REWRITE_TAC[LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC(SPEC `m:real` th)) THEN
REWRITE_TAC[REAL_LT_REFL; NOT_EXISTS_THM] THEN
REWRITE_TAC[TAUT `~(a /\ b) <=> a ==> ~b`] THEN
REWRITE_TAC[REAL_NOT_LT] THEN DISCH_TAC THEN
DISCH_THEN(MP_TAC o GEN `n:num` o SPEC `m + inv(&(SUC n))`) THEN
REWRITE_TAC[REAL_LT_ADDR; REAL_LT_INV_EQ; REAL_OF_NUM_LT; LT_0] THEN
REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `s:num->complex` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`s:num->complex`; `r:real`]
BOLZANO_WEIERSTRASS_COMPLEX_DISC) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `f:num->num` (X_CHOOSE_THEN `z:complex`
STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `z:complex` THEN X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
SUBGOAL_THEN `norm(poly p z) = m` (fun th -> ASM_SIMP_TAC[th]) THEN
MATCH_MP_TAC(REAL_ARITH `~(&0 < abs(a - b)) ==> (a = b)`) THEN DISCH_TAC THEN
ABBREV_TAC `e = abs(norm(poly p z) - m)` THEN
MP_TAC(SPECL [`p:complex list`; `z:complex`; `e / &2`] POLY_CONT) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `!w. norm(w - z) < d ==> norm(poly p w - poly p z) < e / &2`
MP_TAC THENL
[X_GEN_TAC `u:complex` THEN
ASM_CASES_TAC `u = z:complex` THEN
ASM_SIMP_TAC[COMPLEX_SUB_REFL; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH;
COMPLEX_NORM_CX; REAL_ABS_NUM] THEN
DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[COMPLEX_NORM_NZ; COMPLEX_SUB_0]; ALL_TAC] THEN
FIRST_ASSUM(K ALL_TAC o check (is_conj o lhand o
snd o dest_forall o concl)) THEN
DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[GE] THEN
DISCH_THEN(X_CHOOSE_THEN `N1:num` ASSUME_TAC) THEN
MP_TAC(SPEC `&2 / e` REAL_ARCH_SIMPLE) THEN
DISCH_THEN(X_CHOOSE_THEN `N2:num` ASSUME_TAC) THEN
SUBGOAL_THEN `norm(poly p (s((f:num->num) (N1 + N2))) - poly p z) < e / &2`
MP_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[LE_ADD]; ALL_TAC] THEN
MATCH_MP_TAC(REAL_ARITH
`!m. abs(norm(psfn) - m) < e2 /\
&2 * e2 <= abs(norm(psfn) - m) + norm(psfn - pz)
==> norm(psfn - pz) < e2 ==> F`) THEN
EXISTS_TAC `m:real` THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `inv(&(SUC(N1 + N2)))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC(REAL_ARITH
`m <= x /\ x < m + e ==> abs(x - m:real) < e`) THEN
ASM_SIMP_TAC[] THEN
MATCH_MP_TAC REAL_LTE_TRANS THEN
EXISTS_TAC `m + inv(&(SUC(f(N1 + N2:num))))` THEN
ASM_REWRITE_TAC[REAL_LE_LADD] THEN MATCH_MP_TAC REAL_LE_INV2 THEN
ASM_SIMP_TAC[REAL_OF_NUM_LT; REAL_OF_NUM_LE; LT_0; LE_SUC; SEQ_SUBLE];
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_DIV] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&N2` THEN
ASM_REWRITE_TAC[REAL_OF_NUM_LE] THEN ARITH_TAC]; ALL_TAC] THEN
SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH] THEN
EXPAND_TAC "e" THEN
MATCH_MP_TAC(REAL_ARITH
`abs(norm(psfn) - norm(pz)) <= norm(psfn - pz)
==> abs(norm(pz) - m) <= abs(norm(psfn) - m) + norm(psfn - pz)`) THEN
REWRITE_TAC[COMPLEX_NORM_ABS_NORM]);;
(* ------------------------------------------------------------------------- *)
(* Nonzero polynomial in z goes to infinity as z does. *)
(* ------------------------------------------------------------------------- *)
let POLY_INFINITY = prove
(`!p a. EX (\b. ~(b = Cx(&0))) p
==> !d. ?r. !z. r <= norm(z) ==> d <= norm(poly (CONS a p) z)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[EX] THEN X_GEN_TAC `a:complex` THEN
ASM_CASES_TAC `EX (\b. ~(b = Cx(&0))) t` THEN ASM_REWRITE_TAC[] THENL
[X_GEN_TAC `d:real` THEN
FIRST_X_ASSUM(MP_TAC o SPEC `h:complex`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_TAC `r:real` o SPEC `d + norm(a)`) THEN
EXISTS_TAC `&1 + abs(r)` THEN X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[poly] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `norm(z * poly (CONS h t) z) - norm(a)` THEN CONJ_TAC THENL
[ALL_TAC;
ONCE_REWRITE_TAC[COMPLEX_ADD_SYM] THEN
REWRITE_TAC[REAL_LE_SUB_RADD; COMPLEX_NORM_TRIANGLE_SUB]] THEN
REWRITE_TAC[REAL_LE_SUB_LADD] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `&1 * norm(poly (CONS h t) z)` THEN CONJ_TAC THENL
[REWRITE_TAC[REAL_MUL_LID] THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_SIMP_TAC[REAL_ARITH `&1 + abs(r) <= x ==> r <= x`];
REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
REWRITE_TAC[COMPLEX_NORM_POS] THEN
ASM_MESON_TAC[REAL_ARITH `&1 + abs(r) <= x ==> &1 <= x`]];
RULE_ASSUM_TAC(REWRITE_RULE[NOT_EX]) THEN
ASM_SIMP_TAC[poly; POLY_0; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
DISCH_TAC THEN X_GEN_TAC `d:real` THEN
EXISTS_TAC `(abs(d) + norm(a)) / norm(h)` THEN X_GEN_TAC `z:complex` THEN
ASM_SIMP_TAC[REAL_LE_LDIV_EQ; COMPLEX_NORM_NZ; GSYM COMPLEX_NORM_MUL] THEN
MATCH_MP_TAC(REAL_ARITH
`mzh <= mazh + ma ==> abs(d) + ma <= mzh ==> d <= mazh`) THEN
ONCE_REWRITE_TAC[COMPLEX_ADD_SYM] THEN
REWRITE_TAC[COMPLEX_NORM_TRIANGLE_SUB]]);;
(* ------------------------------------------------------------------------- *)
(* Hence polynomial's modulus attains its minimum somewhere. *)
(* ------------------------------------------------------------------------- *)
let POLY_MINIMUM_MODULUS = prove
(`!p. ?z. !w. norm(poly p z) <= norm(poly p w)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[poly; REAL_LE_REFL] THEN
ASM_CASES_TAC `EX (\b. ~(b = Cx(&0))) t` THENL
[FIRST_ASSUM(MP_TAC o SPEC `h:complex` o MATCH_MP POLY_INFINITY) THEN
DISCH_THEN(MP_TAC o SPEC `norm(poly (CONS h t) (Cx(&0)))`) THEN
DISCH_THEN(X_CHOOSE_THEN `r:real` ASSUME_TAC) THEN
MP_TAC(SPECL [`CONS (h:complex) t`; `abs(r)`]
POLY_MINIMUM_MODULUS_DISC) THEN
REWRITE_TAC[GSYM(CONJUNCT2 poly)] THEN
ASM_MESON_TAC[REAL_ARITH `r <= z \/ z <= abs(r)`; REAL_LE_TRANS;
COMPLEX_NORM_CX; REAL_ABS_NUM; REAL_ABS_POS];
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EX]) THEN
REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o MATCH_MP POLY_0) THEN
ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; REAL_LE_REFL]]);;
(* ------------------------------------------------------------------------- *)
(* Constant function (non-syntactic characterization). *)
(* ------------------------------------------------------------------------- *)
let constant = new_definition
`constant f = !w z. f(w) = f(z)`;;
let NONCONSTANT_LENGTH = prove
(`!p. ~constant(poly p) ==> 2 <= LENGTH p`,
REWRITE_TAC[constant] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[poly] THEN
REWRITE_TAC[LENGTH; ARITH_RULE `2 <= SUC n <=> ~(n = 0)`] THEN
SIMP_TAC[TAUT `~a ==> ~b <=> b ==> a`; LENGTH_EQ_NIL; poly] THEN
REWRITE_TAC[COMPLEX_MUL_RZERO]);;
(* ------------------------------------------------------------------------- *)
(* Decomposition of polynomial, skipping zero coefficients after the first. *)
(* ------------------------------------------------------------------------- *)
let POLY_DECOMPOSE_LEMMA = prove
(`!p. ~(!z. ~(z = Cx(&0)) ==> (poly p z = Cx(&0)))
==> ?k a q. ~(a = Cx(&0)) /\
(SUC(LENGTH q + k) = LENGTH p) /\
!z. poly p z = z pow k * poly (CONS a q) z`,
LIST_INDUCT_TAC THENL [REWRITE_TAC[poly]; ALL_TAC] THEN
ASM_CASES_TAC `h = Cx(&0)` THENL
[GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [poly] THEN
ASM_SIMP_TAC[COMPLEX_ADD_LID; COMPLEX_ENTIRE] THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `k:num` (X_CHOOSE_THEN `a:complex`
(X_CHOOSE_THEN `q:complex list` STRIP_ASSUME_TAC))) THEN
MAP_EVERY EXISTS_TAC [`k + 1`; `a:complex`; `q:complex list`] THEN
ASM_REWRITE_TAC[poly; LENGTH; GSYM ADD1; ADD_CLAUSES] THEN
REWRITE_TAC[COMPLEX_ADD_LID; complex_pow; GSYM COMPLEX_MUL_ASSOC];
DISCH_THEN(K ALL_TAC) THEN
MAP_EVERY EXISTS_TAC [`0`; `h:complex`; `t:complex list`] THEN
ASM_REWRITE_TAC[complex_pow; COMPLEX_MUL_LID; ADD_CLAUSES; LENGTH]]);;
let POLY_DECOMPOSE = prove
(`!p. ~constant(poly p)
==> ?k a q. ~(a = Cx(&0)) /\ ~(k = 0) /\
(LENGTH q + k + 1 = LENGTH p) /\
!z. poly p z = poly p (Cx(&0)) +
z pow k * poly (CONS a q) z`,
LIST_INDUCT_TAC THENL [REWRITE_TAC[constant; poly]; ALL_TAC] THEN
POP_ASSUM(K ALL_TAC) THEN DISCH_TAC THEN
MP_TAC(SPEC `t:complex list` POLY_DECOMPOSE_LEMMA) THEN ANTS_TAC THENL
[POP_ASSUM MP_TAC THEN REWRITE_TAC[constant; poly] THEN
REWRITE_TAC[TAUT `~b ==> ~a <=> a ==> b`; COMPLEX_EQ_ADD_LCANCEL] THEN
SIMP_TAC[TAUT `~a ==> b <=> a \/ b`; GSYM COMPLEX_ENTIRE]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `k:num` (X_CHOOSE_THEN `a:complex`
(X_CHOOSE_THEN `q:complex list` STRIP_ASSUME_TAC))) THEN
MAP_EVERY EXISTS_TAC [`SUC k`; `a:complex`; `q:complex list`] THEN
ASM_REWRITE_TAC[ADD_CLAUSES; GSYM ADD1; LENGTH; NOT_SUC] THEN
ASM_REWRITE_TAC[poly; COMPLEX_MUL_LZERO; COMPLEX_ADD_RID; complex_pow] THEN
REWRITE_TAC[GSYM COMPLEX_MUL_ASSOC]);;
let POLY_REPLICATE_APPEND = prove
(`!n p x. poly (APPEND (REPLICATE n (Cx(&0))) p) x = x pow n * poly p x`,
INDUCT_TAC THEN
REWRITE_TAC[REPLICATE; APPEND; complex_pow; COMPLEX_MUL_LID] THEN
ASM_REWRITE_TAC[poly; COMPLEX_ADD_LID] THEN REWRITE_TAC[COMPLEX_MUL_ASSOC]);;
(* ------------------------------------------------------------------------- *)
(* Fundamental theorem. *)
(* ------------------------------------------------------------------------- *)
let FUNDAMENTAL_THEOREM_OF_ALGEBRA = prove
(`!p. ~constant(poly p) ==> ?z. poly p z = Cx(&0)`,
SUBGOAL_THEN
`!n p. (LENGTH p = n) /\ ~constant(poly p) ==> ?z. poly p z = Cx(&0)`
(fun th -> MESON_TAC[th]) THEN
MATCH_MP_TAC num_WF THEN
X_GEN_TAC `n:num` THEN STRIP_TAC THEN
X_GEN_TAC `p:complex list` THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP NONCONSTANT_LENGTH) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
X_CHOOSE_TAC `c:complex` (SPEC `p:complex list` POLY_MINIMUM_MODULUS) THEN
ASM_CASES_TAC `poly p c = Cx(&0)` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MP_TAC(SPECL [`c:complex`; `p:complex list`] POLY_OFFSET) THEN
DISCH_THEN(X_CHOOSE_THEN `q:complex list` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) ASSUME_TAC) THEN
SUBGOAL_THEN `~constant(poly q)` ASSUME_TAC THENL
[UNDISCH_TAC `~(constant(poly p))` THEN
SUBGOAL_THEN `!z. poly q (z - c) = poly p z`
(fun th -> MESON_TAC[th; constant]) THEN
ASM_MESON_TAC[SIMPLE_COMPLEX_ARITH `a + (x - a) = x`]; ALL_TAC] THEN
SUBGOAL_THEN `poly p c = poly q (Cx(&0))` SUBST_ALL_TAC THENL
[ASM_MESON_TAC[COMPLEX_ADD_RID]; ALL_TAC] THEN
SUBGOAL_THEN `!w. norm(poly q (Cx(&0))) <= norm(poly q w)` MP_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
POP_ASSUM_LIST(MAP_EVERY (fun th ->
if free_in `p:complex list` (concl th)
then ALL_TAC else ASSUME_TAC th)) THEN
MATCH_MP_TAC(TAUT `~a ==> a ==> b`) THEN
REWRITE_TAC[NOT_FORALL_THM; REAL_NOT_LE] THEN
ABBREV_TAC `a0 = poly q (Cx(&0))` THEN
SUBGOAL_THEN
`!z. poly q z = poly (MAP (( * ) (inv(a0))) q) z * a0`
ASSUME_TAC THENL
[REWRITE_TAC[POLY_CMUL_MAP] THEN
ONCE_REWRITE_TAC[AC COMPLEX_MUL_AC `(a * b) * c = b * c * a`] THEN
ASM_SIMP_TAC[COMPLEX_MUL_RINV; COMPLEX_MUL_RID];
ALL_TAC] THEN
ABBREV_TAC `r = MAP (( * ) (inv(a0))) q` THEN
SUBGOAL_THEN `LENGTH(q:complex list) = LENGTH(r:complex list)`
SUBST_ALL_TAC THENL
[EXPAND_TAC "r" THEN REWRITE_TAC[LENGTH_MAP]; ALL_TAC] THEN
SUBGOAL_THEN `~(constant(poly r))` ASSUME_TAC THENL
[UNDISCH_TAC `~constant(poly q)` THEN
ASM_REWRITE_TAC[constant; COMPLEX_EQ_MUL_RCANCEL] THEN MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `poly r (Cx(&0)) = Cx(&1)` ASSUME_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `Cx(&0)`) THEN
ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM COMPLEX_MUL_LID] THEN
ASM_SIMP_TAC[COMPLEX_EQ_MUL_RCANCEL]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
POP_ASSUM_LIST(MAP_EVERY (fun th ->
if free_in `q:complex list` (concl th)
then ALL_TAC else ASSUME_TAC th)) THEN
ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; COMPLEX_NORM_NZ; COMPLEX_NORM_MUL;
REAL_DIV_REFL; COMPLEX_NORM_ZERO] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP POLY_DECOMPOSE) THEN
DISCH_THEN(X_CHOOSE_THEN `k:num` (X_CHOOSE_THEN `a:complex`
(X_CHOOSE_THEN `s:complex list` MP_TAC))) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) MP_TAC) THEN
DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `k + 1 = n` THENL
[UNDISCH_TAC `LENGTH(s:complex list) + k + 1 = n` THEN
ASM_REWRITE_TAC[ARITH_RULE `(s + m = m) <=> (s = 0)`; LENGTH_EQ_NIL] THEN
REWRITE_TAC[LENGTH_EQ_NIL] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN
MATCH_MP_TAC REDUCE_POLY_SIMPLE THEN ASM_REWRITE_TAC[] THEN
MAP_EVERY UNDISCH_TAC [`k + 1 = n`; `2 <= n`] THEN ARITH_TAC; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `k + 1`) THEN ANTS_TAC THENL
[UNDISCH_TAC `~(k + 1 = n)` THEN
UNDISCH_TAC `LENGTH(s:complex list) + k + 1 = n` THEN ARITH_TAC;
ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC
`CONS (Cx(&1)) (APPEND (REPLICATE (k - 1) (Cx(&0))) [a])`) THEN
ANTS_TAC THENL
[CONJ_TAC THENL
[REWRITE_TAC[LENGTH; LENGTH_APPEND; LENGTH_REPLICATE] THEN
UNDISCH_TAC `~(k = 0)` THEN ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[constant; POLY_REPLICATE_APPEND; poly] THEN
REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
DISCH_THEN(MP_TAC o SPECL [`Cx(&0)`; `Cx(&1)`]) THEN
REWRITE_TAC[COMPLEX_MUL_LID; COMPLEX_MUL_LZERO; COMPLEX_ADD_RID] THEN
ASM_REWRITE_TAC[COMPLEX_ENTIRE; COMPLEX_POW_ONE; SIMPLE_COMPLEX_ARITH
`(a = a + b) <=> (b = Cx(&0))`] THEN
REWRITE_TAC[CX_INJ; REAL_OF_NUM_EQ; ARITH_EQ]; ALL_TAC] THEN
REWRITE_TAC[constant; POLY_REPLICATE_APPEND; poly] THEN
REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
ONCE_REWRITE_TAC[AC COMPLEX_MUL_AC `a * b * c = (a * b) * c`] THEN
REWRITE_TAC[GSYM(CONJUNCT2 complex_pow)] THEN
ASM_SIMP_TAC[ARITH_RULE `~(k = 0) ==> (SUC(k - 1) = k)`] THEN
DISCH_THEN(X_CHOOSE_TAC `w:complex`) THEN
MP_TAC(SPECL [`s:complex list`; `norm(w)`] POLY_BOUND_EXISTS) THEN
DISCH_THEN(X_CHOOSE_THEN `m:real` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `~(w = Cx(&0))` ASSUME_TAC THENL
[UNDISCH_TAC `Cx(&1) + w pow k * a = Cx(&0)` THEN
ONCE_REWRITE_TAC[TAUT `a ==> ~b <=> b ==> ~a`] THEN
DISCH_THEN SUBST1_TAC THEN
UNDISCH_TAC `~(k = 0)` THEN SPEC_TAC(`k:num`,`k:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[complex_pow; COMPLEX_MUL_LZERO] THEN
REWRITE_TAC[COMPLEX_ADD_RID; CX_INJ; REAL_OF_NUM_EQ; ARITH_EQ];
ALL_TAC] THEN
MP_TAC(SPECL [`&1`; `inv(norm(w) pow (k + 1) * m)`] REAL_DOWN2) THEN
ASM_SIMP_TAC[REAL_LT_01; REAL_LT_INV_EQ; REAL_LT_MUL; REAL_POW_LT;
COMPLEX_NORM_NZ] THEN
DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `Cx(t) * w` THEN REWRITE_TAC[COMPLEX_POW_MUL] THEN
REWRITE_TAC[COMPLEX_ADD_LDISTRIB; GSYM COMPLEX_MUL_ASSOC] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SIMPLE_COMPLEX_ARITH
`(a + w = Cx(&0)) ==> (w = --a)`)) THEN
REWRITE_TAC[GSYM CX_NEG; GSYM CX_POW; GSYM CX_MUL] THEN
REWRITE_TAC[COMPLEX_ADD_ASSOC; GSYM CX_ADD] THEN
MATCH_MP_TAC REAL_LET_TRANS THEN
EXISTS_TAC `norm(Cx(&1 + t pow k * -- &1)) +
norm(Cx(t pow k) * w pow k * Cx t * w * poly s (Cx t * w))` THEN
REWRITE_TAC[COMPLEX_NORM_TRIANGLE] THEN REWRITE_TAC[COMPLEX_NORM_CX] THEN
MATCH_MP_TAC(REAL_ARITH
`&0 <= x /\ x < t /\ t <= &1 ==> abs(&1 + t * --(&1)) + x < &1`) THEN
REWRITE_TAC[COMPLEX_NORM_POS] THEN
ASM_SIMP_TAC[REAL_POW_1_LE; REAL_LT_IMP_LE] THEN
ONCE_REWRITE_TAC[COMPLEX_NORM_MUL] THEN REWRITE_TAC[COMPLEX_NORM_CX] THEN
ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE; REAL_POW_LE] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC REAL_LT_LMUL THEN ASM_SIMP_TAC[REAL_POW_LT] THEN
ONCE_REWRITE_TAC[AC COMPLEX_MUL_AC `a * b * c * d = b * (c * a) * d`] THEN
REWRITE_TAC[GSYM(CONJUNCT2 complex_pow)] THEN
REWRITE_TAC[COMPLEX_NORM_MUL; ADD1; COMPLEX_NORM_CX] THEN
MATCH_MP_TAC REAL_LET_TRANS THEN
EXISTS_TAC `abs t * norm(w pow (k + 1)) * m` THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[COMPLEX_NORM_POS] THEN
FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[COMPLEX_NORM_MUL] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[COMPLEX_NORM_POS] THEN
ASM_SIMP_TAC[COMPLEX_NORM_CX; REAL_ARITH
`&0 < t /\ t < &1 ==> abs(t) <= &1`]; ALL_TAC] THEN
ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_LT_MUL; COMPLEX_NORM_POW;
REAL_POW_LT; COMPLEX_NORM_NZ] THEN
ASM_SIMP_TAC[real_div; REAL_MUL_LID;
REAL_ARITH `&0 < t /\ t < x ==> abs(t) < x`]);;
(* ------------------------------------------------------------------------- *)
(* Alternative version with a syntactic notion of constant polynomial. *)
(* ------------------------------------------------------------------------- *)
let FUNDAMENTAL_THEOREM_OF_ALGEBRA_ALT = prove
(`!p. ~(?a l. ~(a = Cx(&0)) /\ ALL (\b. b = Cx(&0)) l /\ (p = CONS a l))
==> ?z. poly p z = Cx(&0)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[poly; CONS_11] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
ONCE_REWRITE_TAC[AC CONJ_ACI `a /\ b /\ c /\ d <=> c /\ d /\ a /\ b`] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
ASM_CASES_TAC `h = Cx(&0)` THEN ASM_REWRITE_TAC[COMPLEX_ADD_LID] THENL
[EXISTS_TAC `Cx(&0)` THEN ASM_REWRITE_TAC[COMPLEX_MUL_LZERO]; ALL_TAC] THEN
DISCH_TAC THEN REWRITE_TAC[GSYM(CONJUNCT2 poly)] THEN
MATCH_MP_TAC FUNDAMENTAL_THEOREM_OF_ALGEBRA THEN
UNDISCH_TAC `~ALL (\b. b = Cx (&0)) t` THEN
REWRITE_TAC[TAUT `~b ==> ~a <=> a ==> b`] THEN POP_ASSUM(K ALL_TAC) THEN
REWRITE_TAC[constant; poly; REAL_EQ_LADD] THEN
DISCH_THEN(MP_TAC o SPEC `Cx(&0)` o ONCE_REWRITE_RULE[SWAP_FORALL_THM]) THEN
REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_EQ_ADD_LCANCEL] THEN
REWRITE_TAC[COMPLEX_ENTIRE; TAUT `a \/ b <=> ~a ==> b`] THEN
SPEC_TAC(`t:complex list`,`p:complex list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL] THEN
ASM_CASES_TAC `h = Cx(&0)` THEN
ASM_SIMP_TAC[poly; COMPLEX_ADD_LID; COMPLEX_ENTIRE] THEN
MP_TAC(SPECL [`t:complex list`; `&1`] POLY_BOUND_EXISTS) THEN
DISCH_THEN(X_CHOOSE_THEN `m:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`norm(h) / m`; `&1`] REAL_DOWN2) THEN
ASM_SIMP_TAC[REAL_LT_01; REAL_LT_DIV; COMPLEX_NORM_NZ] THEN
DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `Cx(x)`) THEN
ASM_SIMP_TAC[CX_INJ; REAL_LT_IMP_NZ] THEN
REWRITE_TAC[SIMPLE_COMPLEX_ARITH `(x + y = Cx(&0)) <=> (y = --x)`] THEN
DISCH_THEN(MP_TAC o AP_TERM `norm`) THEN REWRITE_TAC[COMPLEX_NORM_NEG] THEN
MATCH_MP_TAC(REAL_ARITH `abs(a) < abs(b) ==> ~(a = b)`) THEN
REWRITE_TAC[real_abs; COMPLEX_NORM_POS] THEN
REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `norm(h) / m * m` THEN
CONJ_TAC THENL
[ALL_TAC; ASM_SIMP_TAC[REAL_LE_REFL; REAL_DIV_RMUL; REAL_LT_IMP_NZ]] THEN
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(x) * m` THEN
ASM_SIMP_TAC[REAL_LT_RMUL; REAL_ARITH `&0 < x /\ x < a ==> abs(x) < a`] THEN
ASM_MESON_TAC[REAL_LE_LMUL; REAL_ABS_POS; COMPLEX_NORM_CX;
REAL_ARITH `&0 < x /\ x < &1 ==> abs(x) <= &1`]);;
|