Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,279 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
(* ========================================================================= *)
(* Impossibility of Eulerian path for bridges of Koenigsberg. *)
(* ========================================================================= *)
let edges = new_definition
`edges(E:E->bool,V:V->bool,Ter:E->V->bool) = E`;;
let vertices = new_definition
`vertices(E:E->bool,V:V->bool,Ter:E->V->bool) = V`;;
let termini = new_definition
`termini(E:E->bool,V:V->bool,Ter:E->V->bool) = Ter`;;
(* ------------------------------------------------------------------------- *)
(* Definition of an undirected graph. *)
(* ------------------------------------------------------------------------- *)
let graph = new_definition
`graph G <=>
!e. e IN edges(G)
==> ?a b. a IN vertices(G) /\ b IN vertices(G) /\
termini G e = {a,b}`;;
let TERMINI_IN_VERTICES = prove
(`!G e v. graph G /\ e IN edges(G) /\ v IN termini G e ==> v IN vertices G`,
REWRITE_TAC[graph; EXTENSION; IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Connection in a graph. *)
(* ------------------------------------------------------------------------- *)
let connects = new_definition
`connects G e (a,b) <=> termini G e = {a,b}`;;
(* ------------------------------------------------------------------------- *)
(* Delete an edge in a graph. *)
(* ------------------------------------------------------------------------- *)
let delete_edge = new_definition
`delete_edge e (E,V,Ter) = (E DELETE e,V,Ter)`;;
let DELETE_EDGE_CLAUSES = prove
(`(!G. edges(delete_edge e G) = (edges G) DELETE e) /\
(!G. vertices(delete_edge e G) = vertices G) /\
(!G. termini(delete_edge e G) = termini G)`,
REWRITE_TAC[FORALL_PAIR_THM; delete_edge; edges; vertices; termini]);;
let GRAPH_DELETE_EDGE = prove
(`!G e. graph G ==> graph(delete_edge e G)`,
REWRITE_TAC[graph; DELETE_EDGE_CLAUSES; IN_DELETE] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Local finiteness: set of edges with given endpoint is finite. *)
(* ------------------------------------------------------------------------- *)
let locally_finite = new_definition
`locally_finite G <=>
!v. v IN vertices(G) ==> FINITE {e | e IN edges G /\ v IN termini G e}`;;
(* ------------------------------------------------------------------------- *)
(* Degree of a vertex. *)
(* ------------------------------------------------------------------------- *)
let localdegree = new_definition
`localdegree G v e =
if termini G e = {v} then 2
else if v IN termini G e then 1
else 0`;;
let degree = new_definition
`degree G v = nsum {e | e IN edges G /\ v IN termini G e} (localdegree G v)`;;
let DEGREE_DELETE_EDGE = prove
(`!G e:E v:V.
graph G /\ locally_finite G /\ e IN edges(G)
==> degree G v =
if termini G e = {v} then degree (delete_edge e G) v + 2
else if v IN termini G e then degree (delete_edge e G) v + 1
else degree (delete_edge e G) v`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[degree; DELETE_EDGE_CLAUSES; IN_DELETE] THEN
SUBGOAL_THEN
`{e:E | e IN edges G /\ (v:V) IN termini G e} =
if v IN termini G e
then e INSERT {e' | (e' IN edges G /\ ~(e' = e)) /\ v IN termini G e'}
else {e' | (e' IN edges G /\ ~(e' = e)) /\ v IN termini G e'}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION] THEN GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[IN_ELIM_THM; IN_INSERT] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
ASM_CASES_TAC `(v:V) IN termini G (e:E)` THEN ASM_REWRITE_TAC[] THENL
[ALL_TAC;
COND_CASES_TAC THENL [ASM_MESON_TAC[IN_SING; EXTENSION]; ALL_TAC] THEN
MATCH_MP_TAC NSUM_EQ THEN REWRITE_TAC[IN_ELIM_THM; localdegree] THEN
REWRITE_TAC[DELETE_EDGE_CLAUSES]] THEN
SUBGOAL_THEN
`FINITE {e':E | (e' IN edges G /\ ~(e' = e)) /\ (v:V) IN termini G e'}`
(fun th -> SIMP_TAC[NSUM_CLAUSES; th])
THENL
[MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{e:E | e IN edges G /\ (v:V) IN termini G e}` THEN
SIMP_TAC[IN_ELIM_THM; SUBSET] THEN
ASM_MESON_TAC[locally_finite; TERMINI_IN_VERTICES];
ALL_TAC] THEN
REWRITE_TAC[IN_ELIM_THM] THEN ASM_REWRITE_TAC[localdegree] THEN
SUBGOAL_THEN
`nsum {e':E | (e' IN edges G /\ ~(e' = e)) /\ (v:V) IN termini G e'}
(localdegree (delete_edge e G) v) =
nsum {e' | (e' IN edges G /\ ~(e' = e)) /\ v IN termini G e'}
(localdegree G v)`
SUBST1_TAC THENL
[ALL_TAC; COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ARITH_TAC] THEN
MATCH_MP_TAC NSUM_EQ THEN SIMP_TAC[localdegree; DELETE_EDGE_CLAUSES]);;
(* ------------------------------------------------------------------------- *)
(* Definition of Eulerian path. *)
(* ------------------------------------------------------------------------- *)
let eulerian_RULES,eulerian_INDUCT,eulerian_CASES = new_inductive_definition
`(!G a. a IN vertices G /\ edges G = {} ==> eulerian G [] (a,a)) /\
(!G a b c e es. e IN edges(G) /\ connects G e (a,b) /\
eulerian (delete_edge e G) es (b,c)
==> eulerian G (CONS e es) (a,c))`;;
let EULERIAN_FINITE = prove
(`!G es ab. eulerian G es ab ==> FINITE (edges G)`,
MATCH_MP_TAC eulerian_INDUCT THEN
SIMP_TAC[DELETE_EDGE_CLAUSES; FINITE_DELETE; FINITE_RULES]);;
(* ------------------------------------------------------------------------- *)
(* The main result. *)
(* ------------------------------------------------------------------------- *)
let EULERIAN_ODD_LEMMA = prove
(`!G:(E->bool)#(V->bool)#(E->V->bool) es ab.
eulerian G es ab
==> graph G
==> FINITE(edges G) /\
!v. v IN vertices G
==> (ODD(degree G v) <=>
~(FST ab = SND ab) /\ (v = FST ab \/ v = SND ab))`,
MATCH_MP_TAC eulerian_INDUCT THEN CONJ_TAC THENL
[SIMP_TAC[degree; NOT_IN_EMPTY; SET_RULE `{x | F} = {}`] THEN
SIMP_TAC[NSUM_CLAUSES; FINITE_RULES; ARITH];
ALL_TAC] THEN
SIMP_TAC[GRAPH_DELETE_EDGE; FINITE_DELETE; DELETE_EDGE_CLAUSES] THEN
REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
ASM_SIMP_TAC[GRAPH_DELETE_EDGE] THEN STRIP_TAC THEN
X_GEN_TAC `v:V` THEN DISCH_TAC THEN
MP_TAC(ISPECL [`G:(E->bool)#(V->bool)#(E->V->bool)`; `e:E`; `v:V`]
DEGREE_DELETE_EDGE) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[locally_finite] THEN GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `edges(G:(E->bool)#(V->bool)#(E->V->bool))` THEN
ASM_SIMP_TAC[SUBSET; IN_ELIM_THM];
ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN
MP_TAC(ISPECL [`G:(E->bool)#(V->bool)#(E->V->bool)`; `e:E`]
TERMINI_IN_VERTICES) THEN
ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [connects]) THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
ASM_CASES_TAC `b:V = a` THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[SET_RULE `{a,a} = {v} <=> v = a`] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[ODD_ADD; ARITH];
ALL_TAC] THEN
ASM_REWRITE_TAC[SET_RULE `{a,b} = {v} <=> a = b /\ a = v`] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[ODD_ADD; ARITH] THEN ASM_MESON_TAC[]);;
let EULERIAN_ODD = prove
(`!G es a b.
graph G /\ eulerian G es (a,b)
==> !v. v IN vertices G
==> (ODD(degree G v) <=> ~(a = b) /\ (v = a \/ v = b))`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o MATCH_MP EULERIAN_ODD_LEMMA) THEN
ASM_SIMP_TAC[FST; SND]);;
(* ------------------------------------------------------------------------- *)
(* Now the actual Koenigsberg configuration. *)
(* ------------------------------------------------------------------------- *)
let KOENIGSBERG = prove
(`!G. vertices(G) = {0,1,2,3} /\
edges(G) = {10,20,30,40,50,60,70} /\
termini G (10) = {0,1} /\
termini G (20) = {0,2} /\
termini G (30) = {0,3} /\
termini G (40) = {1,2} /\
termini G (50) = {1,2} /\
termini G (60) = {2,3} /\
termini G (70) = {2,3}
==> ~(?es a b. eulerian G es (a,b))`,
GEN_TAC THEN STRIP_TAC THEN
MP_TAC(ISPEC `G:(num->bool)#(num->bool)#(num->num->bool)` EULERIAN_ODD) THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[graph] THEN GEN_TAC THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[SET_RULE
`{a,b} = {x,y} <=> a = x /\ b = y \/ a = y /\ b = x`] THEN
MESON_TAC[];
ALL_TAC] THEN
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
ASM_REWRITE_TAC[degree; edges] THEN
SIMP_TAC[TAUT `a IN s /\ k IN t <=> ~(a IN s ==> ~(k IN t))`] THEN
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN
REWRITE_TAC[SET_RULE `{x | x = a \/ P(x)} = a INSERT {x | P(x)}`] THEN
REWRITE_TAC[SET_RULE `{x | x = a} = {a}`] THEN
SIMP_TAC[NSUM_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH] THEN
ASM_REWRITE_TAC[localdegree; IN_INSERT; NOT_IN_EMPTY; ARITH] THEN
REWRITE_TAC[SET_RULE `{a,b} = {x} <=> x = a /\ a = b`] THEN
DISCH_THEN(fun th ->
MP_TAC(SPEC `0` th) THEN MP_TAC(SPEC `1` th) THEN
MP_TAC(SPEC `2` th) THEN MP_TAC(SPEC `3` th)) THEN
REWRITE_TAC[ARITH] THEN ARITH_TAC);;
(******
Maybe for completeness I should show the contrary: existence of Eulerian
circuit/walk if we do have the right properties, assuming the graph is
connected; cf:
http://math.arizona.edu/~lagatta/class/fa05/m105/graphtheorynotes.pdf
*****)
|