Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 30,689 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
(******************************************************************************)
(* FILE : generalize.ml *)
(* DESCRIPTION : Generalization. *)
(* *)
(* READS FILES : <none> *)
(* WRITES FILES : <none> *)
(* *)
(* AUTHOR : R.J.Boulton *)
(* DATE : 21st June 1991 *)
(* *)
(* LAST MODIFIED : R.J.Boulton *)
(* DATE : 12th October 1992 *)
(* *)
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *)
(* DATE : July 2009 *)
(******************************************************************************)
(*----------------------------------------------------------------------------*)
(* is_generalizable : string list -> term -> bool *)
(* *)
(* Function to determine whether or not a term has the correct properties to *)
(* be generalizable. It takes a list of accessor function names as its first *)
(* argument. This is for efficiency. It could compute them itself, but if an *)
(* external function is going to call is_generalizable many times it is *)
(* better for the external function to compute the list of accessors. *)
(*----------------------------------------------------------------------------*)
let is_generalizable accessors tm =
not ((is_var tm) ||
(is_explicit_value_template tm) ||
(is_eq tm) ||
(try(mem ((fst o dest_const o fst o strip_comb) tm) accessors)
with Failure _ -> false));;
(*----------------------------------------------------------------------------*)
(* generalizable_subterms : string list -> term -> term list *)
(* *)
(* Computes the generalizable subterms of a literal, given a list of accessor *)
(* function names. *)
(*----------------------------------------------------------------------------*)
let generalizable_subterms accessors tm =
try (setify (find_bm_terms (is_generalizable accessors) tm)
) with Failure _ -> failwith "generalizable_subterms";;
(*----------------------------------------------------------------------------*)
(* minimal_common_subterms : term list -> term list *)
(* *)
(* Given a list of terms, this function removes from the list any term that *)
(* has one of the other terms as a proper subterm. It also eliminates any *)
(* duplicates. *)
(*----------------------------------------------------------------------------*)
let minimal_common_subterms tml =
let tml' = setify tml
in filter
(fun tm -> not (exists (fun tm' -> (is_subterm tm' tm) && (not (tm' = tm))) tml'))
tml';;
(*----------------------------------------------------------------------------*)
(* to_be_generalized : term -> term list -> term -> bool *)
(* *)
(* This function decides whether a subterm of a literal should be generalized.*)
(* It takes a literal, a list of other literals, and a subterm of the literal *)
(* as arguments. The subterm should be generalized if it occurs in one of the *)
(* other literals, or if the literal is an equality and it occurs on both *)
(* sides, or if the literal is the negation of an equality and the subterm *)
(* occurs on both sides. *)
(*----------------------------------------------------------------------------*)
let to_be_generalized tm tml gen =
try (let (l,r) = dest_eq (dest_neg tm)
in if ((is_subterm gen l) && (is_subterm gen r))
then true
else failwith "") with Failure _ ->
try (let (l,r) = dest_eq tm
in if ((is_subterm gen l) && (is_subterm gen r))
then true
else failwith "") with Failure _ ->
(exists (is_subterm gen) tml);;
(*----------------------------------------------------------------------------*)
(* terms_to_be_generalized : term -> term list *)
(* *)
(* Given a clause, this function determines the subterms of the clause that *)
(* are to be generalized. For each literal, the function computes the *)
(* generalizable subterms. It then filters out those subterms that are not to *)
(* be generalized. It only looks at the remaining literals when doing this, *)
(* not at those already processed. This is legitimate because if the subterm *)
(* occurs in a previous literal, it would have already been added to the main *)
(* list of subterms that should be generalized. Before returning this main *)
(* list, the function removes any non-minimal common subterms. This operation *)
(* also removes any duplicates. *)
(*----------------------------------------------------------------------------*)
let terms_to_be_generalized tm =
let accessors = (all_accessors ())
(* @ (all_constructors()) *)
in let rec terms_to_be_generalized' tml =
if (tml = [])
then []
else let h::t = tml
in let gens = generalizable_subterms accessors h
in let gens' = filter (to_be_generalized h t) gens
in gens' @ (terms_to_be_generalized' t)
in minimal_common_subterms (terms_to_be_generalized' (disj_list tm));;
(*----------------------------------------------------------------------------*)
(* distinct_var : term list -> type -> term *)
(* *)
(* Function to generate a sensibly-named variable of a specified type. *)
(* Variables that the new variable must be distinct from can be specified in *)
(* the first argument. The new variable will be named according to the first *)
(* letter of the top-level constructor in the specified type, or if the type *)
(* is a simple polymorphic type, the name `x' is used. The actual name will *)
(* be this name followed by zero or more apostrophes. *)
(*----------------------------------------------------------------------------*)
let distinct_var vars ty =
let letter = try((hd o explode o fst o dest_type) ty) with Failure _ -> "x"
in variant vars (mk_var (letter,ty));;
(*----------------------------------------------------------------------------*)
(* distinct_vars : term list -> type list -> term list *)
(* *)
(* Generates new variables using `distinct_var' for each of the types in the *)
(* given list. The function ensures that each of the new variables are *)
(* distinct from each other, as well as from the argument list of variables. *)
(*----------------------------------------------------------------------------*)
let rec distinct_vars vars tyl =
if (tyl = [])
then []
else let var = distinct_var vars (hd tyl)
in var::(distinct_vars (var::vars) (tl tyl));;
(*----------------------------------------------------------------------------*)
(* apply_gen_lemma : term -> thm -> thm *)
(* *)
(* Given a term to be generalized and a generalization lemma, this function *)
(* tries to apply the lemma to the term. The result, if successful, is a *)
(* specialization of the lemma. *)
(* *)
(* The function checks that the lemma has no hypotheses, and then extracts a *)
(* list of subterms of the conclusion that match the given term and contain *)
(* all the free variables of the conclusion. The second condition prevents *)
(* new variables being introduced into the goal clause. The ordering of the *)
(* subterms in the list is dependent on the implementation of `find_terms', *)
(* but probably doesn't matter anyway, because the function tries each of *)
(* them until it finds one that is acceptable. *)
(* *)
(* Each subterm is tried as follows. A matching between the subterm and the *)
(* term to be generalized is obtained. This is used to instantiate the lemma. *)
(* The function then checks that when the conclusion of this new theorem is *)
(* generalized (by replacing the term to be generalized with a variable), the *)
(* function symbol of the term to be generalized no longer appears in it. *)
(*----------------------------------------------------------------------------*)
let apply_gen_lemma tm th =
try
(let apply_gen_lemma' subtm =
(let (_,tm_bind,ty_bind) = term_match [] subtm tm
in let (insts,vars) = List.split tm_bind
in let th' = ((SPECL insts) o (GENL vars) o (INST_TYPE ty_bind)) th
in let gen_conc = subst [(genvar (type_of tm),tm)] (concl th')
and f = fst (strip_comb tm)
in if (is_subterm f gen_conc)
then failwith ""
else th')
in let ([],conc) = dest_thm th
in let conc_vars = frees conc
in let good_subterm subtm =
((can (term_match [] subtm) tm) && ((subtract conc_vars (frees subtm)) = []))
in let subtms = rev (find_terms good_subterm conc)
in tryfind apply_gen_lemma' subtms
) with Failure _ -> failwith "apply_gen_lemma";;
(*----------------------------------------------------------------------------*)
(* applicable_gen_lemmas : term list -> thm list *)
(* *)
(* Computes instantiations of generalization lemmas applicable to a list of *)
(* terms, the terms to be generalized. *)
(*----------------------------------------------------------------------------*)
let applicable_gen_lemmas tml =
flat (map (fun tm -> mapfilter (apply_gen_lemma tm) (gen_lemmas ())) tml);;
(*----------------------------------------------------------------------------*)
(* generalize_heuristic : (term # bool) -> ((term # bool) list # proof) *)
(* *)
(* Generalization heuristic. *)
(* *)
(* This function first computes the terms to be generalized in a clause. It *)
(* fails if there are none. It then obtains a list of instantiated *)
(* generalization lemmas for these terms. Each of these lemmas is transformed *)
(* to a theorem of the form |- x = F. If the original lemma was a negation, *)
(* x is the argument of the negation. Otherwise x is the negation of the *)
(* original lemma. *)
(* *)
(* The negated lemmas are added to the clause, and the result is generalized *)
(* by replacing each of the terms to be generalized by new distinct *)
(* variables. This generalized clause is returned together with a proof of *)
(* the original clause from it. *)
(* *)
(* The proof begins by specializing the variables that were used to replace *)
(* the generalized terms. The theorem is then of the form: *)
(* *)
(* |- lemma1 \/ lemma2 \/ ... \/ lemman \/ original_clause (1) *)
(* *)
(* We have a theorem |- lemmai = F for each i between 1 and n. Consider the *)
(* first of these. From it, the following theorem can be obtained: *)
(* *)
(* |- lemma1 \/ lemma2 \/ ... \/ lemman \/ original_clause = *)
(* F \/ lemma2 \/ ... \/ lemman \/ original_clause *)
(* *)
(* Simplifying using |- F \/ x = x, this gives: *)
(* *)
(* |- lemma1 \/ lemma2 \/ ... \/ lemman \/ original_clause = *)
(* lemma2 \/ ... \/ lemman \/ original_clause *)
(* *)
(* From this theorem and (1), we obtain: *)
(* *)
(* |- lemma2 \/ ... \/ lemman \/ original_clause *)
(* *)
(* Having repeated this process for each of the lemmas, the proof eventually *)
(* returns a theorem for the original clause, i.e. |- original_clause. *)
(*----------------------------------------------------------------------------*)
let generalize_heuristic (tm,(ind:bool)) =
try
(let NEGATE th =
let ([],tm) = dest_thm th
in if (is_neg tm)
then EQF_INTRO th
else EQF_INTRO
(CONV_RULE
(REWR_CONV
(SYM (SPEC_ALL (hd (CONJUNCTS NOT_CLAUSES))))) th)
and ELIM_LEMMA lemma th =
let rest = snd (dest_disj (concl th))
in EQ_MP (CONV_RULE (RAND_CONV (REWR_CONV F_OR))
(AP_THM (AP_TERM `(\/)` lemma) rest)) th
in let gen_terms = check (fun l -> not (l = [])) (terms_to_be_generalized tm)
in let lemmas = map NEGATE (applicable_gen_lemmas gen_terms)
in let tm' = itlist (curry mk_disj) (map (lhs o concl) lemmas) tm
in let new_vars = distinct_vars (frees tm') (map type_of gen_terms)
in let tm'' = subst (lcombinep (new_vars,gen_terms)) tm'
in let countercheck = try counter_check 5 tm'' with Failure _ ->
warn true "Could not generate counter example!" ; true
in if (countercheck = true) then let proof th'' =
let th' = SPECL gen_terms (GENL new_vars th'')
in rev_itlist ELIM_LEMMA lemmas th'
in (proof_print_string_l "-> Generalize Heuristic"() ; my_gen_terms := tm''::!my_gen_terms ; ([(tm'',ind)],apply_fproof "generalize_heuristic" (proof o hd) [tm'']))
else failwith "Counter example failure!"
) with Failure _ -> failwith "generalize_heuristic";;
(* Implementation of Aderhold's Generalization techniques: *)
let is_constructor_eq constructor v tm =
try (
let (a,b) = dest_eq tm
in let cand_c = ( if ( v = a ) then b
else if ( v = b ) then a
else failwith "" )
in let cand_name = (fst o dest_const o fst o strip_comb) cand_c
in constructor = cand_name
(* then cand_name else failwith ""*)
) with Failure _ -> false;;
let is_constructor_neq constructor v tm =
try (
let tm' = dest_neg tm
in let (a,b) = dest_eq tm'
in let cand_c = ( if ( v = a ) then b
else if ( v = b ) then a
else failwith "" )
in let cand_name = (fst o dest_const o fst o strip_comb) cand_c
in constructor = cand_name
) with Failure _ -> false;;
let infer_constructor v tm =
try (
print_term v;print_string " XXX ";print_term tm;print_newline();
let v_ty = (fst o dest_type) (type_of v)
in let clist = map fst3 ((shell_constructors o sys_shell_info) v_ty)
in let conjs = conj_list tm
in let check_constructor_eq c v tms =
let res = map (is_constructor_eq c v) tms
in if (mem true res) then true
else false
in let check_constructor_neq c v tms =
let res = map (is_constructor_neq c v) tms
in if (mem true res) then true
else false
in let check_constructor c all_constr v tms =
if (check_constructor_eq c v tms) then true
else let constrs = subtract all_constr [c]
in let res = map (fun c -> check_constructor_neq c v tms) constrs
in if (mem false res) then false
else true
in let res = map (fun c -> check_constructor c clist v conjs) clist
in let reslist = List.combine res clist
in assoc true reslist
) with Failure _ -> failwith "infer_constructor";;
let get_rec_pos_of_fun f =
try (
(fst o get_def o fst o dest_const) f
) with Failure _ -> 0;;
let rec is_in_rec_pos subtm tm =
let (op,args) = strip_comb tm
in try (
let rec_argn = get_rec_pos_of_fun op
in if ( (el (rec_argn - 1) args) = subtm )
then true
else failwith ""
) with Failure _ -> mem true (map (is_in_rec_pos subtm) args) ;;
let is_var_in_rec_pos v tm =
try (
if (not (is_var v)) then false
else if (not (mem v (frees tm))) then false
else is_in_rec_pos v tm
) with Failure _ -> false;;
let eliminateSelectors tm =
try (
let vars = frees tm
in let vars' = filter (not o (fun v -> is_var_in_rec_pos v tm )) vars
in if (vars' = []) then tm
else let rec find_candidate vars tm =
if ( vars = [] ) then failwith "find_candidate"
else let var = (hd vars) in try ( (var,infer_constructor var tm) )
with Failure _ -> find_candidate (tl vars) tm
in let (var,constr) = find_candidate vars' tm
in let v_ty = (fst o dest_type) (type_of var)
in let s_info = sys_shell_info v_ty
in let new_vars = distinct_vars vars (shell_constructor_arg_types constr s_info)
in let new_subtm = list_mk_icomb constr new_vars
in let new_tm = subst [new_subtm,var] tm
in (snd o dest_eq o concl) (REWRITE_CONV (map snd (shell_constructor_accessors constr s_info)) new_tm)
) with Failure _ -> failwith "eliminateSelectors";;
let all_variables =
let rec vars(acc,tm) =
if is_var tm then tm::acc
else if is_const tm then acc
else if is_abs tm then
let v,bod = dest_abs tm in
vars(v::acc,bod)
else
let l,r = dest_comb tm in
vars(vars(acc,r),l) in
fun tm -> vars([],tm);;
let all_equations =
let rec eqs(acc,tm) =
if is_eq tm then tm::acc
else if is_var tm then acc
else if is_const tm then acc
else if is_abs tm then
let v,bod = dest_abs tm in
eqs(acc,bod)
else
let l,r = dest_comb tm in
eqs(eqs(acc,r),l) in
fun tm -> eqs([],tm);;
let rec contains_any tm args =
if is_var tm then false
else if is_numeral tm then false
else if is_const tm then mem ((fst o dest_const) tm) args
else if is_abs tm then
let v,bod = dest_abs tm in
contains_any v args
else
let l,r = dest_comb tm in
(contains_any l args) || (contains_any r args);;
let is_rec_type tm = try( mem ((fst o dest_type o type_of) tm) (shells()) ) with Failure _ -> false;;
let is_generalizable_subterm bad tm =
(is_rec_type tm) &&
not ( (is_var tm) ||
(is_const tm) ||
(is_numeral tm) ||
(contains_any tm bad) );;
(*----------------------------------------------------------------------------*)
(* A set S of terms is called a suitable proposal for some formula phi if each*)
(* t' in S is a generalizable subterm of phi and if there is some t' in S that*)
(* occurs at least twice in phi. *)
(* Here gens is assumed to be the generalizable subterms of phi as found by *)
(* find_bm_terms. This means that it will contain t' as many times as it was *)
(* found in phi. Therefore, the occurences of t' in gens are equivalent to its*)
(* occurences in phi. *)
(*----------------------------------------------------------------------------*)
let is_suitable_proposal s phi gens =
( forall (fun tm -> mem tm gens) s ) && (exists (fun tm -> lcount tm gens > 1) s);;
let checksuitableeq = ref false;; (* equation criterion *)
let newisgen = ref true;; (* Use Aderhold's (true) or Boulton's (false) is_generalizable for terms *)
let is_eq_suitable t eq =
if (not !checksuitableeq) then true
else if (not (is_eq eq)) then false
else let l,r = dest_eq eq in
if ((is_subterm t r) && (is_subterm t l)) then true
else length(find_bm_terms ((=) t) eq) > 1;;
let generateProposals tm phi =
let rec generateProposals' bad tm phi gens =
let p = [] in
if (is_eq tm)
then let (t1,t2) = dest_eq tm
in let p1 = (generateProposals' bad t1 phi gens)
in let p1' = if (is_suitable_proposal [t1] phi gens) then p1@[[t1]] else p1
in let p = p @ filter (exists (fun t -> is_eq_suitable t tm)) p1'
in let p2 = (generateProposals' bad t2 phi gens)
in let p2' = if (is_suitable_proposal [t2] phi gens) then p2@[[t2]] else p2
in p @ filter (exists (fun t -> is_eq_suitable t tm)) p2'
else if (is_comb tm)
then let (op,args) = strip_comb tm
in let recpos = get_rec_pos_of_fun op
in let s = if (recpos > 0) then [el (recpos-1) args] else []
in let p = if (is_suitable_proposal s phi gens) then p@[s] else p
in p @ flat (map (fun tm -> generateProposals' bad tm phi gens) args)
else p
in let bad = (all_accessors()) @ (all_constructors())
in let gens = if (!newisgen) then find_bm_terms (is_generalizable_subterm bad) phi
else find_bm_terms (is_generalizable bad) phi
in generateProposals' bad tm phi gens;;
let proposal_induction_test s phi =
let newvars = distinct_vars (frees phi) (map (type_of) s)
in let subs = List.combine newvars s
in let newterm = subst subs phi
in let (unfl,fl) = possible_inductions newterm
in if (exists (fun v -> (mem v (unfl@fl)) ) newvars ) then true else false;;
let get_proposal_term_occs s phi =
let gens = find_bm_terms (fun tm -> true) phi
in let scount = map (fun tm -> lcount tm gens) s
in itlist (+) scount 0;;
let organizeProposals s phi =
let stest = map (fun prop -> (prop,proposal_induction_test prop phi)) s
in let indok = filter (((=) true) o snd) stest
in let s' = if (indok = []) then (proof_print_string_l "Weak Generalization" (map fst stest)) else (map fst indok)
in if (length s' = 1) then hd s'
else let scounted = (rev o sort_on_snd) (map (fun prop -> (prop,lcount prop s')) s')
in let smax = (snd o hd) scounted
in let s'' = map fst (filter (((=) smax) o snd) scounted)
in if (length s'' = 1) then hd s''
else let soccscounted = (rev o sort_on_snd) (map (fun prop -> (prop,get_proposal_term_occs prop phi)) s'')
in (fst o hd) soccscounted;;
let generalizeCommonSubterms tm =
let props = generateProposals tm tm
in if (props = []) then failwith ""
else let s = organizeProposals props tm
in let newvars = distinct_vars (frees tm) (map type_of s)
in let varcomb = List.combine newvars s
in (subst varcomb tm,varcomb);;
let rec separate f v v' allrpos tm =
let replace tm v v' rpos =
if (not rpos) then tm
else if (tm = v) then v'
else (separate f v v' allrpos tm)
in if (is_comb tm) then (
let (op,args) = strip_comb tm
in let recpos = get_rec_pos_of_fun op
in if ((allrpos) && not (op = `(=)`))
then (list_mk_comb (op,(map (fun (t,i) -> replace t v v' ((i = recpos) || (recpos = 0))) (number_list args))))
else if (op = `(=)`)
then (list_mk_comb(op,[replace (hd args) v v' true;replace ((hd o tl) args) v v' true]))
else if (op = f)
then (list_mk_comb (op,(map (fun (t,i) -> replace t v v' (i = recpos)) (number_list args))))
else (list_mk_comb (op,(map (separate f v v' allrpos) args)))
)
else tm;;
let rec generalized_apart_successfully v v' tm tm' =
if (tm' = v') then true
else if (is_eq tm) then ( let (tm1,tm2) = dest_eq tm
in let (tm1',tm2') = dest_eq tm'
in (generalized_apart_successfully v v' tm1 tm1')
&& (generalized_apart_successfully v v' tm2 tm2') )
else ( let av = all_variables tm
in let av' = all_variables tm'
in let varsub = List.combine av av'
in ((mem (v,v') varsub) && (mem v av')) );;
let useful_apart_generalization v v' tm gen =
let eqssub = List.combine (all_equations tm) (all_equations gen)
in let eqsok = forall (fun (x,y) -> (x=y) || (generalized_apart_successfully v v' x y)) eqssub
in let countercheck = try counter_check 5 gen with Failure s ->
warn true ("Could not generate counter example: " ^ s) ; true
in eqsok && (generalized_apart_successfully v v' tm gen) && countercheck;;
let generalize_apart tm =
let is_fun tm = (try( mem ((fst o dest_const o fst o strip_comb) tm) (defs_names ()) ) with Failure _ -> false)
in let fs = find_bm_terms is_fun tm
in let dfs = map strip_comb fs
in let find_f (op,args) dfs = (
let r = get_rec_pos_of_fun op
in let arg_filter args args' =
(let v = el (r-1) args
in (is_var v) && (mem v (snd (remove_el r args'))))
in let match_filter (op',args') =
((op' = op) && (arg_filter args args'))
in can (find match_filter) dfs )
in let (f,args) = try( find (fun (op,args) -> find_f (op,args) dfs) dfs ) with Failure _ -> failwith ""
in let v = el ((get_rec_pos_of_fun f) -1) args
in let v' = distinct_var (frees tm) (type_of v)
(*distinct_var (flat (map frees args)) (type_of v)*)
in let gen = separate f v v' false tm
in if (useful_apart_generalization v v' tm gen) then (gen,[v',v])
else let pcs = map fst dfs
in let restpcs = subtract pcs [f]
in let recposs = map get_rec_pos_of_fun restpcs
in let recpos = try (find ((<) 0) recposs) with Failure _ -> 0
in let gen = if (forall (fun x -> (x = 0) || (x = recpos)) recposs)
then separate f v v' true tm
else failwith "not same recpos for all functions"
in if (useful_apart_generalization v v' tm gen) then (gen,[v',v])
else failwith "failed";;
(*----------------------------------------------------------------------------*)
(* Reference flag to check if a term has already been generalized so as to *)
(* avoid multiple proposal generalization because of the waterfall loop. *)
(*----------------------------------------------------------------------------*)
let checkgen = ref true;;
let generalize_heuristic_aderhold (tm,(ind:bool)) =
if (mem tm !my_gen_terms && !checkgen) then failwith ""
else
try
(let ELIM_LEMMA lemma th =
let rest = snd (dest_disj (concl th))
in EQ_MP (CONV_RULE (RAND_CONV (REWR_CONV F_OR))
(AP_THM (AP_TERM `(\/)` lemma) rest)) th
in let (tm',subs) = try( generalize_apart tm ) with Failure _ -> (tm,[])
in let (new_ap_vars,gen_ap_terms) = List.split subs
in let (tm'',subs) = try( generalizeCommonSubterms tm' ) with Failure _ -> (tm',[])
in if (tm = tm'') then failwith ""
else let (new_vars,gen_terms) = List.split subs
in let lemmas = []
in let countercheck = try counter_check 5 tm'' with Failure s ->
warn true ("Could not generate counter example: " ^ s) ; true
in if (countercheck = true) then let proof th'' =
let th' = ((SPECL gen_ap_terms) o (GENL new_ap_vars) o
(SPECL gen_terms) o (GENL new_vars)) th''
in rev_itlist ELIM_LEMMA lemmas th'
in (proof_print_string_l "-> Generalize Heuristic"() ; my_gen_terms := tm''::!my_gen_terms ; ([(tm'',ind)],apply_fproof "generalize_heuristic_aderhold" (proof o hd) [tm'']))
else failwith "Counter example failure!"
) with Failure _ -> failwith "generalize_heuristic";;
let generalize_heuristic_ext (tm,(ind:bool)) =
if (mem tm !my_gen_terms && !checkgen) then failwith ""
else
try
(let ELIM_LEMMA lemma th =
let rest = snd (dest_disj (concl th))
in EQ_MP (CONV_RULE (RAND_CONV (REWR_CONV F_OR))
(AP_THM (AP_TERM `(\/)` lemma) rest)) th
in let lemmas = []
in let (tm',subs) = try( generalize_apart tm ) with Failure _ -> (tm,[])
in let (new_ap_vars,gen_ap_terms) = List.split subs
in let gen_terms = terms_to_be_generalized tm'
in let _ = check (fun l -> not (l = [])) (gen_ap_terms@gen_terms)
in let new_vars = distinct_vars (frees tm') (map type_of gen_terms)
in let tm'' = subst (lcombinep (new_vars,gen_terms)) tm'
in let countercheck = try counter_check 5 tm'' with Failure _ ->
warn true "Could not generate counter example!" ; true
in if (countercheck = true) then let proof th'' =
let th' = ((SPECL gen_ap_terms) o (GENL new_ap_vars) o
(SPECL gen_terms) o (GENL new_vars)) th''
in rev_itlist ELIM_LEMMA lemmas th'
in (proof_print_string_l "-> Generalize Heuristic"() ; my_gen_terms := tm''::!my_gen_terms ; ([(tm'',ind)],apply_fproof "generalize_heuristic_ext" (proof o hd) [tm'']))
else failwith "Counter example failure!"
) with Failure _ -> failwith "generalize_heuristic";;
|