Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,083 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
(* ========================================================================= *)
(* Isosceles triangle theorem. *)
(* ========================================================================= *)
needs "Multivariate/geom.ml";;
(* ------------------------------------------------------------------------- *)
(* The theorem, according to Wikipedia. *)
(* ------------------------------------------------------------------------- *)
let ISOSCELES_TRIANGLE_THEOREM = prove
(`!A B C:real^N. dist(A,C) = dist(B,C) ==> angle(C,A,B) = angle(A,B,C)`,
MP_TAC(INST_TYPE [`:N`,`:M`] CONGRUENT_TRIANGLES_SSS) THEN
MESON_TAC[DIST_SYM; ANGLE_SYM]);;
(* ------------------------------------------------------------------------- *)
(* The obvious converse. *)
(* ------------------------------------------------------------------------- *)
let ISOSCELES_TRIANGLE_CONVERSE = prove
(`!A B C:real^N. angle(C,A,B) = angle(A,B,C) /\ ~(collinear {A,B,C})
==> dist(A,C) = dist(B,C)`,
MP_TAC(INST_TYPE [`:N`,`:M`] CONGRUENT_TRIANGLES_ASA_FULL) THEN
MESON_TAC[DIST_SYM; ANGLE_SYM]);;
(* ------------------------------------------------------------------------- *)
(* Some other equivalents sometimes called the ITT (see the Web page *)
(* http://www.sonoma.edu/users/w/wilsonst/Courses/Math_150/Theorems/itt.html *)
(* ------------------------------------------------------------------------- *)
let lemma = prove
(`!A B C D:real^N.
between D (A,B)
==> (orthogonal (A - B) (C - D) <=>
angle(A,D,C) = pi / &2 /\ angle(B,D,C) = pi / &2)`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `D:real^N = A` THENL
[DISCH_TAC THEN ASM_SIMP_TAC[ANGLE_REFL] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM ORTHOGONAL_LNEG] THEN
REWRITE_TAC[VECTOR_NEG_SUB; ORTHOGONAL_VECTOR_ANGLE; angle];
ALL_TAC] THEN
ASM_CASES_TAC `D:real^N = B` THENL
[DISCH_TAC THEN ASM_SIMP_TAC[ANGLE_REFL] THEN
REWRITE_TAC[ORTHOGONAL_VECTOR_ANGLE; angle];
ALL_TAC] THEN
DISCH_TAC THEN
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `D:real^N`; `C:real^N`]
ANGLES_ALONG_LINE) THEN
ASM_REWRITE_TAC[ORTHOGONAL_VECTOR_ANGLE] THEN
MATCH_MP_TAC(REAL_ARITH
`x = z ==> x + y = p ==> (z = p / &2 <=> x = p / &2 /\ y = p / &2)`) THEN
REWRITE_TAC[angle] THEN MATCH_MP_TAC VECTOR_ANGLE_EQ_0_RIGHT THEN
ONCE_REWRITE_TAC[GSYM VECTOR_ANGLE_NEG2] THEN
REWRITE_TAC[VECTOR_NEG_SUB; GSYM angle] THEN
ASM_MESON_TAC[ANGLE_EQ_PI_OTHERS; BETWEEN_ANGLE]);;
let ISOSCELES_TRIANGLE_1 = prove
(`!A B C D:real^N.
dist(A,C) = dist(B,C) /\ D = midpoint(A,B)
==> angle(A,C,D) = angle(B,C,D)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`A:real^N`; `D:real^N`; `C:real^N`;
`B:real^N`; `D:real^N`; `C:real^N`]
CONGRUENT_TRIANGLES_SSS_FULL) THEN
ASM_REWRITE_TAC[DIST_MIDPOINT] THEN ASM_MESON_TAC[DIST_SYM; ANGLE_SYM]);;
let ISOSCELES_TRIANGLE_2 = prove
(`!A B C D:real^N.
between D (A,B) /\
dist(A,C) = dist(B,C) /\ angle(A,C,D) = angle(B,C,D)
==> orthogonal (A - B) (C - D)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP ISOSCELES_TRIANGLE_THEOREM) THEN
MP_TAC(ISPECL [`D:real^N`; `C:real^N`; `A:real^N`;
`D:real^N`; `C:real^N`; `B:real^N`]
CONGRUENT_TRIANGLES_SAS_FULL) THEN
ANTS_TAC THENL [ASM_MESON_TAC[DIST_SYM; ANGLE_SYM]; ALL_TAC] THEN
ASM_CASES_TAC `D:real^N = B` THEN
ASM_SIMP_TAC[DIST_EQ_0; DIST_REFL; VECTOR_SUB_REFL; ORTHOGONAL_0] THEN
ASM_CASES_TAC `D:real^N = A` THENL [ASM_MESON_TAC[DIST_EQ_0]; ALL_TAC] THEN
ASM_SIMP_TAC[lemma] THEN
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `D:real^N`; `C:real^N`]
ANGLES_ALONG_LINE) THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let ISOSCELES_TRIANGLE_3 = prove
(`!A B C D:real^N.
between D (A,B) /\
dist(A,C) = dist(B,C) /\ orthogonal (A - B) (C - D)
==> D = midpoint(A,B)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^N = B` THEN
ASM_SIMP_TAC[BETWEEN_REFL_EQ; MIDPOINT_REFL] THEN
ASM_CASES_TAC `D:real^N = A` THENL
[ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`B:real^N`; `A:real^N`; `C:real^N`] PYTHAGORAS) THEN
ANTS_TAC THENL
[ASM_MESON_TAC[ORTHOGONAL_LNEG; VECTOR_NEG_SUB]; ALL_TAC] THEN
ONCE_REWRITE_TAC[NORM_SUB] THEN ASM_REWRITE_TAC[GSYM dist] THEN
ASM_REWRITE_TAC[REAL_RING `a = x pow 2 + a <=> x = &0`; DIST_EQ_0];
ALL_TAC] THEN
ASM_CASES_TAC `D:real^N = B` THENL
[ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] PYTHAGORAS) THEN
ANTS_TAC THENL
[ASM_MESON_TAC[ORTHOGONAL_LNEG; VECTOR_NEG_SUB]; ALL_TAC] THEN
ONCE_REWRITE_TAC[NORM_SUB] THEN ASM_REWRITE_TAC[GSYM dist] THEN
ASM_REWRITE_TAC[REAL_RING `a = x pow 2 + a <=> x = &0`; DIST_EQ_0];
ALL_TAC] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_SIMP_TAC[lemma; MIDPOINT_COLLINEAR; BETWEEN_IMP_COLLINEAR] THEN
STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP ISOSCELES_TRIANGLE_THEOREM) THEN
MP_TAC(ISPECL
[`A:real^N`; `C:real^N`; `D:real^N`;
`B:real^N`; `C:real^N`; `D:real^N`]
CONGRUENT_TRIANGLES_SAS) THEN
ANTS_TAC THENL [ALL_TAC; MESON_TAC[DIST_SYM]] THEN
ASM_REWRITE_TAC[] THEN
MP_TAC(ISPECL [`A:real^N`; `C:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN
ANTS_TAC THENL [ASM_MESON_TAC[DIST_EQ_0]; ALL_TAC] THEN
MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN
ANTS_TAC THENL [ASM_MESON_TAC[DIST_EQ_0]; ALL_TAC] THEN
MATCH_MP_TAC(REAL_ARITH
`a:real = a' /\ b = b'
==> a + x + b = p ==> a' + x' + b' = p ==> x' = x`) THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[ANGLE_SYM]] THEN
CONV_TAC SYM_CONV THEN
UNDISCH_TAC `angle(C:real^N,A,B) = angle (A,B,C)` THEN
MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL
[MATCH_MP_TAC ANGLE_EQ_0_LEFT;
GEN_REWRITE_TAC RAND_CONV [ANGLE_SYM] THEN
MATCH_MP_TAC ANGLE_EQ_0_RIGHT] THEN
ASM_MESON_TAC[ANGLE_EQ_PI_OTHERS; BETWEEN_ANGLE]);;
(* ------------------------------------------------------------------------- *)
(* Now the converses to those as well. *)
(* ------------------------------------------------------------------------- *)
let ISOSCELES_TRIANGLE_4 = prove
(`!A B C D:real^N.
D = midpoint(A,B) /\ orthogonal (A - B) (C - D)
==> dist(A,C) = dist(B,C)`,
REPEAT GEN_TAC THEN ASM_SIMP_TAC[IMP_CONJ; BETWEEN_MIDPOINT; lemma] THEN
DISCH_THEN(ASSUME_TAC o SYM) THEN ASM_REWRITE_TAC[] THEN
REPEAT DISCH_TAC THEN MATCH_MP_TAC CONGRUENT_TRIANGLES_SAS THEN
MAP_EVERY EXISTS_TAC [`D:real^N`; `D:real^N`] THEN
ASM_REWRITE_TAC[] THEN EXPAND_TAC "D" THEN REWRITE_TAC[DIST_MIDPOINT]);;
let ISOSCELES_TRIANGLE_5 = prove
(`!A B C D:real^N.
~collinear{D,C,A} /\ between D (A,B) /\
angle(A,C,D) = angle(B,C,D) /\ orthogonal (A - B) (C - D)
==> dist(A,C) = dist(B,C)`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `C:real^N = D` THENL
[ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_2]; ALL_TAC] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
UNDISCH_TAC `~(C:real^N = D)` THEN
REWRITE_TAC[GSYM IMP_CONJ_ALT; GSYM CONJ_ASSOC] THEN
ASM_CASES_TAC `A:real^N = B` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `C:real^N = A` THENL
[DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[ANGLE_REFL] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BETWEEN_ANGLE]) THEN
ASM_CASES_TAC `D:real^N = A` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `D:real^N = B` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ARITH `x / &2 = &0 <=> x = &0`;
PI_NZ] THEN
DISCH_THEN(MP_TAC o MATCH_MP ANGLE_EQ_PI_OTHERS) THEN
MP_TAC PI_NZ THEN REAL_ARITH_TAC;
ALL_TAC] THEN
ASM_CASES_TAC `C:real^N = B` THENL
[DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[ANGLE_REFL] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BETWEEN_ANGLE]) THEN
ASM_CASES_TAC `D:real^N = B` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `D:real^N = A` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ARITH `&0 = x / &2 <=> x = &0`;
PI_NZ] THEN
DISCH_THEN(MP_TAC o MATCH_MP ANGLE_EQ_PI_OTHERS) THEN
MP_TAC PI_NZ THEN REAL_ARITH_TAC;
ALL_TAC] THEN
ASM_SIMP_TAC[IMP_CONJ; lemma] THEN
REPEAT DISCH_TAC THEN MP_TAC(
ISPECL [`D:real^N`; `C:real^N`; `A:real^N`;
`D:real^N`; `C:real^N`; `B:real^N`]
CONGRUENT_TRIANGLES_ASA_FULL) THEN
ANTS_TAC THENL [ALL_TAC; MESON_TAC[DIST_SYM]] THEN
ONCE_REWRITE_TAC[ANGLE_SYM] THEN ASM_REWRITE_TAC[]);;
let ISOSCELES_TRIANGLE_6 = prove
(`!A B C D:real^N.
~collinear{D,C,A} /\ D = midpoint(A,B) /\ angle(A,C,D) = angle(B,C,D)
==> dist(A,C) = dist(B,C)`,
REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
ASM_CASES_TAC `A:real^N = B` THEN ASM_REWRITE_TAC[] THEN
MP_TAC(ISPECL [`A:real^N`; `C:real^N`; `D:real^N`] LAW_OF_SINES) THEN
MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `D:real^N`] LAW_OF_SINES) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
EXPAND_TAC "D" THEN REWRITE_TAC[DIST_MIDPOINT] THEN
ASM_SIMP_TAC[REAL_EQ_MUL_RCANCEL; REAL_LT_IMP_NZ; REAL_HALF; DIST_POS_LT;
SIN_ANGLE_EQ] THEN
STRIP_TAC THENL
[MP_TAC(ISPECL [`D:real^N`; `C:real^N`; `A:real^N`;
`D:real^N`; `C:real^N`; `B:real^N`]
CONGRUENT_TRIANGLES_AAS) THEN
ANTS_TAC THENL [ALL_TAC; MESON_TAC[DIST_SYM]] THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ANGLE_SYM] THEN
ASM_REWRITE_TAC[];
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`]
TRIANGLE_ANGLE_SUM) THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `angle(A:real^N,B,C) = angle(C,B,D) /\
angle(B,A,C) = angle(C,A,D)`
(CONJUNCTS_THEN SUBST1_TAC)
THENL
[CONJ_TAC THEN GEN_REWRITE_TAC LAND_CONV [ANGLE_SYM] THEN
MATCH_MP_TAC ANGLE_EQ_0_LEFT THEN
MP_TAC(ISPECL [`A:real^N`; `B:real^N`] BETWEEN_MIDPOINT) THEN
ASM_REWRITE_TAC[BETWEEN_ANGLE] THEN EXPAND_TAC "D" THEN
REWRITE_TAC[MIDPOINT_EQ_ENDPOINT] THEN ASM_REWRITE_TAC[] THEN
MESON_TAC[ANGLE_EQ_PI_OTHERS];
ALL_TAC] THEN
ASM_REWRITE_TAC[REAL_ARITH `a + pi - a + x = pi <=> x = &0`] THEN
MAP_EVERY ASM_CASES_TAC
[`B:real^N = C`; `A:real^N = C`] THEN
ASM_REWRITE_TAC[ANGLE_REFL; REAL_ARITH `p / &2 = &0 <=> p = &0`] THEN
ASM_REWRITE_TAC[PI_NZ] THEN DISCH_TAC THEN
MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `A:real^N`] COLLINEAR_ANGLE) THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `~collinear{D:real^N,C,A}` THEN
MATCH_MP_TAC(TAUT `(q ==> p) ==> ~p ==> q ==> r`) THEN
ONCE_REWRITE_TAC[SET_RULE `{bd,c,a} = {c,a,bd}`] THEN
ONCE_REWRITE_TAC[COLLINEAR_3] THEN
REWRITE_TAC[COLLINEAR_LEMMA] THEN ASM_REWRITE_TAC[VECTOR_SUB_EQ] THEN
EXPAND_TAC "D" THEN REWRITE_TAC[midpoint] THEN
REWRITE_TAC[VECTOR_ARITH `inv(&2) % (A + B) - A = inv(&2) % (B - A)`] THEN
MESON_TAC[VECTOR_MUL_ASSOC]]);;
|