Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 13,307 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
(* ========================================================================= *)
(* Perfect number theorems. *)
(* ========================================================================= *)
needs "Library/prime.ml";;
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* The sum-of-divisors function. *)
(* ------------------------------------------------------------------------- *)
let sigma = new_definition
`sigma(n) = if n = 0 then 0 else nsum {d | d divides n} (\i. i)`;;
(* ------------------------------------------------------------------------- *)
(* Definition of perfection. *)
(* ------------------------------------------------------------------------- *)
let perfect = new_definition
`perfect n <=> ~(n = 0) /\ sigma(n) = 2 * n`;;
(* ------------------------------------------------------------------------- *)
(* Various number-theoretic lemmas. *)
(* ------------------------------------------------------------------------- *)
let ODD_POW2_MINUS1 = prove
(`!k. ~(k = 0) ==> ODD(2 EXP k - 1)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `EVEN(2 EXP k) <=> EVEN((2 EXP k - 1) + 1)` MP_TAC THENL
[AP_TERM_TAC THEN REWRITE_TAC[ARITH_RULE `k = k - 1 + 1 <=> ~(k = 0)`] THEN
REWRITE_TAC[EXP_EQ_0; ARITH];
ASM_REWRITE_TAC[GSYM NOT_EVEN; EVEN_ADD; EVEN_EXP; ARITH]]);;
let EVEN_ODD_DECOMP = prove
(`!n. ~(n = 0) ==> ?r s. ODD s /\ n = 2 EXP r * s`,
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN
MP_TAC(SPEC `n:num` EVEN_OR_ODD) THEN
REWRITE_TAC[EVEN_EXISTS; ODD_EXISTS] THEN
DISCH_THEN(DISJ_CASES_THEN (X_CHOOSE_THEN `m:num` SUBST_ALL_TAC)) THENL
[DISCH_THEN(MP_TAC o SPEC `m:num`) THEN
REWRITE_TAC[MULT_EQ_0; ARITH; ARITH_RULE `m < 2 * m <=> ~(m = 0)`] THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `s:num` THEN DISCH_THEN(X_CHOOSE_TAC `r:num`) THEN
EXISTS_TAC `SUC r` THEN ASM_REWRITE_TAC[EXP; GSYM MULT_ASSOC];
REPEAT(DISCH_THEN(K ALL_TAC)) THEN EXISTS_TAC `0` THEN
REWRITE_TAC[EXP; MULT_CLAUSES] THEN MESON_TAC[]]);;
let FINITE_DIVISORS = prove
(`!n. ~(n = 0) ==> FINITE {d | d divides n}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{d | d <= n}` THEN REWRITE_TAC[FINITE_NUMSEG_LE] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[DIVIDES_LE]);;
let MULT_EQ_COPRIME = prove
(`!a b x y. a * b = x * y /\ coprime(a,x)
==> ?d. y = a * d /\ b = x * d`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`a:num`; `x:num`; `y:num`] COPRIME_DIVPROD) THEN
MP_TAC(SPECL [`x:num`; `a:num`; `b:num`] COPRIME_DIVPROD) THEN
REPEAT(ANTS_TAC THENL
[ASM_MESON_TAC[DIVIDES_REFL; DIVIDES_RMUL; COPRIME_SYM];
REWRITE_TAC[divides] THEN STRIP_TAC]) THEN
UNDISCH_TAC `a * b = x * y` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[ARITH_RULE
`(a * x * u = x * a * v) <=> (a * x) * u = (a * x) * v`] THEN
REWRITE_TAC[EQ_MULT_LCANCEL; MULT_EQ_0] THEN ASM_MESON_TAC[]);;
let COPRIME_ODD_POW2 = prove
(`!k n. ODD(n) ==> coprime(2 EXP k,n)`,
SIMP_TAC[coprime; PRIME_2; DIVIDES_PRIMEPOW] THEN REWRITE_TAC[divides] THEN
REPEAT STRIP_TAC THEN UNDISCH_TAC `ODD n` THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[ODD_MULT; ODD_EXP; ARITH]);;
let MULT_NSUM = prove
(`!s t. FINITE s /\ FINITE t
==> nsum s f * nsum t g =
nsum {(x:A,y:B) | x IN s /\ y IN t} (\(x,y). f(x) * g(y))`,
SIMP_TAC[GSYM NSUM_NSUM_PRODUCT; NSUM_LMUL; NSUM_RMUL]);;
(* ------------------------------------------------------------------------- *)
(* Some elementary properties of the sigma function. *)
(* ------------------------------------------------------------------------- *)
let SIGMA_0 = prove
(`sigma 0 = 0`,
REWRITE_TAC[sigma]);;
let SIGMA_1 = prove
(`sigma(1) = 1`,
REWRITE_TAC[sigma; DIVIDES_ONE; SET_RULE `{d | d = 1} = {1}`] THEN
REWRITE_TAC[ARITH; NSUM_SING]);;
let SIGMA_LBOUND = prove
(`!n. 1 < n ==> n + 1 <= sigma(n)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (ARITH_RULE `1 < n ==> ~(n = 0)`)) THEN
ASM_REWRITE_TAC[sigma] THEN MATCH_MP_TAC LE_TRANS THEN
EXISTS_TAC `nsum {1,n} (\i. i)` THEN CONJ_TAC THENL
[SIMP_TAC[NSUM_CLAUSES; FINITE_RULES; IN_SING; NOT_IN_EMPTY] THEN
ASM_ARITH_TAC;
MATCH_MP_TAC NSUM_SUBSET_SIMPLE THEN ASM_SIMP_TAC[FINITE_DIVISORS] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; NOT_IN_EMPTY; IN_INSERT] THEN
MESON_TAC[DIVIDES_1; DIVIDES_REFL]]);;
let SIGMA_MULT = prove
(`!a b. 1 < a /\ 1 < b ==> 1 + b + a * b <= sigma(a * b)`,
REPEAT STRIP_TAC THEN
EVERY_ASSUM(ASSUME_TAC o MATCH_MP (ARITH_RULE `1 < n ==> ~(n = 0)`)) THEN
ASM_REWRITE_TAC[sigma] THEN MATCH_MP_TAC LE_TRANS THEN
EXISTS_TAC `nsum {1,b,a*b} (\i. i)` THEN CONJ_TAC THENL
[SIMP_TAC[NSUM_CLAUSES; FINITE_RULES; IN_INSERT; NOT_IN_EMPTY] THEN
ONCE_REWRITE_TAC[ARITH_RULE `x = a * b <=> a * b = 1 * x`] THEN
ASM_REWRITE_TAC[EQ_MULT_RCANCEL] THEN
REWRITE_TAC[MULT_CLAUSES; MULT_EQ_1] THEN
ASM_ARITH_TAC;
ASM_REWRITE_TAC[MULT_EQ_0] THEN
MATCH_MP_TAC NSUM_SUBSET_SIMPLE THEN
ASM_SIMP_TAC[FINITE_DIVISORS; MULT_EQ_0] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; NOT_IN_EMPTY; IN_INSERT] THEN
MESON_TAC[DIVIDES_1; DIVIDES_REFL; DIVIDES_LMUL]]);;
let SIGMA_PRIME = prove
(`!p. prime(p) ==> sigma(p) = p + 1`,
GEN_TAC THEN
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0; SIGMA_0; ARITH] THEN
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1; SIGMA_1; ARITH] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[sigma] THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `nsum {1,p} (\i. i)` THEN
CONJ_TAC THENL
[AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
ASM_MESON_TAC[prime; DIVIDES_1; DIVIDES_REFL];
ASM_SIMP_TAC[NSUM_CLAUSES; IN_SING; FINITE_RULES; NOT_IN_EMPTY] THEN
ARITH_TAC]);;
let SIGMA_PRIME_EQ = prove
(`!p. prime(p) <=> sigma(p) = p + 1`,
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[SIGMA_PRIME] THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[prime; DE_MORGAN_THM] THEN
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[SIGMA_1; ARITH] THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; divides; DE_MORGAN_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `a:num` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
DISCH_THEN(X_CHOOSE_THEN `b:num` SUBST_ALL_TAC) THEN
MP_TAC(SPECL [`a:num`; `b:num`] SIGMA_MULT) THEN
ASM_CASES_TAC `a = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; SIGMA_0; ARITH] THEN
ASM_CASES_TAC `b = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; SIGMA_0; ARITH] THEN
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[MULT_EQ_1] THEN
ONCE_REWRITE_TAC[ARITH_RULE `a = a * b <=> a * b = a * 1`] THEN
REWRITE_TAC[EQ_MULT_LCANCEL] THEN ARITH_TAC);;
let SIGMA_POW2 = prove
(`!k. sigma(2 EXP k) = 2 EXP (k + 1) - 1`,
GEN_TAC THEN REWRITE_TAC[sigma; EXP_EQ_0; ARITH] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `nsum {2 EXP i | i <= k} (\i. i)` THEN CONJ_TAC THENL
[AP_THM_TAC THEN AP_TERM_TAC THEN
SIMP_TAC[DIVIDES_PRIMEPOW; PRIME_2; EXTENSION; IN_ELIM_THM];
ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `x + 1 = y ==> x = y - 1`) THEN
SPEC_TAC(`k:num`,`k:num`) THEN INDUCT_TAC THEN REWRITE_TAC[LE] THENL
[REWRITE_TAC[SET_RULE `{2 EXP i | i = 0} = {2 EXP 0}`] THEN
REWRITE_TAC[ARITH; NSUM_SING];
ALL_TAC] THEN
REWRITE_TAC[SET_RULE
`{2 EXP i | i = SUC k \/ i <= k} =
(2 EXP (SUC k)) INSERT {2 EXP i | i <= k}`] THEN
POP_ASSUM MP_TAC THEN
REWRITE_TAC[SET_RULE
`{2 EXP i | i <= k} = IMAGE (\i. 2 EXP i) {i | i <= k}`] THEN
SIMP_TAC[NSUM_CLAUSES; FINITE_IMAGE; FINITE_NUMSEG_LE] THEN
REWRITE_TAC[IN_IMAGE; GSYM LE_ANTISYM; LE_EXP; ARITH] THEN
REWRITE_TAC[LE_ANTISYM; IN_ELIM_THM; UNWIND_THM1] THEN
REWRITE_TAC[ARITH_RULE `~(SUC k <= k)`] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[GSYM ADD_ASSOC] THEN
REWRITE_TAC[EXP; EXP_ADD; ARITH] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Multiplicativity of sigma, the most interesting property. *)
(* ------------------------------------------------------------------------- *)
let SIGMA_MULTIPLICATIVE = prove
(`!a b. coprime(a,b) ==> sigma(a * b) = sigma(a) * sigma(b)`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `a = 0` THEN ASM_REWRITE_TAC[SIGMA_0; MULT_CLAUSES] THEN
ASM_CASES_TAC `b = 0` THEN ASM_REWRITE_TAC[SIGMA_0; MULT_CLAUSES] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[sigma; MULT_EQ_0] THEN
ASM_SIMP_TAC[FINITE_DIVISORS; MULT_NSUM] THEN
REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC
`nsum (IMAGE (\(x,y). x * y)
{x,y | x divides a /\ y divides b}) (\i. i)` THEN
CONJ_TAC THENL
[AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM; EXISTS_PAIR_THM] THEN
REWRITE_TAC[PAIR_EQ] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> c /\ a /\ b`] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
X_GEN_TAC `n:num` THEN EQ_TAC THEN REWRITE_TAC[DIVISION_DECOMP] THEN
REWRITE_TAC[divides] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
MESON_TAC[MULT_AC];
ALL_TAC] THEN
W(fun (asl,w) -> MP_TAC(PART_MATCH (lhs o rand) NSUM_IMAGE (lhand w))) THEN
REWRITE_TAC[o_DEF; ETA_AX] THEN DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN
MAP_EVERY X_GEN_TAC [`w:num`; `x:num`; `y:num`; `z:num`] THEN
REWRITE_TAC[PAIR_EQ] THEN STRIP_TAC THEN
REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM o
check (is_var o rand o concl))) THEN
REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN
ASM_MESON_TAC[COPRIME_DIVISORS; COPRIME_SYM; COPRIME_DIVPROD;
DIVIDES_RMUL; DIVIDES_REFL; MULT_SYM]);;
(* ------------------------------------------------------------------------- *)
(* Hence the main theorems. *)
(* ------------------------------------------------------------------------- *)
let PERFECT_EUCLID = prove
(`!k. prime(2 EXP k - 1) ==> perfect(2 EXP (k - 1) * (2 EXP k - 1))`,
GEN_TAC THEN ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[ARITH; PRIME_0] THEN
DISCH_TAC THEN
SUBGOAL_THEN `coprime(2 EXP (k - 1),2 EXP k - 1)` ASSUME_TAC THENL
[MATCH_MP_TAC COPRIME_ODD_POW2 THEN ASM_SIMP_TAC[ODD_POW2_MINUS1];
ALL_TAC] THEN
ASM_SIMP_TAC[perfect; SIGMA_MULTIPLICATIVE; SIGMA_PRIME; SIGMA_POW2] THEN
ASM_SIMP_TAC[ARITH_RULE `~(k = 0) ==> k - 1 + 1 = k`; EXP_EQ_0;
MULT_EQ_0; ARITH] THEN
CONJ_TAC THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
REWRITE_TAC[MULT_ASSOC] THEN GEN_REWRITE_TAC RAND_CONV [MULT_SYM] THEN
AP_TERM_TAC THEN REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN
AP_TERM_TAC THEN UNDISCH_TAC `~(k = 0)` THEN ARITH_TAC);;
let PERFECT_EULER = prove
(`!n. EVEN(n) /\ perfect(n)
==> ?k. prime(2 EXP k - 1) /\ n = 2 EXP (k - 1) * (2 EXP k - 1)`,
GEN_TAC THEN MP_TAC(SPEC `n:num` EVEN_ODD_DECOMP) THEN
ASM_CASES_TAC `n = 0` THENL
[ASM_REWRITE_TAC[perfect]; ASM_REWRITE_TAC[]] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; GSYM NOT_EVEN] THEN
MAP_EVERY X_GEN_TAC [`r:num`; `s:num`] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN
ASM_REWRITE_TAC[EVEN_EXP; EVEN_MULT; ARITH] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[perfect] THEN
ASM_SIMP_TAC[SIGMA_MULTIPLICATIVE; SIGMA_POW2;
COPRIME_ODD_POW2; GSYM NOT_EVEN] THEN
DISCH_TAC THEN EXISTS_TAC `r + 1` THEN
REWRITE_TAC[ADD_SUB; EQ_MULT_LCANCEL] THEN REWRITE_TAC[EXP_EQ_0; ARITH] THEN
FIRST_X_ASSUM(MP_TAC o check(is_eq o concl)) THEN
REWRITE_TAC[MULT_ASSOC; GSYM(CONJUNCT2 EXP); ADD1] THEN
DISCH_THEN(MP_TAC o MATCH_MP
(REWRITE_RULE[IMP_CONJ] MULT_EQ_COPRIME)) THEN
ANTS_TAC THENL
[ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_ODD_POW2 THEN
SIMP_TAC[ODD_POW2_MINUS1; ADD_EQ_0; ARITH_EQ];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` MP_TAC) THEN
ASM_CASES_TAC `d = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THENL
[ASM_MESON_TAC[EVEN]; ALL_TAC] THEN
ASM_CASES_TAC `d = 1` THENL
[ASM_REWRITE_TAC[MULT_CLAUSES; SIGMA_PRIME_EQ] THEN
DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SYM) ASSUME_TAC) THEN
ASM_REWRITE_TAC[] THEN EXPAND_TAC "s" THEN
MATCH_MP_TAC(GSYM SUB_ADD) THEN
REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; EXP_EQ_0; ARITH];
ALL_TAC] THEN
DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SYM) ASSUME_TAC) THEN
MP_TAC(SPECL [`2 EXP (r + 1) - 1`; `d:num`] SIGMA_MULT) THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(TAUT `a /\ ~b ==> (a ==> b) ==> c`) THEN
REPEAT CONJ_TAC THENL
[MATCH_MP_TAC(ARITH_RULE `2 EXP 1 < a ==> 1 < a - 1`) THEN
REWRITE_TAC[LT_EXP; ARITH] THEN
UNDISCH_TAC `~(r = 0)` THEN ARITH_TAC;
MAP_EVERY UNDISCH_TAC [`~(d = 0)`; `~(d = 1)`] THEN ARITH_TAC;
REWRITE_TAC[NOT_LE] THEN EXPAND_TAC "s" THEN
REWRITE_TAC[RIGHT_SUB_DISTRIB; MULT_CLAUSES] THEN
MATCH_MP_TAC(ARITH_RULE `1 * d < x * d ==> x * d < 1 + d + x * d - d`) THEN
ASM_REWRITE_TAC[LT_MULT_RCANCEL] THEN
MATCH_MP_TAC(ARITH_RULE `2 EXP 0 < a ==> 1 < a`) THEN
REWRITE_TAC[LT_EXP] THEN UNDISCH_TAC `~(r = 0)` THEN ARITH_TAC]);;
|