Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,279 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
(* ========================================================================= *)
(* Impossibility of Eulerian path for bridges of Koenigsberg.                *)
(* ========================================================================= *)

let edges = new_definition
  `edges(E:E->bool,V:V->bool,Ter:E->V->bool) = E`;;

let vertices = new_definition
  `vertices(E:E->bool,V:V->bool,Ter:E->V->bool) = V`;;

let termini = new_definition
  `termini(E:E->bool,V:V->bool,Ter:E->V->bool) = Ter`;;

(* ------------------------------------------------------------------------- *)
(* Definition of an undirected graph.                                        *)
(* ------------------------------------------------------------------------- *)

let graph = new_definition
 `graph G <=>
        !e. e IN edges(G)
            ==> ?a b. a IN vertices(G) /\ b IN vertices(G) /\
                      termini G e = {a,b}`;;

let TERMINI_IN_VERTICES = prove
 (`!G e v. graph G /\ e IN edges(G) /\ v IN termini G e ==> v IN vertices G`,
  REWRITE_TAC[graph; EXTENSION; IN_INSERT; NOT_IN_EMPTY] THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Connection in a graph.                                                    *)
(* ------------------------------------------------------------------------- *)

let connects = new_definition
 `connects G e (a,b) <=> termini G e = {a,b}`;;

(* ------------------------------------------------------------------------- *)
(* Delete an edge in a graph.                                                *)
(* ------------------------------------------------------------------------- *)

let delete_edge = new_definition
 `delete_edge e (E,V,Ter) = (E DELETE e,V,Ter)`;;

let DELETE_EDGE_CLAUSES = prove
 (`(!G. edges(delete_edge e G) = (edges G) DELETE e) /\
   (!G. vertices(delete_edge e G) = vertices G) /\
   (!G. termini(delete_edge e G) = termini G)`,
  REWRITE_TAC[FORALL_PAIR_THM; delete_edge; edges; vertices; termini]);;

let GRAPH_DELETE_EDGE = prove
 (`!G e. graph G ==> graph(delete_edge e G)`,
  REWRITE_TAC[graph; DELETE_EDGE_CLAUSES; IN_DELETE] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Local finiteness: set of edges with given endpoint is finite.             *)
(* ------------------------------------------------------------------------- *)

let locally_finite = new_definition
 `locally_finite G <=>
     !v. v IN vertices(G) ==> FINITE {e | e IN edges G /\ v IN termini G e}`;;

(* ------------------------------------------------------------------------- *)
(* Degree of a vertex.                                                       *)
(* ------------------------------------------------------------------------- *)

let localdegree = new_definition
 `localdegree G v e =
        if termini G e = {v} then 2
        else if v IN termini G e then 1
        else 0`;;

let degree = new_definition
 `degree G v = nsum {e | e IN edges G /\ v IN termini G e} (localdegree G v)`;;

let DEGREE_DELETE_EDGE = prove
 (`!G e:E v:V.
        graph G /\ locally_finite G /\ e IN edges(G)
        ==> degree G v =
                if termini G e = {v} then degree (delete_edge e G) v + 2
                else if v IN termini G e then degree (delete_edge e G) v + 1
                else degree (delete_edge e G) v`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[degree; DELETE_EDGE_CLAUSES; IN_DELETE] THEN
  SUBGOAL_THEN
   `{e:E | e IN edges G /\ (v:V) IN termini G e} =
        if v IN termini G e
        then e INSERT {e' | (e' IN edges G /\ ~(e' = e)) /\ v IN termini G e'}
        else {e' | (e' IN edges G /\ ~(e' = e)) /\ v IN termini G e'}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION] THEN GEN_TAC THEN COND_CASES_TAC THEN
    ASM_REWRITE_TAC[IN_ELIM_THM; IN_INSERT] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  ASM_CASES_TAC `(v:V) IN termini G (e:E)` THEN ASM_REWRITE_TAC[] THENL
   [ALL_TAC;
    COND_CASES_TAC THENL [ASM_MESON_TAC[IN_SING; EXTENSION]; ALL_TAC] THEN
    MATCH_MP_TAC NSUM_EQ THEN REWRITE_TAC[IN_ELIM_THM; localdegree] THEN
    REWRITE_TAC[DELETE_EDGE_CLAUSES]] THEN
  SUBGOAL_THEN
   `FINITE {e':E | (e' IN edges G /\ ~(e' = e)) /\ (v:V) IN termini G e'}`
   (fun th -> SIMP_TAC[NSUM_CLAUSES; th])
  THENL
   [MATCH_MP_TAC FINITE_SUBSET THEN
    EXISTS_TAC `{e:E | e IN edges G /\ (v:V) IN termini G e}` THEN
    SIMP_TAC[IN_ELIM_THM; SUBSET] THEN
    ASM_MESON_TAC[locally_finite; TERMINI_IN_VERTICES];
    ALL_TAC] THEN
  REWRITE_TAC[IN_ELIM_THM] THEN ASM_REWRITE_TAC[localdegree] THEN
  SUBGOAL_THEN
   `nsum {e':E | (e' IN edges G /\ ~(e' = e)) /\ (v:V) IN termini G e'}
         (localdegree (delete_edge e G) v) =
    nsum {e' | (e' IN edges G /\ ~(e' = e)) /\ v IN termini G e'}
         (localdegree G v)`
  SUBST1_TAC THENL
   [ALL_TAC; COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ARITH_TAC] THEN
  MATCH_MP_TAC NSUM_EQ THEN SIMP_TAC[localdegree; DELETE_EDGE_CLAUSES]);;

(* ------------------------------------------------------------------------- *)
(* Definition of Eulerian path.                                              *)
(* ------------------------------------------------------------------------- *)

let eulerian_RULES,eulerian_INDUCT,eulerian_CASES = new_inductive_definition
 `(!G a. a IN vertices G /\ edges G = {} ==> eulerian G [] (a,a)) /\
  (!G a b c e es. e IN edges(G) /\ connects G e (a,b) /\
                  eulerian (delete_edge e G) es (b,c)
                  ==> eulerian G (CONS e es) (a,c))`;;

let EULERIAN_FINITE = prove
 (`!G es ab. eulerian G es ab ==> FINITE (edges G)`,
  MATCH_MP_TAC eulerian_INDUCT THEN
  SIMP_TAC[DELETE_EDGE_CLAUSES; FINITE_DELETE; FINITE_RULES]);;

(* ------------------------------------------------------------------------- *)
(* The main result.                                                          *)
(* ------------------------------------------------------------------------- *)

let EULERIAN_ODD_LEMMA = prove
 (`!G:(E->bool)#(V->bool)#(E->V->bool) es ab.
        eulerian G es ab
        ==> graph G
            ==> FINITE(edges G) /\
                !v. v IN vertices G
                    ==> (ODD(degree G v) <=>
                         ~(FST ab = SND ab) /\ (v = FST ab \/ v = SND ab))`,
  MATCH_MP_TAC eulerian_INDUCT THEN CONJ_TAC THENL
   [SIMP_TAC[degree; NOT_IN_EMPTY; SET_RULE `{x | F} = {}`] THEN
    SIMP_TAC[NSUM_CLAUSES; FINITE_RULES; ARITH];
    ALL_TAC] THEN
  SIMP_TAC[GRAPH_DELETE_EDGE; FINITE_DELETE; DELETE_EDGE_CLAUSES] THEN
  REPEAT GEN_TAC THEN
  DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
  ASM_SIMP_TAC[GRAPH_DELETE_EDGE] THEN STRIP_TAC THEN
  X_GEN_TAC `v:V` THEN DISCH_TAC THEN
  MP_TAC(ISPECL [`G:(E->bool)#(V->bool)#(E->V->bool)`; `e:E`; `v:V`]
                DEGREE_DELETE_EDGE) THEN
  ANTS_TAC THENL
   [ASM_REWRITE_TAC[locally_finite] THEN GEN_TAC THEN DISCH_TAC THEN
    MATCH_MP_TAC FINITE_SUBSET THEN
    EXISTS_TAC `edges(G:(E->bool)#(V->bool)#(E->V->bool))` THEN
    ASM_SIMP_TAC[SUBSET; IN_ELIM_THM];
    ALL_TAC] THEN
  DISCH_THEN SUBST1_TAC THEN
  MP_TAC(ISPECL [`G:(E->bool)#(V->bool)#(E->V->bool)`; `e:E`]
         TERMINI_IN_VERTICES) THEN
  ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [connects]) THEN
  DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
  ASM_CASES_TAC `b:V = a` THEN ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[SET_RULE `{a,a} = {v} <=> v = a`] THEN
    COND_CASES_TAC THEN ASM_SIMP_TAC[ODD_ADD; ARITH];
    ALL_TAC] THEN
  ASM_REWRITE_TAC[SET_RULE `{a,b} = {v} <=> a = b /\ a = v`] THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[ODD_ADD; ARITH] THEN ASM_MESON_TAC[]);;

let EULERIAN_ODD = prove
 (`!G es a b.
        graph G /\ eulerian G es (a,b)
        ==> !v. v IN vertices G
                ==> (ODD(degree G v) <=> ~(a = b) /\ (v = a \/ v = b))`,
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(MP_TAC o MATCH_MP EULERIAN_ODD_LEMMA) THEN
  ASM_SIMP_TAC[FST; SND]);;

(* ------------------------------------------------------------------------- *)
(* Now the actual Koenigsberg configuration.                                 *)
(* ------------------------------------------------------------------------- *)

let KOENIGSBERG = prove
 (`!G. vertices(G) = {0,1,2,3} /\
       edges(G) = {10,20,30,40,50,60,70} /\
       termini G (10) = {0,1} /\
       termini G (20) = {0,2} /\
       termini G (30) = {0,3} /\
       termini G (40) = {1,2} /\
       termini G (50) = {1,2} /\
       termini G (60) = {2,3} /\
       termini G (70) = {2,3}
       ==> ~(?es a b. eulerian G es (a,b))`,
  GEN_TAC THEN STRIP_TAC THEN
  MP_TAC(ISPEC `G:(num->bool)#(num->bool)#(num->num->bool)` EULERIAN_ODD) THEN
  REWRITE_TAC[NOT_EXISTS_THM] THEN
  REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ANTS_TAC THENL
   [ASM_REWRITE_TAC[graph] THEN GEN_TAC THEN
    REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[SET_RULE
     `{a,b} = {x,y} <=> a = x /\ b = y \/ a = y /\ b = x`] THEN
    MESON_TAC[];
    ALL_TAC] THEN
  ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
  SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
  ASM_REWRITE_TAC[degree; edges] THEN
  SIMP_TAC[TAUT `a IN s /\ k IN t <=> ~(a IN s ==> ~(k IN t))`] THEN
  ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
  SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
  ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH] THEN
  REWRITE_TAC[DE_MORGAN_THM] THEN
  REWRITE_TAC[SET_RULE `{x | x = a \/ P(x)} = a INSERT {x | P(x)}`] THEN
  REWRITE_TAC[SET_RULE `{x | x = a} = {a}`] THEN
  SIMP_TAC[NSUM_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH] THEN
  ASM_REWRITE_TAC[localdegree; IN_INSERT; NOT_IN_EMPTY; ARITH] THEN
  REWRITE_TAC[SET_RULE `{a,b} = {x} <=> x = a /\ a = b`] THEN
  DISCH_THEN(fun th ->
   MP_TAC(SPEC `0` th) THEN MP_TAC(SPEC `1` th) THEN
   MP_TAC(SPEC `2` th) THEN MP_TAC(SPEC `3` th)) THEN
  REWRITE_TAC[ARITH] THEN ARITH_TAC);;

(******

Maybe for completeness I should show the contrary: existence of Eulerian
circuit/walk if we do have the right properties, assuming the graph is
connected; cf:

http://math.arizona.edu/~lagatta/class/fa05/m105/graphtheorynotes.pdf

 *****)