Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 20,127 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
(******************************************************************************)
(* FILE          : struct_equal.ml                                            *)
(* DESCRIPTION   : Proof procedure for simplifying an equation between two    *)
(*                 data-structures of the same type.                          *)
(*                                                                            *)
(* READS FILES   : <none>                                                     *)
(* WRITES FILES  : <none>                                                     *)
(*                                                                            *)
(* AUTHOR        : R.J.Boulton & T.F.Melham                                   *)
(* DATE          : 4th June 1992                                              *)
(*                                                                            *)
(* LAST MODIFIED : R.J.Boulton                                                *)
(* DATE          : 14th October 1992                                          *)
(*                                                                            *)
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh)                *)
(* DATE          : 2008                                                       *)
(******************************************************************************)

let subst_occs =
  let rec subst_occs slist tm =
    let applic,noway = partition (fun (i,(t,x)) -> aconv tm x) slist in
    let sposs = map (fun (l,z) -> let l1,l2 = partition ((=) 1) l in
                                  (l1,z),(l2,z)) applic in
    let racts,rrest = unzip sposs in
    let acts = filter (fun t -> not (fst t = [])) racts in
    let trest = map (fun (n,t) -> (map (C (-) 1) n,t)) rrest in
    let urest = filter (fun t -> not (fst t = [])) trest in
    let tlist = urest @ noway in
      if acts = [] then
      if is_comb tm then
        let l,r = dest_comb tm in
        let l',s' = subst_occs tlist l in
        let r',s'' = subst_occs s' r in
        mk_comb(l',r'),s''
      else if is_abs tm then
        let bv,bod = dest_abs tm in
        let gv = genvar(type_of bv) in
        let nbod = vsubst[gv,bv] bod in
        let tm',s' = subst_occs tlist nbod in
        alpha bv (mk_abs(gv,tm')),s'
      else
        tm,tlist
    else
      let tm' = (fun (n,(t,x)) -> subst[t,x] tm) (hd acts) in
      tm',tlist in
  fun ilist slist tm -> fst(subst_occs (zip ilist slist) tm);;

let GSUBS substfn ths th =
   let ls = map (lhs o concl) ths
       in let vars = map (genvar o type_of) ls
       in let w = substfn (List.combine ls vars) (concl th)
   in SUBST (List.combine ths vars) w th ;;

let SUBS_OCCS nlths th =
   try (let (nll, ths) = unzip nlths
   in GSUBS (subst_occs nll) ths th
   ) with Failure _ -> failwith "SUBS_OCCS";;

(*----------------------------------------------------------------------------*)
(* VAR_NOT_EQ_STRUCT_OF_VAR_CONV : (thm # thm list # thm list) -> conv        *)
(*                                                                            *)
(* Proof method developed through discussion between                          *)
(* R. Boulton, T. Melham and A. Pitts.                                        *)
(*                                                                            *)
(* This conversion can be used to prove that a variable is not equal to a     *)
(* structure containing that variable as a proper subterm. The structures are *)
(* restricted to applications of constructors from a single recursive type.   *)
(* The leaf nodes must be either variables or 0-ary constructors of the type. *)
(*                                                                            *)
(* The theorems taken as arguments are the induction, distinctness and        *)
(* injectivity theorems for the recursive type, as proved by the functions:   *)
(*                                                                            *)
(*    prove_induction_thm                                                     *)
(*    prove_constructors_distinct                                             *)
(*    prove_constructors_one_one                                              *)
(*                                                                            *)
(* Since the latter two functions may fail, the distinctness and injectivity  *)
(* theorems are passed around as lists of conjuncts, so that a failure        *)
(* results in an empty list.                                                  *)
(*                                                                            *)
(* Examples of input terms:                                                   *)
(*                                                                            *)
(*    ~(l = CONS h l)                                                         *)
(*    ~(CONS h1 (CONS h2 l) = l)                                              *)
(*    ~(n = SUC(SUC(SUC n)))                                                  *)
(*    ~(t = TWO (ONE u) (THREE v (ONE t) (TWO u (ONE t))))                    *)
(*                                                                            *)
(* where the last example is for the type defined by:                         *)
(*                                                                            *)
(*    test = ZERO | ONE test | TWO test test | THREE test test test           *)
(*                                                                            *)
(* The procedure works by first generalising the structure to eliminate any   *)
(* irrelevant substructures. If the variable occurs more than once in the     *)
(* structure the more deeply nested occurrences are replaced by new variables *)
(* because multiple occurrences of the variable prevent the induction from    *)
(* working. The generalised term for the last example is:                     *)
(*                                                                            *)
(*    TWO a (THREE v (ONE t) b)                                               *)
(*                                                                            *)
(* The procedure then forms a conjunction of the inequalities for this term   *)
(* and all of its `rotations':                                                *)
(*                                                                            *)
(*    !t. (!a v b. ~(t = TWO a (THREE v (ONE t) b))) /\                       *)
(*        (!a v b. ~(t = THREE v (ONE (TWO a t)) b)) /\                       *)
(*        (!a v b. ~(t = ONE (TWO a (THREE v t b))))                          *)
(*                                                                            *)
(* This can be proved by a straightforward structural induction. The reason   *)
(* for including the rotations is that the induction hypothesis required for  *)
(* the proof of the original generalised term is the rotation of it.          *)
(*                                                                            *)
(* The procedure could be optimised by detecting duplicated rotations. For    *)
(* example it is not necessary to prove:                                      *)
(*                                                                            *)
(*    !n. ~(n = SUC(SUC(SUC n))) /\                                           *)
(*        ~(n = SUC(SUC(SUC n))) /\                                           *)
(*        ~(n = SUC(SUC(SUC n)))                                              *)
(*                                                                            *)
(* in order to prove "~(n = SUC(SUC(SUC n)))" because the structure is its    *)
(* own rotations. It is sufficient to prove:                                  *)
(*                                                                            *)
(*    !n. ~(n = SUC(SUC(SUC n)))                                              *)
(*                                                                            *)
(* The procedure currently uses backwards proof. It would probably be more    *)
(* efficient to use forwards proof.                                           *)
(*----------------------------------------------------------------------------*)

let VAR_NOT_EQ_STRUCT_OF_VAR_CONV =
try( let number_list l =
    let rec number_list' n l =
       if (l = [])
       then []
       else (hd l,n)::(number_list' (n + 1) (tl l))
    in number_list' 1 l
 in  let name = fst o dest_const
 in  let occurrences constrs v st =
        let rec occurrences' v st path =
           if (not (type_of st = type_of v)) then []
           else if (st = v) then [rev path]
           else if (is_var st) then []
           else let (f,args) =
                  (check ( ((can (C assoc constrs)) o name o fst) )) (strip_comb st)
(* Boulton was using hashI here... but I don't know why *)
                in  flat (map (fun (arg,n) -> occurrences' v arg (n::path))
                                 (number_list args))
        in occurrences' v st []
 in  let min_length l =
        let rec min_length' (x,n) l =
           if (l = [])
           then x
           else if (length (hd l) < n)
                then min_length' (hd l,length (hd l)) (tl l)
                else min_length' (x,n) (tl l)
        in if (l = [])
           then failwith "min_length"
           else min_length' (hd l,length (hd l)) (tl l)
 in  let rec generalise (st,occ) =
        let rec replace_side_structs (n,argn',binding) m args =
           if (args = [])
           then ([],[])
           else let m' = m + 1
                and arg = hd args
                in  let (rest,bind) =
                       replace_side_structs (n,argn',binding) m' (tl args)
                in  if (m' = n) then ((argn'::rest),(binding @ bind))
                    else if (is_var arg) then ((arg::rest),((arg,arg)::bind))
                    else let var = genvar (type_of arg)
                         in  ((var::rest),((var,arg)::bind))
        in if (occ = [])
           then (st,[])
           else let (f,args) = strip_comb st
                and (n::occ') = occ
                in  let (argn',binding) = generalise (el (n-1) args,occ')
                in  let (args',bind) =
                           replace_side_structs (n,argn',binding) 0 args
                in  (list_mk_comb (f,args'),bind)
 in  let rec constr_apps v (st,occ) =
        let rec replace_argn (n,argn') m args =
           if (args = [])
           then []
           else let m' = m + 1
                in  if (m' = n)
                    then argn'::(tl args)
                    else (hd args)::(replace_argn (n,argn') m' (tl args))
        in if (occ = [])
           then []
           else let (f,args) = strip_comb st
                and (n::occ') = occ
                in  let args' = replace_argn (n,v) 0 args
                in  (list_mk_comb (f,args'))::(constr_apps v (el (n-1) args,occ'))
 in  let rotations l =
        let rec rotations' l n =
           if (n < 1)
           then []
           else l::(rotations' ((tl l) @ [hd l]) (n - 1))
        in rotations' l (length l)
 in  let two_constrs = (hash (fst o strip_comb) (fst o strip_comb)) o
                       dest_eq o dest_neg o snd o strip_forall o concl
 in  let flip (x,y) = (y,x)
 in  let DEPTH_SYM = GEN_ALL o NOT_EQ_SYM o SPEC_ALL
 in  let rec arg_types ty =
        try (match (dest_type ty) with
         | ("fun",[argty;rest]) ->  argty::(arg_types rest)
         | _ -> [])
        with Failure _ -> []
 in  let name_and_args = ((hash I) arg_types) o dest_const
 in
 fun (induction,distincts,oneOnes) ->
 let half_distincts = map (fun th -> ((hash name) name) (two_constrs th), th) distincts
 in  let distincts = half_distincts @ (map ((hash flip) DEPTH_SYM) half_distincts)
 in  let ind_goals =
        (conjuncts o fst o dest_imp o snd o dest_forall o concl) induction
 in  let constrs =
        map (name_and_args o fst o strip_comb o rand o snd o strip_forall o
             snd o (splitlist dest_imp) o snd o strip_forall) ind_goals
 in
 fun tm ->
 (let (l,r) = dest_eq (dest_neg tm)
  in  let (flipped,v,st) =
         if (is_var l)
         then if (is_var r) then failwith "" else (false,l,r)
         else if (is_var r)
              then (true,r,l)
              else failwith ""
  in  let occ = min_length (occurrences constrs v st)
  in  let (st',bind) = generalise (st,occ)
  in  let (vars,subterms) = List.split bind
  in  let apps = constr_apps v (st',occ)
  in  let rotats =
         map (end_itlist (fun t1 t2 -> subst [(t2,v)] t1)) (rotations apps)
  in  let uneqs = map (mk_neg o (curry mk_eq v)) rotats
  in  let conj =
         mk_forall (v,list_mk_conj (map (curry list_mk_forall vars) uneqs))
  in  let th1 =
         prove (conj,INDUCT_TAC_ induction THEN
                     ASM_REWRITE_TAC (oneOnes @ (map snd distincts)))
  in  let th2 = (hd o CONJUNCTS o (SPEC v)) th1
  in  let th3 = SPECL subterms th2
  in  let th4 = if flipped then (NOT_EQ_SYM th3) else th3
  in  EQT_INTRO (CONV_RULE (C ALPHA tm) th4)
 )) with Failure _ -> failwith "VAR_NOT_EQ_STRUCT_OF_VAR_CONV";;

(*----------------------------------------------------------------------------*)
(* CONJS_CONV : conv -> conv                                                  *)
(*                                                                            *)
(* Written by T.F.Melham.                                                     *)
(* Modified by R.J.Boulton.                                                   *)
(*                                                                            *)
(* Apply a given conversion to a sequence of conjuncts.                       *)
(*                                                                            *)
(* * need to check T case                                                     *)
(* * need to flatten conjuncts on RHS                                         *)
(*----------------------------------------------------------------------------*)

let CONJS_CONV =
try(
   let is st th = try(fst(dest_const(rand(concl th))) = st) with Failure _ -> false
   in  let v1 = genvar `:bool` and v2 = genvar `:bool`
   in  let fthm1 =
          let th1 = ASSUME (mk_eq(v1,`F`))
          in  let cnj = mk_conj(v1,v2)
          in  let th1 = DISCH cnj (EQ_MP th1 (CONJUNCT1 (ASSUME cnj)))
          in  let th2 = DISCH `F` (CONTR cnj (ASSUME `F`))
          in  DISCH (mk_eq(v1,`F`)) (IMP_ANTISYM_RULE th1 th2)
   in  let fthm2 = CONV_RULE(ONCE_DEPTH_CONV(REWR_CONV CONJ_SYM)) fthm1
   in  let fandr th tm = MP (INST [(lhs(concl th),v1);(tm,v2)] fthm1) th
   in  let fandl th tm = MP (INST [(lhs(concl th),v1);(tm,v2)] fthm2) th
   in  let tthm1 =
          let th1 = ASSUME (mk_eq(v1,`T`))
          in  let th2 = SUBS_OCCS [[2],th1] (REFL (mk_conj(v1,v2)))
          in  DISCH (mk_eq(v1,`T`)) (ONCE_REWRITE_RULE [] th2)
   in  let tthm2 = CONV_RULE(ONCE_DEPTH_CONV(REWR_CONV CONJ_SYM)) tthm1
   in  let tandr th tm = MP (INST [(lhs(concl th),v1);(tm,v2)] tthm1) th
   in  let tandl th tm = MP (INST [(lhs(concl th),v1);(tm,v2)] tthm2) th
   in  let rec cconv conv tm =
          (let (c,cs) = dest_conj tm
           in  let cth = conv c
           in  if (is "F" cth) then fandr cth cs else
               let csth = cconv conv cs
               in  if (is "F" csth) then fandl csth c
                   else if (is "T" cth) then TRANS (tandr cth cs) csth
                   else if (is "T" csth) then TRANS (tandl csth c) cth
                   else try (MK_COMB((AP_TERM `(/\)` cth),csth)) with Failure _ -> conv tm )
   in  fun conv tm -> cconv conv tm) with Failure _ -> failwith "CONJS_CONV";;

(*----------------------------------------------------------------------------*)
(* ONE_STEP_RECTY_EQ_CONV : (thm # thm list # thm list) -> conv -> conv       *)
(*                                                                            *)
(* Single step conversion for equality between structures of a single         *)
(* recursive type.                                                            *)
(*                                                                            *)
(* Based on code written by T.F.Melham.                                       *)
(*                                                                            *)
(* The theorems taken as arguments are the induction, distinctness and        *)
(* injectivity theorems for the recursive type, as proved by the functions:   *)
(*                                                                            *)
(*    prove_induction_thm                                                     *)
(*    prove_constructors_distinct                                             *)
(*    prove_constructors_one_one                                              *)
(*                                                                            *)
(* Since the latter two functions may fail, the distinctness and injectivity  *)
(* theorems are passed around as lists of conjuncts.                          *)
(*                                                                            *)
(* If one side of the equation is a variable and that variable appears in the *)
(* other side (nested in a structure) the equation is proved false.           *)
(*                                                                            *)
(* If the top-level constructors on the two sides of the equation are         *)
(* distinct the equation is proved false.                                     *)
(*                                                                            *)
(* If the top-level constructors on the two sides of the equation are the     *)
(* same a conjunction of equations is generated, one equation for each        *)
(* argument of the constructor. The conversion given as argument is then      *)
(* applied to each conjunct. If any of the applications of this conversion    *)
(* fail, so will the entire call.                                             *)
(*                                                                            *)
(* In other conditions the function fails.                                    *)
(*----------------------------------------------------------------------------*)
(* Taken from HOL90 *)

let ONE_STEP_RECTY_EQ_CONV (induction,distincts,oneOnes) =
   let NOT_EQ_CONV =
          EQF_INTRO o EQT_ELIM o
          (VAR_NOT_EQ_STRUCT_OF_VAR_CONV (induction,distincts,oneOnes)) o
          mk_neg
   in  let INJ_REW = GEN_REWRITE_CONV I oneOnes
(* Deleted empty_rewrites - GEN_REWRITE_CONV different in hol light - hope it works *)
   in  let ths1 = map SPEC_ALL distincts
   in  let ths2 = map (GEN_ALL o EQF_INTRO o NOT_EQ_SYM) ths1
   in  let dths = ths2 @ (map (GEN_ALL o EQF_INTRO) ths1)
   in  let DIST_REW = GEN_REWRITE_CONV I dths
   in  fun conv -> NOT_EQ_CONV ORELSEC
                  DIST_REW ORELSEC
                  (INJ_REW THENC (CONJS_CONV conv)) ORELSEC
                  (fun tm -> failwith "ONE_STEP_RECTY_EQ_CONV")

(*----------------------------------------------------------------------------*)
(* RECTY_EQ_CONV : (thm # thm list # thm list) -> conv                        *)
(*                                                                            *)
(* Function to simplify as far as possible an equation between two structures *)
(* of some type, the type being specified by the triple of theorems. The      *)
(* structures may involve variables. The result may be a conjunction of       *)
(* equations simpler than the original.                                       *)
(*----------------------------------------------------------------------------*)

let RECTY_EQ_CONV (induction,distincts,oneOnes) =
try (
   let one_step_conv = ONE_STEP_RECTY_EQ_CONV (induction,distincts,oneOnes)
   and REFL_CONV tm =
      let (l,r) = dest_eq tm
      in  if (l = r)
          then EQT_INTRO (REFL l)
          else failwith "REFL_CONV"
   in  let rec conv tm =
          (one_step_conv conv ORELSEC REFL_CONV ORELSEC ALL_CONV) tm
   in  fun tm -> conv tm ) with Failure _ -> failwith "RECTY_EQ_CONV";;