Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 30,689 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
(******************************************************************************)
(* FILE          : generalize.ml                                              *)
(* DESCRIPTION   : Generalization.                                            *)
(*                                                                            *)
(* READS FILES   : <none>                                                     *)
(* WRITES FILES  : <none>                                                     *)
(*                                                                            *)
(* AUTHOR        : R.J.Boulton                                                *)
(* DATE          : 21st June 1991                                             *)
(*                                                                            *)
(* LAST MODIFIED : R.J.Boulton                                                *)
(* DATE          : 12th October 1992                                          *)
(*                                                                            *)
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh)                *)
(* DATE          : July 2009                                                  *)
(******************************************************************************)

(*----------------------------------------------------------------------------*)
(* is_generalizable : string list -> term -> bool                             *)
(*                                                                            *)
(* Function to determine whether or not a term has the correct properties to  *)
(* be generalizable. It takes a list of accessor function names as its first  *)
(* argument. This is for efficiency. It could compute them itself, but if an  *)
(* external function is going to call is_generalizable many times it is       *)
(* better for the external function to compute the list of accessors.         *)
(*----------------------------------------------------------------------------*)

let is_generalizable accessors tm =
   not ((is_var tm) ||
        (is_explicit_value_template tm) ||
        (is_eq tm) ||
        (try(mem ((fst o dest_const o fst o strip_comb) tm) accessors)
with Failure _ -> false));;

(*----------------------------------------------------------------------------*)
(* generalizable_subterms : string list -> term -> term list                  *)
(*                                                                            *)
(* Computes the generalizable subterms of a literal, given a list of accessor *)
(* function names.                                                            *)
(*----------------------------------------------------------------------------*)

let generalizable_subterms accessors tm =
 try (setify (find_bm_terms (is_generalizable accessors) tm)
 ) with Failure _ -> failwith "generalizable_subterms";;

(*----------------------------------------------------------------------------*)
(* minimal_common_subterms : term list -> term list                           *)
(*                                                                            *)
(* Given a list of terms, this function removes from the list any term that   *)
(* has one of the other terms as a proper subterm. It also eliminates any     *)
(* duplicates.                                                                *)
(*----------------------------------------------------------------------------*)

let minimal_common_subterms tml =
   let tml' = setify tml
   in  filter
        (fun tm ->  not (exists (fun tm' -> (is_subterm tm' tm) && (not (tm' = tm))) tml'))
         tml';;

(*----------------------------------------------------------------------------*)
(* to_be_generalized : term -> term list -> term -> bool                      *)
(*                                                                            *)
(* This function decides whether a subterm of a literal should be generalized.*)
(* It takes a literal, a list of other literals, and a subterm of the literal *)
(* as arguments. The subterm should be generalized if it occurs in one of the *)
(* other literals, or if the literal is an equality and it occurs on both     *)
(* sides, or if the literal is the negation of an equality and the subterm    *)
(* occurs on both sides.                                                      *)
(*----------------------------------------------------------------------------*)

let to_be_generalized tm tml gen =
 try (let (l,r) = dest_eq (dest_neg tm)
  in  if ((is_subterm gen l) && (is_subterm gen r))
      then true
      else failwith "") with Failure _ ->
 try (let (l,r) = dest_eq tm
  in  if ((is_subterm gen l) && (is_subterm gen r))
      then true
      else failwith "") with Failure _ ->
 (exists (is_subterm gen) tml);;

(*----------------------------------------------------------------------------*)
(* terms_to_be_generalized : term -> term list                                *)
(*                                                                            *)
(* Given a clause, this function determines the subterms of the clause that   *)
(* are to be generalized. For each literal, the function computes the         *)
(* generalizable subterms. It then filters out those subterms that are not to *)
(* be generalized. It only looks at the remaining literals when doing this,   *)
(* not at those already processed. This is legitimate because if the subterm  *)
(* occurs in a previous literal, it would have already been added to the main *)
(* list of subterms that should be generalized. Before returning this main    *)
(* list, the function removes any non-minimal common subterms. This operation *)
(* also removes any duplicates.                                               *)
(*----------------------------------------------------------------------------*)

let terms_to_be_generalized tm =
   let accessors = (all_accessors ())
(* @ (all_constructors()) *)
   in  let rec terms_to_be_generalized' tml =
          if (tml = [])
          then []
          else let h::t = tml
               in  let gens = generalizable_subterms accessors h
               in  let gens' = filter (to_be_generalized h t) gens
               in  gens' @ (terms_to_be_generalized' t)
   in  minimal_common_subterms (terms_to_be_generalized' (disj_list tm));;

(*----------------------------------------------------------------------------*)
(* distinct_var : term list -> type -> term                                   *)
(*                                                                            *)
(* Function to generate a sensibly-named variable of a specified type.        *)
(* Variables that the new variable must be distinct from can be specified in  *)
(* the first argument. The new variable will be named according to the first  *)
(* letter of the top-level constructor in the specified type, or if the type  *)
(* is a simple polymorphic type, the name `x' is used. The actual name will   *)
(* be this name followed by zero or more apostrophes.                         *)
(*----------------------------------------------------------------------------*)

let distinct_var vars ty =
   let letter = try((hd o explode o fst o dest_type) ty) with Failure _ -> "x"
   in  variant vars (mk_var (letter,ty));;

(*----------------------------------------------------------------------------*)
(* distinct_vars : term list -> type list -> term list                        *)
(*                                                                            *)
(* Generates new variables using `distinct_var' for each of the types in the  *)
(* given list. The function ensures that each of the new variables are        *)
(* distinct from each other, as well as from the argument list of variables.  *)
(*----------------------------------------------------------------------------*)

let rec distinct_vars vars tyl =
   if (tyl = [])
   then []
   else let var = distinct_var vars (hd tyl)
        in  var::(distinct_vars (var::vars) (tl tyl));;

(*----------------------------------------------------------------------------*)
(* apply_gen_lemma : term -> thm -> thm                                       *)
(*                                                                            *)
(* Given a term to be generalized and a generalization lemma, this function   *)
(* tries to apply the lemma to the term. The result, if successful, is a      *)
(* specialization of the lemma.                                               *)
(*                                                                            *)
(* The function checks that the lemma has no hypotheses, and then extracts a  *)
(* list of subterms of the conclusion that match the given term and contain   *)
(* all the free variables of the conclusion. The second condition prevents    *)
(* new variables being introduced into the goal clause. The ordering of the   *)
(* subterms in the list is dependent on the implementation of `find_terms',   *)
(* but probably doesn't matter anyway, because the function tries each of     *)
(* them until it finds one that is acceptable.                                *)
(*                                                                            *)
(* Each subterm is tried as follows. A matching between the subterm and the   *)
(* term to be generalized is obtained. This is used to instantiate the lemma. *)
(* The function then checks that when the conclusion of this new theorem is   *)
(* generalized (by replacing the term to be generalized with a variable), the *)
(* function symbol of the term to be generalized no longer appears in it.     *)
(*----------------------------------------------------------------------------*)

let apply_gen_lemma tm th =
try
 (let apply_gen_lemma' subtm =
     (let (_,tm_bind,ty_bind) = term_match [] subtm tm
     in  let (insts,vars) = List.split tm_bind
     in  let th' = ((SPECL insts) o (GENL vars) o (INST_TYPE ty_bind)) th
     in  let gen_conc = subst [(genvar (type_of tm),tm)] (concl th')
         and f = fst (strip_comb tm)
         in  if (is_subterm f gen_conc)
             then failwith ""
             else th')
  in  let ([],conc) = dest_thm th
  in  let conc_vars = frees conc
  in  let good_subterm subtm =
         ((can (term_match [] subtm) tm) && ((subtract conc_vars (frees subtm)) = []))
  in  let subtms = rev (find_terms good_subterm conc)
  in  tryfind apply_gen_lemma' subtms
 ) with Failure _ -> failwith "apply_gen_lemma";;

(*----------------------------------------------------------------------------*)
(* applicable_gen_lemmas : term list -> thm list                              *)
(*                                                                            *)
(* Computes instantiations of generalization lemmas applicable to a list of   *)
(* terms, the terms to be generalized.                                        *)
(*----------------------------------------------------------------------------*)

let applicable_gen_lemmas tml =
   flat (map (fun tm -> mapfilter (apply_gen_lemma tm) (gen_lemmas ())) tml);;

(*----------------------------------------------------------------------------*)
(* generalize_heuristic : (term # bool) -> ((term # bool) list # proof)       *)
(*                                                                            *)
(* Generalization heuristic.                                                  *)
(*                                                                            *)
(* This function first computes the terms to be generalized in a clause. It   *)
(* fails if there are none. It then obtains a list of instantiated            *)
(* generalization lemmas for these terms. Each of these lemmas is transformed *)
(* to a theorem of the form |- x = F. If the original lemma was a negation,   *)
(* x is the argument of the negation. Otherwise x is the negation of the      *)
(* original lemma.                                                            *)
(*                                                                            *)
(* The negated lemmas are added to the clause, and the result is generalized  *)
(* by replacing each of the terms to be generalized by new distinct           *)
(* variables. This generalized clause is returned together with a proof of    *)
(* the original clause from it.                                               *)
(*                                                                            *)
(* The proof begins by specializing the variables that were used to replace   *)
(* the generalized terms. The theorem is then of the form:                    *)
(*                                                                            *)
(*    |- lemma1 \/ lemma2 \/ ... \/ lemman \/ original_clause            (1)  *)
(*                                                                            *)
(* We have a theorem |- lemmai = F for each i between 1 and n. Consider the   *)
(* first of these. From it, the following theorem can be obtained:            *)
(*                                                                            *)
(*    |- lemma1 \/ lemma2 \/ ... \/ lemman \/ original_clause =               *)
(*          F   \/ lemma2 \/ ... \/ lemman \/ original_clause                 *)
(*                                                                            *)
(* Simplifying using |- F \/ x = x, this gives:                               *)
(*                                                                            *)
(*    |- lemma1 \/ lemma2 \/ ... \/ lemman \/ original_clause =               *)
(*                 lemma2 \/ ... \/ lemman \/ original_clause                 *)
(*                                                                            *)
(* From this theorem and (1), we obtain:                                      *)
(*                                                                            *)
(*    |- lemma2 \/ ... \/ lemman \/ original_clause                           *)
(*                                                                            *)
(* Having repeated this process for each of the lemmas, the proof eventually  *)
(* returns a theorem for the original clause, i.e. |- original_clause.        *)
(*----------------------------------------------------------------------------*)

let generalize_heuristic (tm,(ind:bool)) =
try
 (let NEGATE th =
     let ([],tm) = dest_thm th
     in  if (is_neg tm)
         then EQF_INTRO th
         else EQF_INTRO
                 (CONV_RULE
                     (REWR_CONV
                         (SYM (SPEC_ALL (hd (CONJUNCTS NOT_CLAUSES))))) th)
  and ELIM_LEMMA lemma th =
     let rest = snd (dest_disj (concl th))
     in  EQ_MP (CONV_RULE (RAND_CONV (REWR_CONV F_OR))
                          (AP_THM (AP_TERM `(\/)` lemma) rest)) th
  in  let gen_terms = check (fun l ->  not (l = [])) (terms_to_be_generalized tm)
  in  let lemmas = map NEGATE (applicable_gen_lemmas gen_terms)
  in  let tm' = itlist (curry mk_disj) (map (lhs o concl) lemmas) tm
  in  let new_vars = distinct_vars (frees tm') (map type_of gen_terms)
  in  let tm'' = subst (lcombinep (new_vars,gen_terms)) tm'
  in  let countercheck = try counter_check 5 tm'' with Failure _ ->
    warn true "Could not generate counter example!" ; true
  in if (countercheck = true) then let proof th'' =
         let th' = SPECL gen_terms (GENL new_vars th'')
         in  rev_itlist ELIM_LEMMA lemmas th'
  in   (proof_print_string_l "-> Generalize Heuristic"() ; my_gen_terms := tm''::!my_gen_terms ; ([(tm'',ind)],apply_fproof "generalize_heuristic" (proof o hd) [tm'']))
  else failwith "Counter example failure!"
 ) with Failure _ -> failwith "generalize_heuristic";;


(* Implementation of Aderhold's Generalization techniques: *)

let is_constructor_eq constructor v tm  =
 try (
let (a,b) = dest_eq tm
in let cand_c = ( if ( v = a ) then b
                    else if ( v = b ) then a
                    else failwith "" )
in let cand_name = (fst o dest_const o fst o strip_comb) cand_c
in constructor = cand_name
(* then cand_name else failwith ""*)
) with Failure _ -> false;;


let is_constructor_neq constructor v tm  =
 try (
let tm' = dest_neg tm
in let (a,b) = dest_eq tm'
in let cand_c = ( if ( v = a ) then b
                    else if ( v = b ) then a
                    else failwith "" )
in let cand_name = (fst o dest_const o fst o strip_comb) cand_c
in constructor = cand_name
) with Failure _ -> false;;


let infer_constructor v tm =
try (
     print_term v;print_string " XXX ";print_term tm;print_newline();
     let v_ty = (fst o dest_type) (type_of v)
     in let clist = map fst3 ((shell_constructors o sys_shell_info) v_ty)
     in let conjs = conj_list tm
     in let check_constructor_eq c v tms =
            let res = map (is_constructor_eq c v) tms
            in if (mem true res) then true
                                 else false
     in let check_constructor_neq c v tms =
            let res = map (is_constructor_neq c v) tms
            in if (mem true res) then true
                                 else false
     in let check_constructor c all_constr v tms =
            if (check_constructor_eq c v tms) then true
            else let constrs = subtract all_constr [c]
                 in let res = map (fun c -> check_constructor_neq c v tms) constrs
                 in if (mem false res) then false
                                       else true
     in let res = map (fun c -> check_constructor c clist v conjs) clist
     in let reslist = List.combine res clist
     in assoc true reslist
) with Failure _ -> failwith "infer_constructor";;

let get_rec_pos_of_fun f =
try (
     (fst o get_def o fst o dest_const) f
    ) with Failure _ -> 0;;

let rec is_in_rec_pos subtm tm =
    let (op,args) = strip_comb tm
          in try (
               let rec_argn = get_rec_pos_of_fun op
               in if ( (el (rec_argn - 1) args) = subtm )
                     then true
                     else failwith ""
                ) with Failure _ -> mem true (map (is_in_rec_pos subtm) args) ;;

let is_var_in_rec_pos v tm =
try (
     if (not (is_var v)) then false
     else if (not (mem v (frees tm))) then false
     else is_in_rec_pos v tm
) with Failure _ -> false;;

let eliminateSelectors tm =
try (
    let vars = frees tm
    in let vars' = filter (not o (fun v -> is_var_in_rec_pos v tm )) vars
    in if (vars' = []) then tm
       else let rec find_candidate vars tm =
                if ( vars = [] ) then failwith "find_candidate"
                else let var = (hd vars) in try ( (var,infer_constructor var tm) )
                                            with Failure _ -> find_candidate (tl vars) tm
            in let (var,constr) = find_candidate vars' tm
            in let v_ty = (fst o dest_type) (type_of var)
            in let s_info = sys_shell_info v_ty
            in let new_vars = distinct_vars vars (shell_constructor_arg_types constr s_info)
            in let new_subtm = list_mk_icomb constr new_vars
            in let new_tm = subst [new_subtm,var] tm
            in (snd o dest_eq o concl) (REWRITE_CONV (map snd (shell_constructor_accessors constr s_info)) new_tm)
) with Failure _ -> failwith "eliminateSelectors";;


let all_variables =
  let rec vars(acc,tm) =
    if is_var tm then tm::acc
    else if is_const tm then acc
    else if is_abs tm then
      let v,bod = dest_abs tm in
      vars(v::acc,bod)
    else
      let l,r = dest_comb tm in
      vars(vars(acc,r),l) in
  fun tm -> vars([],tm);;

let all_equations =
  let rec eqs(acc,tm) =
    if is_eq tm then tm::acc
    else if is_var tm then acc
    else if is_const tm then acc
    else if is_abs tm then
      let v,bod = dest_abs tm in
      eqs(acc,bod)
    else
      let l,r = dest_comb tm in
      eqs(eqs(acc,r),l) in
  fun tm -> eqs([],tm);;

let rec contains_any tm args =
    if is_var tm then false
    else if is_numeral tm then false
    else if is_const tm then mem ((fst o dest_const) tm) args
    else if is_abs tm then
      let v,bod = dest_abs tm in
      contains_any v args
    else
      let l,r = dest_comb tm in
      (contains_any l args) || (contains_any r args);;

let is_rec_type tm = try( mem ((fst o dest_type o type_of) tm) (shells()) ) with Failure _ -> false;;

let is_generalizable_subterm bad tm =
    (is_rec_type tm) &&
    not ( (is_var tm) ||
          (is_const tm) ||
          (is_numeral tm) ||
          (contains_any tm bad) );;

(*----------------------------------------------------------------------------*)
(* A set S of terms is called a suitable proposal for some formula phi if each*)
(* t' in S is a generalizable subterm of phi and if there is some t' in S that*)
(* occurs at least twice in phi.                                              *)
(* Here gens is assumed to be the generalizable subterms of phi as found by   *)
(* find_bm_terms. This means that it will contain t' as many times as it was  *)
(* found in phi. Therefore, the occurences of t' in gens are equivalent to its*)
(* occurences in phi.                                                         *)
(*----------------------------------------------------------------------------*)

let is_suitable_proposal s phi gens =
    ( forall (fun tm -> mem tm gens) s ) && (exists (fun tm -> lcount tm gens > 1) s);;


let checksuitableeq = ref false;; (* equation criterion *)
let newisgen = ref true;; (* Use Aderhold's (true) or Boulton's (false) is_generalizable for terms *)

let is_eq_suitable t eq =
    if (not !checksuitableeq) then true
    else if (not (is_eq eq)) then false
    else let l,r = dest_eq eq in
    if ((is_subterm t r) && (is_subterm t l)) then true
    else length(find_bm_terms ((=) t) eq) > 1;;


let generateProposals tm phi =
    let rec generateProposals' bad tm phi gens =
        let p = [] in
        if (is_eq tm)
        then let (t1,t2) = dest_eq tm
          in let p1 = (generateProposals' bad t1 phi gens)
          in let p1' = if (is_suitable_proposal [t1] phi gens) then p1@[[t1]] else p1
          in let p = p @ filter (exists (fun t -> is_eq_suitable t tm)) p1'
          in let p2 = (generateProposals' bad t2 phi gens)
          in let p2' = if (is_suitable_proposal [t2] phi gens) then p2@[[t2]] else p2
          in p @ filter (exists (fun t -> is_eq_suitable t tm)) p2'
        else if (is_comb tm)
        then let (op,args) = strip_comb tm
          in let recpos = get_rec_pos_of_fun op
          in let s = if (recpos > 0) then [el (recpos-1) args] else []
          in let p = if (is_suitable_proposal s phi gens) then p@[s] else p
          in p @ flat (map (fun tm -> generateProposals' bad tm phi gens) args)
        else p
    in let bad = (all_accessors()) @ (all_constructors())
    in let gens = if (!newisgen) then find_bm_terms (is_generalizable_subterm bad) phi
                  else find_bm_terms (is_generalizable bad) phi
    in generateProposals' bad tm phi gens;;

let proposal_induction_test s phi =
    let newvars = distinct_vars (frees phi) (map (type_of) s)
    in let subs = List.combine newvars s
    in let newterm = subst subs phi
    in let (unfl,fl) = possible_inductions newterm
    in if (exists (fun v -> (mem v (unfl@fl)) ) newvars ) then true else false;;

let get_proposal_term_occs s phi =
    let gens = find_bm_terms (fun tm -> true) phi
    in let scount = map (fun tm -> lcount tm gens) s
    in itlist (+) scount 0;;

let organizeProposals s phi =
    let stest = map (fun prop -> (prop,proposal_induction_test prop phi)) s
    in let indok = filter (((=) true) o snd) stest
    in let s' = if (indok = []) then (proof_print_string_l "Weak Generalization" (map fst stest)) else (map fst indok)
    in if (length s' = 1) then hd s'
    else let scounted = (rev o sort_on_snd) (map (fun prop -> (prop,lcount prop s')) s')
    in let smax = (snd o hd) scounted
    in let s'' = map fst (filter (((=) smax) o snd) scounted)
    in if (length s'' = 1) then hd s''
    else let soccscounted = (rev o sort_on_snd) (map (fun prop -> (prop,get_proposal_term_occs prop phi)) s'')
    in (fst o hd) soccscounted;;

let generalizeCommonSubterms tm =
    let props = generateProposals tm tm
    in if (props = []) then failwith ""
    else let s = organizeProposals props tm
    in let newvars = distinct_vars (frees tm) (map type_of s)
    in let varcomb = List.combine newvars s
    in (subst varcomb tm,varcomb);;

let rec separate f v v' allrpos tm =
    let replace tm v v' rpos =
        if (not rpos) then tm
        else if (tm = v) then v'
        else (separate f v v' allrpos tm)
    in if (is_comb tm) then (
         let (op,args) = strip_comb tm
         in let recpos = get_rec_pos_of_fun op
         in if ((allrpos) && not (op = `(=)`))
            then (list_mk_comb (op,(map (fun (t,i) -> replace t v v' ((i = recpos) || (recpos = 0))) (number_list args))))
            else if (op = `(=)`)
                 then (list_mk_comb(op,[replace (hd args) v v' true;replace ((hd o tl) args) v v' true]))
            else if (op = f)
                 then (list_mk_comb (op,(map (fun (t,i) -> replace t v v' (i = recpos)) (number_list args))))
            else (list_mk_comb (op,(map (separate f v v' allrpos) args)))
         )
       else tm;;


let rec generalized_apart_successfully v v' tm tm' =
    if (tm' = v') then true
    else if (is_eq tm) then ( let (tm1,tm2) = dest_eq tm
                           in let (tm1',tm2') = dest_eq tm'
                           in (generalized_apart_successfully v v' tm1 tm1')
                            && (generalized_apart_successfully v v' tm2 tm2') )
    else ( let av = all_variables tm
           in let av' = all_variables tm'
           in let varsub = List.combine av av'
           in ((mem (v,v') varsub) && (mem v av'))  );;

let useful_apart_generalization v v' tm gen =
    let eqssub = List.combine (all_equations tm) (all_equations gen)
    in let eqsok = forall (fun (x,y) -> (x=y) || (generalized_apart_successfully v v' x y)) eqssub
    in let countercheck = try counter_check 5 gen with Failure s ->
    warn true ("Could not generate counter example: " ^ s) ; true
    in eqsok && (generalized_apart_successfully v v' tm gen) && countercheck;;

let generalize_apart tm =
    let is_fun tm = (try( mem ((fst o dest_const o fst o strip_comb) tm) (defs_names ()) ) with Failure _ -> false)
    in let fs = find_bm_terms is_fun tm
    in let dfs = map strip_comb fs
    in let find_f (op,args) dfs = (
           let r = get_rec_pos_of_fun op
           in let arg_filter args args' =
                 (let v = el (r-1) args
                  in (is_var v) && (mem v (snd (remove_el r args'))))
           in let match_filter (op',args') =
                  ((op' = op) && (arg_filter args args'))
           in can (find match_filter) dfs )
    in let (f,args) = try( find (fun (op,args) -> find_f (op,args) dfs) dfs ) with Failure _ -> failwith ""
    in let v = el ((get_rec_pos_of_fun f) -1) args
    in let v' = distinct_var (frees tm) (type_of v)
	    (*distinct_var (flat (map frees args)) (type_of v)*)
    in let gen = separate f v v' false tm
    in if (useful_apart_generalization v v' tm gen) then (gen,[v',v])
       else let pcs = map fst dfs
            in let restpcs = subtract pcs [f]
            in let recposs = map get_rec_pos_of_fun restpcs
            in let recpos = try (find ((<) 0) recposs) with Failure _ -> 0
            in let gen = if (forall (fun x -> (x = 0) || (x = recpos)) recposs)
                         then separate f v v' true tm
                         else failwith "not same recpos for all functions"
            in if (useful_apart_generalization v v' tm gen) then (gen,[v',v])
            else failwith "failed";;

(*----------------------------------------------------------------------------*)
(* Reference flag to check if a term has already been generalized so as to    *)
(* avoid multiple proposal generalization because of the waterfall loop.      *)
(*----------------------------------------------------------------------------*)
let checkgen = ref true;;

let generalize_heuristic_aderhold (tm,(ind:bool)) =
if (mem tm !my_gen_terms && !checkgen) then failwith ""
else
try
 (let ELIM_LEMMA lemma th =
     let rest = snd (dest_disj (concl th))
     in  EQ_MP (CONV_RULE (RAND_CONV (REWR_CONV F_OR))
                          (AP_THM (AP_TERM `(\/)` lemma) rest)) th
  in let (tm',subs) = try( generalize_apart tm ) with Failure _ -> (tm,[])
  in let (new_ap_vars,gen_ap_terms) = List.split subs
  in let (tm'',subs) = try( generalizeCommonSubterms tm' ) with Failure _ -> (tm',[])
  in if (tm = tm'') then failwith ""
  else let (new_vars,gen_terms) = List.split subs
  in let lemmas = []
  in  let countercheck = try counter_check 5 tm'' with Failure s ->
    warn true ("Could not generate counter example: " ^ s) ; true
      in if (countercheck = true) then let proof th'' =
      let th' = ((SPECL gen_ap_terms) o (GENL new_ap_vars) o
		    (SPECL gen_terms) o (GENL new_vars)) th''
         in  rev_itlist ELIM_LEMMA lemmas th'
  in   (proof_print_string_l "-> Generalize Heuristic"() ; my_gen_terms := tm''::!my_gen_terms ; ([(tm'',ind)],apply_fproof "generalize_heuristic_aderhold" (proof o hd) [tm'']))
  else failwith "Counter example failure!"
 ) with Failure _ -> failwith "generalize_heuristic";;


let generalize_heuristic_ext (tm,(ind:bool)) =
if (mem tm !my_gen_terms && !checkgen) then failwith ""
else
try
 (let ELIM_LEMMA lemma th =
     let rest = snd (dest_disj (concl th))
     in  EQ_MP (CONV_RULE (RAND_CONV (REWR_CONV F_OR))
                          (AP_THM (AP_TERM `(\/)` lemma) rest)) th
  in  let lemmas = []
  in let (tm',subs) = try( generalize_apart tm ) with Failure _ -> (tm,[])
  in let (new_ap_vars,gen_ap_terms) = List.split subs
  in let gen_terms = terms_to_be_generalized tm'
  in let _ = check (fun l ->  not (l = [])) (gen_ap_terms@gen_terms)
  in  let new_vars = distinct_vars (frees tm') (map type_of gen_terms)
  in  let tm'' = subst (lcombinep (new_vars,gen_terms)) tm'
  in  let countercheck = try counter_check 5 tm'' with Failure _ ->
    warn true "Could not generate counter example!" ; true
  in if (countercheck = true) then let proof th'' =
     let th' = ((SPECL gen_ap_terms) o (GENL new_ap_vars) o
       (SPECL gen_terms) o (GENL new_vars)) th''
         in rev_itlist ELIM_LEMMA lemmas th'
  in   (proof_print_string_l "-> Generalize Heuristic"() ; my_gen_terms := tm''::!my_gen_terms ; ([(tm'',ind)],apply_fproof "generalize_heuristic_ext" (proof o hd) [tm'']))
  else failwith "Counter example failure!"
 ) with Failure _ -> failwith "generalize_heuristic";;