Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 13,307 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
(* ========================================================================= *)
(* Perfect number theorems.                                                  *)
(* ========================================================================= *)

needs "Library/prime.ml";;

prioritize_num();;

(* ------------------------------------------------------------------------- *)
(* The sum-of-divisors function.                                             *)
(* ------------------------------------------------------------------------- *)

let sigma = new_definition
 `sigma(n) = if n = 0 then 0 else nsum {d | d divides n} (\i. i)`;;

(* ------------------------------------------------------------------------- *)
(* Definition of perfection.                                                 *)
(* ------------------------------------------------------------------------- *)

let perfect = new_definition
 `perfect n <=> ~(n = 0) /\ sigma(n) = 2 * n`;;

(* ------------------------------------------------------------------------- *)
(* Various number-theoretic lemmas.                                          *)
(* ------------------------------------------------------------------------- *)

let ODD_POW2_MINUS1 = prove
 (`!k. ~(k = 0) ==> ODD(2 EXP k - 1)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `EVEN(2 EXP k) <=> EVEN((2 EXP k - 1) + 1)` MP_TAC THENL
   [AP_TERM_TAC THEN REWRITE_TAC[ARITH_RULE `k = k - 1 + 1 <=> ~(k = 0)`] THEN
    REWRITE_TAC[EXP_EQ_0; ARITH];
    ASM_REWRITE_TAC[GSYM NOT_EVEN; EVEN_ADD; EVEN_EXP; ARITH]]);;

let EVEN_ODD_DECOMP = prove
 (`!n. ~(n = 0) ==> ?r s. ODD s /\ n = 2 EXP r * s`,
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN
  MP_TAC(SPEC `n:num` EVEN_OR_ODD) THEN
  REWRITE_TAC[EVEN_EXISTS; ODD_EXISTS] THEN
  DISCH_THEN(DISJ_CASES_THEN (X_CHOOSE_THEN `m:num` SUBST_ALL_TAC)) THENL
   [DISCH_THEN(MP_TAC o SPEC `m:num`) THEN
    REWRITE_TAC[MULT_EQ_0; ARITH; ARITH_RULE `m < 2 * m <=> ~(m = 0)`] THEN
    ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN
    ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN
    X_GEN_TAC `s:num` THEN DISCH_THEN(X_CHOOSE_TAC `r:num`) THEN
    EXISTS_TAC `SUC r` THEN ASM_REWRITE_TAC[EXP; GSYM MULT_ASSOC];
    REPEAT(DISCH_THEN(K ALL_TAC)) THEN EXISTS_TAC `0` THEN
    REWRITE_TAC[EXP; MULT_CLAUSES] THEN MESON_TAC[]]);;

let FINITE_DIVISORS = prove
 (`!n. ~(n = 0) ==> FINITE {d | d divides n}`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `{d | d <= n}` THEN REWRITE_TAC[FINITE_NUMSEG_LE] THEN
  REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[DIVIDES_LE]);;

let MULT_EQ_COPRIME = prove
 (`!a b x y. a * b = x * y /\ coprime(a,x)
             ==> ?d. y = a * d /\ b = x * d`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`a:num`; `x:num`; `y:num`] COPRIME_DIVPROD) THEN
  MP_TAC(SPECL [`x:num`; `a:num`; `b:num`] COPRIME_DIVPROD) THEN
  REPEAT(ANTS_TAC THENL
   [ASM_MESON_TAC[DIVIDES_REFL; DIVIDES_RMUL; COPRIME_SYM];
    REWRITE_TAC[divides] THEN STRIP_TAC]) THEN
  UNDISCH_TAC `a * b = x * y` THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[ARITH_RULE
    `(a * x * u = x * a * v) <=> (a * x) * u = (a * x) * v`] THEN
  REWRITE_TAC[EQ_MULT_LCANCEL; MULT_EQ_0] THEN ASM_MESON_TAC[]);;

let COPRIME_ODD_POW2 = prove
 (`!k n. ODD(n) ==> coprime(2 EXP k,n)`,
  SIMP_TAC[coprime; PRIME_2; DIVIDES_PRIMEPOW] THEN REWRITE_TAC[divides] THEN
  REPEAT STRIP_TAC THEN UNDISCH_TAC `ODD n` THEN ASM_REWRITE_TAC[] THEN
  SIMP_TAC[ODD_MULT; ODD_EXP; ARITH]);;

let MULT_NSUM = prove
 (`!s t. FINITE s /\ FINITE t
         ==> nsum s f * nsum t g =
             nsum {(x:A,y:B) | x IN s /\ y IN t} (\(x,y). f(x) * g(y))`,
  SIMP_TAC[GSYM NSUM_NSUM_PRODUCT; NSUM_LMUL; NSUM_RMUL]);;

(* ------------------------------------------------------------------------- *)
(* Some elementary properties of the sigma function.                         *)
(* ------------------------------------------------------------------------- *)

let SIGMA_0 = prove
 (`sigma 0 = 0`,
  REWRITE_TAC[sigma]);;

let SIGMA_1 = prove
 (`sigma(1) = 1`,
  REWRITE_TAC[sigma; DIVIDES_ONE; SET_RULE `{d | d = 1} = {1}`] THEN
  REWRITE_TAC[ARITH; NSUM_SING]);;

let SIGMA_LBOUND = prove
 (`!n. 1 < n ==> n + 1 <= sigma(n)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP (ARITH_RULE `1 < n ==> ~(n = 0)`)) THEN
  ASM_REWRITE_TAC[sigma] THEN MATCH_MP_TAC LE_TRANS THEN
  EXISTS_TAC `nsum {1,n} (\i. i)` THEN CONJ_TAC THENL
   [SIMP_TAC[NSUM_CLAUSES; FINITE_RULES; IN_SING; NOT_IN_EMPTY] THEN
    ASM_ARITH_TAC;
    MATCH_MP_TAC NSUM_SUBSET_SIMPLE THEN ASM_SIMP_TAC[FINITE_DIVISORS] THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM; NOT_IN_EMPTY; IN_INSERT] THEN
    MESON_TAC[DIVIDES_1; DIVIDES_REFL]]);;

let SIGMA_MULT = prove
 (`!a b. 1 < a /\ 1 < b ==> 1 + b + a * b <= sigma(a * b)`,
  REPEAT STRIP_TAC THEN
  EVERY_ASSUM(ASSUME_TAC o MATCH_MP (ARITH_RULE `1 < n ==> ~(n = 0)`)) THEN
  ASM_REWRITE_TAC[sigma] THEN MATCH_MP_TAC LE_TRANS THEN
  EXISTS_TAC `nsum {1,b,a*b} (\i. i)` THEN CONJ_TAC THENL
   [SIMP_TAC[NSUM_CLAUSES; FINITE_RULES; IN_INSERT; NOT_IN_EMPTY] THEN
    ONCE_REWRITE_TAC[ARITH_RULE `x = a * b <=> a * b = 1 * x`] THEN
    ASM_REWRITE_TAC[EQ_MULT_RCANCEL] THEN
    REWRITE_TAC[MULT_CLAUSES; MULT_EQ_1] THEN
    ASM_ARITH_TAC;
    ASM_REWRITE_TAC[MULT_EQ_0] THEN
    MATCH_MP_TAC NSUM_SUBSET_SIMPLE THEN
    ASM_SIMP_TAC[FINITE_DIVISORS; MULT_EQ_0] THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM; NOT_IN_EMPTY; IN_INSERT] THEN
    MESON_TAC[DIVIDES_1; DIVIDES_REFL; DIVIDES_LMUL]]);;

let SIGMA_PRIME = prove
 (`!p. prime(p) ==> sigma(p) = p + 1`,
  GEN_TAC THEN
  ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0; SIGMA_0; ARITH] THEN
  ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1; SIGMA_1; ARITH] THEN
  DISCH_TAC THEN ASM_REWRITE_TAC[sigma] THEN
  MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `nsum {1,p} (\i. i)` THEN
  CONJ_TAC THENL
   [AP_THM_TAC THEN AP_TERM_TAC THEN
    REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
    ASM_MESON_TAC[prime; DIVIDES_1; DIVIDES_REFL];
    ASM_SIMP_TAC[NSUM_CLAUSES; IN_SING; FINITE_RULES; NOT_IN_EMPTY] THEN
    ARITH_TAC]);;

let SIGMA_PRIME_EQ = prove
 (`!p. prime(p) <=> sigma(p) = p + 1`,
  GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[SIGMA_PRIME] THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
  REWRITE_TAC[prime; DE_MORGAN_THM] THEN
  ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[SIGMA_1; ARITH] THEN
  REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; divides; DE_MORGAN_THM] THEN
  DISCH_THEN(X_CHOOSE_THEN `a:num` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
  DISCH_THEN(X_CHOOSE_THEN `b:num` SUBST_ALL_TAC) THEN
  MP_TAC(SPECL [`a:num`; `b:num`] SIGMA_MULT) THEN
  ASM_CASES_TAC `a = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; SIGMA_0; ARITH] THEN
  ASM_CASES_TAC `b = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; SIGMA_0; ARITH] THEN
  REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[MULT_EQ_1] THEN
  ONCE_REWRITE_TAC[ARITH_RULE `a = a * b <=> a * b = a * 1`] THEN
  REWRITE_TAC[EQ_MULT_LCANCEL] THEN ARITH_TAC);;

let SIGMA_POW2 = prove
 (`!k. sigma(2 EXP k) = 2 EXP (k + 1) - 1`,
  GEN_TAC THEN REWRITE_TAC[sigma; EXP_EQ_0; ARITH] THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `nsum {2 EXP i | i <= k} (\i. i)` THEN CONJ_TAC THENL
   [AP_THM_TAC THEN AP_TERM_TAC THEN
    SIMP_TAC[DIVIDES_PRIMEPOW; PRIME_2; EXTENSION; IN_ELIM_THM];
    ALL_TAC] THEN
  MATCH_MP_TAC(ARITH_RULE `x + 1 = y ==> x = y - 1`) THEN
  SPEC_TAC(`k:num`,`k:num`) THEN INDUCT_TAC THEN REWRITE_TAC[LE] THENL
   [REWRITE_TAC[SET_RULE `{2 EXP i | i = 0} = {2 EXP 0}`] THEN
    REWRITE_TAC[ARITH; NSUM_SING];
    ALL_TAC] THEN
  REWRITE_TAC[SET_RULE
   `{2 EXP i | i = SUC k \/ i <= k} =
    (2 EXP (SUC k)) INSERT {2 EXP i | i <= k}`] THEN
  POP_ASSUM MP_TAC THEN
  REWRITE_TAC[SET_RULE
   `{2 EXP i | i <= k} = IMAGE (\i. 2 EXP i) {i | i <= k}`] THEN
  SIMP_TAC[NSUM_CLAUSES; FINITE_IMAGE; FINITE_NUMSEG_LE] THEN
  REWRITE_TAC[IN_IMAGE; GSYM LE_ANTISYM; LE_EXP; ARITH] THEN
  REWRITE_TAC[LE_ANTISYM; IN_ELIM_THM; UNWIND_THM1] THEN
  REWRITE_TAC[ARITH_RULE `~(SUC k <= k)`] THEN
  DISCH_TAC THEN ASM_REWRITE_TAC[GSYM ADD_ASSOC] THEN
  REWRITE_TAC[EXP; EXP_ADD; ARITH] THEN ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Multiplicativity of sigma, the most interesting property.                 *)
(* ------------------------------------------------------------------------- *)

let SIGMA_MULTIPLICATIVE = prove
 (`!a b. coprime(a,b) ==> sigma(a * b) = sigma(a) * sigma(b)`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `a = 0` THEN ASM_REWRITE_TAC[SIGMA_0; MULT_CLAUSES] THEN
  ASM_CASES_TAC `b = 0` THEN ASM_REWRITE_TAC[SIGMA_0; MULT_CLAUSES] THEN
  DISCH_TAC THEN ASM_REWRITE_TAC[sigma; MULT_EQ_0] THEN
  ASM_SIMP_TAC[FINITE_DIVISORS; MULT_NSUM] THEN
  REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC
   `nsum (IMAGE (\(x,y). x * y)
         {x,y | x divides a /\ y divides b}) (\i. i)` THEN
  CONJ_TAC THENL
   [AP_THM_TAC THEN AP_TERM_TAC THEN
    REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM; EXISTS_PAIR_THM] THEN
    REWRITE_TAC[PAIR_EQ] THEN
    ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> c /\ a /\ b`] THEN
    REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
    X_GEN_TAC `n:num` THEN EQ_TAC THEN REWRITE_TAC[DIVISION_DECOMP] THEN
    REWRITE_TAC[divides] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    MESON_TAC[MULT_AC];
    ALL_TAC] THEN
  W(fun (asl,w) -> MP_TAC(PART_MATCH (lhs o rand) NSUM_IMAGE (lhand w))) THEN
  REWRITE_TAC[o_DEF; ETA_AX] THEN DISCH_THEN MATCH_MP_TAC THEN
  REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN
  MAP_EVERY X_GEN_TAC [`w:num`; `x:num`; `y:num`; `z:num`] THEN
  REWRITE_TAC[PAIR_EQ] THEN STRIP_TAC THEN
  REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM o
    check (is_var o rand o concl))) THEN
  REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN
  ASM_MESON_TAC[COPRIME_DIVISORS; COPRIME_SYM; COPRIME_DIVPROD;
                DIVIDES_RMUL; DIVIDES_REFL; MULT_SYM]);;

(* ------------------------------------------------------------------------- *)
(* Hence the main theorems.                                                  *)
(* ------------------------------------------------------------------------- *)

let PERFECT_EUCLID = prove
 (`!k. prime(2 EXP k - 1) ==> perfect(2 EXP (k - 1) * (2 EXP k - 1))`,
  GEN_TAC THEN ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[ARITH; PRIME_0] THEN
  DISCH_TAC THEN
  SUBGOAL_THEN `coprime(2 EXP (k - 1),2 EXP k - 1)` ASSUME_TAC THENL
   [MATCH_MP_TAC COPRIME_ODD_POW2 THEN ASM_SIMP_TAC[ODD_POW2_MINUS1];
    ALL_TAC] THEN
  ASM_SIMP_TAC[perfect; SIGMA_MULTIPLICATIVE; SIGMA_PRIME; SIGMA_POW2] THEN
  ASM_SIMP_TAC[ARITH_RULE `~(k = 0) ==> k - 1 + 1 = k`; EXP_EQ_0;
               MULT_EQ_0; ARITH] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
  REWRITE_TAC[MULT_ASSOC] THEN GEN_REWRITE_TAC RAND_CONV [MULT_SYM] THEN
  AP_TERM_TAC THEN REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN
  AP_TERM_TAC THEN UNDISCH_TAC `~(k = 0)` THEN ARITH_TAC);;

let PERFECT_EULER = prove
 (`!n. EVEN(n) /\ perfect(n)
       ==> ?k. prime(2 EXP k - 1) /\ n = 2 EXP (k - 1) * (2 EXP k - 1)`,
  GEN_TAC THEN MP_TAC(SPEC `n:num` EVEN_ODD_DECOMP) THEN
  ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[perfect]; ASM_REWRITE_TAC[]] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM; GSYM NOT_EVEN] THEN
  MAP_EVERY X_GEN_TAC [`r:num`; `s:num`] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN
  ASM_REWRITE_TAC[EVEN_EXP; EVEN_MULT; ARITH] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  REWRITE_TAC[perfect] THEN
  ASM_SIMP_TAC[SIGMA_MULTIPLICATIVE; SIGMA_POW2;
               COPRIME_ODD_POW2; GSYM NOT_EVEN] THEN
  DISCH_TAC THEN EXISTS_TAC `r + 1` THEN
  REWRITE_TAC[ADD_SUB; EQ_MULT_LCANCEL] THEN REWRITE_TAC[EXP_EQ_0; ARITH] THEN
  FIRST_X_ASSUM(MP_TAC o check(is_eq o concl)) THEN
  REWRITE_TAC[MULT_ASSOC; GSYM(CONJUNCT2 EXP); ADD1] THEN
  DISCH_THEN(MP_TAC o MATCH_MP
    (REWRITE_RULE[IMP_CONJ] MULT_EQ_COPRIME)) THEN
  ANTS_TAC THENL
   [ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_ODD_POW2 THEN
    SIMP_TAC[ODD_POW2_MINUS1; ADD_EQ_0; ARITH_EQ];
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` MP_TAC) THEN
  ASM_CASES_TAC `d = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THENL
   [ASM_MESON_TAC[EVEN]; ALL_TAC] THEN
  ASM_CASES_TAC `d = 1` THENL
   [ASM_REWRITE_TAC[MULT_CLAUSES; SIGMA_PRIME_EQ] THEN
    DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SYM) ASSUME_TAC) THEN
    ASM_REWRITE_TAC[] THEN EXPAND_TAC "s" THEN
    MATCH_MP_TAC(GSYM SUB_ADD) THEN
    REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; EXP_EQ_0; ARITH];
    ALL_TAC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SYM) ASSUME_TAC) THEN
  MP_TAC(SPECL [`2 EXP (r + 1) - 1`; `d:num`] SIGMA_MULT) THEN
  ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(TAUT `a /\ ~b ==> (a ==> b) ==> c`) THEN
  REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC(ARITH_RULE `2 EXP 1 < a ==> 1 < a - 1`) THEN
    REWRITE_TAC[LT_EXP; ARITH] THEN
    UNDISCH_TAC `~(r = 0)` THEN ARITH_TAC;
    MAP_EVERY UNDISCH_TAC [`~(d = 0)`; `~(d = 1)`] THEN ARITH_TAC;
    REWRITE_TAC[NOT_LE] THEN EXPAND_TAC "s" THEN
    REWRITE_TAC[RIGHT_SUB_DISTRIB; MULT_CLAUSES] THEN
    MATCH_MP_TAC(ARITH_RULE `1 * d < x * d ==> x * d < 1 + d + x * d - d`) THEN
    ASM_REWRITE_TAC[LT_MULT_RCANCEL] THEN
    MATCH_MP_TAC(ARITH_RULE `2 EXP 0 < a ==> 1 < a`) THEN
    REWRITE_TAC[LT_EXP] THEN UNDISCH_TAC `~(r = 0)` THEN ARITH_TAC]);;