Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,130 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
(* ========================================================================= *)
(* Feuerbach's theorem.                                                      *)
(* ========================================================================= *)

needs "Multivariate/convex.ml";;

(* ------------------------------------------------------------------------- *)
(* Algebraic condition for two circles to be tangent to each other.          *)
(* ------------------------------------------------------------------------- *)

let CIRCLES_TANGENT = prove
 (`!r1 r2 c1 c2.
        &0 <= r1 /\ &0 <= r2 /\
        (dist(c1,c2) = r1 + r2 \/ dist(c1,c2) = abs(r1 - r2))
        ==> c1 = c2 /\ r1 = r2 \/
            ?!x:real^2. dist(c1,x) = r1 /\ dist(c2,x) = r2`,
  MATCH_MP_TAC REAL_WLOG_LE THEN CONJ_TAC THENL
   [REPEAT GEN_TAC THEN MATCH_MP_TAC(MESON[]
     `(!x y. P x y <=> Q y x) ==> ((!x y. P x y) <=> (!x y. Q x y))`) THEN
    MESON_TAC[DIST_SYM; REAL_ADD_SYM; REAL_ABS_SUB]; ALL_TAC] THEN
  REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
  ASM_CASES_TAC `r1 = &0` THENL
   [ASM_REWRITE_TAC[DIST_EQ_0; MESON[] `(?!x. a = x /\ P x) <=> P a`] THEN
    REWRITE_TAC[DIST_SYM] THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  ASM_CASES_TAC `r2 = &0` THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  ASM_SIMP_TAC[REAL_ARITH `r1 <= r2 ==> abs(r1 - r2) = r2 - r1`] THEN
  ASM_REWRITE_TAC[REAL_LE_LT] THEN STRIP_TAC THENL
   [DISJ2_TAC THEN REWRITE_TAC[EXISTS_UNIQUE] THEN
    EXISTS_TAC `c1 + r1 / (r1 + r2) % (c2 - c1):real^2` THEN CONJ_TAC THENL
     [REWRITE_TAC[dist;
       VECTOR_ARITH `c1 - (c1 + a % (x - y)):real^2 = a % (y - x)`;
        VECTOR_ARITH `z - (x + a % (z - x)):real^N = (a - &1) % (x - z)`] THEN
      ASM_REWRITE_TAC[NORM_MUL; GSYM dist] THEN
      ASM_SIMP_TAC[REAL_ABS_DIV; REAL_ABS_NEG;
                   REAL_FIELD `&0 < r1 /\ &0 < r2
                       ==> r1 / (r1 + r2) - &1 = --r2 / (r1 + r2)`] THEN
      ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE; REAL_LT_ADD] THEN
      REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD;
      X_GEN_TAC `y:real^2` THEN STRIP_TAC THEN
      SUBGOAL_THEN `(y:real^2) IN segment[c1,c2]` MP_TAC THENL
       [ASM_REWRITE_TAC[GSYM BETWEEN_IN_SEGMENT; between] THEN
        ASM_MESON_TAC[DIST_SYM];
        REWRITE_TAC[IN_SEGMENT]] THEN
      DISCH_THEN(X_CHOOSE_THEN `u:real` MP_TAC) THEN
      REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
      DISCH_THEN SUBST_ALL_TAC THEN
      UNDISCH_TAC `dist(c1:real^2,(&1 - u) % c1 + u % c2) = r1` THEN
      REWRITE_TAC[VECTOR_ARITH
       `(&1 - u) % c1 + u % c2:real^N = c1 + u % (c2 - c1)`] THEN
      REWRITE_TAC[NORM_ARITH `dist(x:real^2,x + y) = norm y`] THEN
      ONCE_REWRITE_TAC[GSYM NORM_NEG] THEN
      REWRITE_TAC[VECTOR_ARITH `--(a % (x - y)):real^N = a % (y - x)`] THEN
      ASM_REWRITE_TAC[NORM_MUL; GSYM dist; real_abs] THEN
      DISCH_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
      REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD];
    ASM_CASES_TAC `r1:real = r2` THENL
     [ASM_MESON_TAC[REAL_SUB_REFL; DIST_EQ_0]; DISJ2_TAC] THEN
    SUBGOAL_THEN `r1 < r2` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[EXISTS_UNIQUE] THEN
    EXISTS_TAC `c2 + r2 / (r2 - r1) % (c1 - c2):real^2` THEN CONJ_TAC THENL
     [REWRITE_TAC[dist;
       VECTOR_ARITH `c1 - (c1 + a % (x - y)):real^2 = --(a % (x - y)) /\
             c1 - (c2 + a % (c1 - c2)):real^2 = (&1 - a) % (c1 - c2)`] THEN
      ASM_REWRITE_TAC[NORM_MUL; NORM_NEG; GSYM dist] THEN
      ASM_SIMP_TAC[REAL_ABS_DIV; REAL_ABS_NEG;
        REAL_FIELD `r1 < r2 ==> &1 - r2 / (r2 - r1) = --(r1 / (r2 - r1))`] THEN
      ASM_SIMP_TAC[real_abs; REAL_SUB_LE; REAL_LT_IMP_LE] THEN
      REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD;
      X_GEN_TAC `y:real^2` THEN STRIP_TAC THEN
      SUBGOAL_THEN `(c1:real^2) IN segment[c2,y]` MP_TAC THENL
       [ASM_REWRITE_TAC[GSYM BETWEEN_IN_SEGMENT; between] THEN
        ONCE_REWRITE_TAC[DIST_SYM] THEN ASM_REAL_ARITH_TAC;
        REWRITE_TAC[IN_SEGMENT]] THEN
      DISCH_THEN(X_CHOOSE_THEN `u:real` MP_TAC) THEN
      REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
      ASM_CASES_TAC `u = &0` THENL
       [ASM_REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_RID; REAL_SUB_RZERO] THEN
        REWRITE_TAC[VECTOR_MUL_LID] THEN ASM_MESON_TAC[DIST_EQ_0; REAL_SUB_0];
        ALL_TAC] THEN
      DISCH_THEN SUBST_ALL_TAC THEN
      UNDISCH_TAC `dist((&1 - u) % c2 + u % y:real^2,c2) = r2 - r1` THEN
      REWRITE_TAC[VECTOR_ARITH
       `(&1 - u) % c1 + u % c2:real^N = c1 + u % (c2 - c1)`] THEN
      REWRITE_TAC[NORM_ARITH `dist(x + y:real^2,x) = norm y`] THEN
      ONCE_REWRITE_TAC[GSYM NORM_NEG] THEN
      REWRITE_TAC[VECTOR_ARITH `--(a % (x - y)):real^N = a % (y - x)`] THEN
      ASM_REWRITE_TAC[NORM_MUL; GSYM dist; real_abs] THEN
      REWRITE_TAC[VECTOR_ARITH
       `c + v % ((c + u % (y - c)) - c):real^2 = c + v % u % (y - c)`] THEN
      DISCH_THEN(SUBST1_TAC o SYM) THEN
      REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_ARITH
       `y:real^2 = c + u % v % (y - c) <=>
        (&1 - u * v) % (y - c) = vec 0`] THEN
      DISJ1_TAC THEN
      REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD]]);;

(* ------------------------------------------------------------------------- *)
(*                       Feuerbach's theorem                                 *)
(*                                                                           *)
(* Given a non-degenerate triangle abc, let the circle passing through       *)
(* the midpoints of its sides (the "9 point circle") have center "ncenter"   *)
(* and radius "nradius". Now suppose the circle with center "icenter" and    *)
(* radius "iradius" is tangent to three sides (either internally or          *)
(* externally to one side and two produced sides), meaning that it's either  *)
(* the inscribed circle or one of the three escribed circles. Then the two   *)
(* circles are tangent to each other, i.e. either they are identical or they *)
(* touch at exactly one point.                                               *)
(* ------------------------------------------------------------------------- *)

let FEUERBACH = prove
 (`!a b c mbc mac mab pbc pac pab ncenter icenter nradius iradius.
      ~(collinear {a,b,c}) /\
      midpoint(a,b) = mab /\
      midpoint(b,c) = mbc /\
      midpoint(c,a) = mac /\
      dist(ncenter,mbc) = nradius /\
      dist(ncenter,mac) = nradius /\
      dist(ncenter,mab) = nradius /\
      dist(icenter,pbc) = iradius /\
      dist(icenter,pac) = iradius /\
      dist(icenter,pab) = iradius /\
      collinear {a,b,pab} /\ orthogonal (a - b) (icenter - pab) /\
      collinear {b,c,pbc} /\ orthogonal (b - c) (icenter - pbc) /\
      collinear {a,c,pac} /\ orthogonal (a - c) (icenter - pac)
      ==> ncenter = icenter /\ nradius = iradius \/
          ?!x:real^2. dist(ncenter,x) = nradius /\ dist(icenter,x) = iradius`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC CIRCLES_TANGENT THEN
  POP_ASSUM MP_TAC THEN MAP_EVERY (fun t ->
   ASM_CASES_TAC t THENL [ALL_TAC; ASM_MESON_TAC[DIST_POS_LE]])
   [`&0 <= nradius`; `&0 <= iradius`] THEN
  ASM_REWRITE_TAC[dist; NORM_EQ_SQUARE] THEN
  ASM_SIMP_TAC[REAL_LE_ADD; REAL_ABS_POS; GSYM NORM_POW_2; GSYM dist] THEN
  REWRITE_TAC[REAL_POW2_ABS] THEN POP_ASSUM_LIST(K ALL_TAC) THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d /\ e <=> b /\ c /\ d /\ a /\ e`] THEN
  GEOM_ORIGIN_TAC `a:real^2` THEN
  GEOM_NORMALIZE_TAC `b:real^2` THEN CONJ_TAC THENL
   [REWRITE_TAC[INSERT_AC; COLLINEAR_2]; ALL_TAC] THEN
  GEOM_BASIS_MULTIPLE_TAC 1 `b:real^2` THEN
  SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_2; ARITH; real_abs] THEN
  GEN_TAC THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[REAL_MUL_RID] THEN
  DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[VECTOR_MUL_LID] THEN
  REPEAT GEN_TAC THEN
  REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SYM) MP_TAC)) THEN
  REWRITE_TAC[COLLINEAR_3_2D] THEN
  REWRITE_TAC[orthogonal; dist; NORM_POW_2] THEN
  ASM_REWRITE_TAC[midpoint] THEN
  REWRITE_TAC[DOT_2; DOT_LSUB; DOT_RSUB] THEN
  SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_SUB_COMPONENT; VEC_COMPONENT;
           VECTOR_MUL_COMPONENT; BASIS_COMPONENT; DIMINDEX_2; ARITH] THEN
  CONV_TAC REAL_RING);;

(* ------------------------------------------------------------------------- *)
(* As a little bonus, verify that the circle passing through the             *)
(* midpoints of the sides is indeed a 9-point circle, i.e. it passes         *)
(* through the feet of the altitudes and the midpoints of the lines joining  *)
(* the vertices to the orthocenter (where the alititudes intersect).         *)
(* ------------------------------------------------------------------------- *)

let NINE_POINT_CIRCLE_1 = prove
 (`!a b c:real^2 mbc mac mab fbc fac fab ncenter nradius.
      ~(collinear {a,b,c}) /\
      midpoint(a,b) = mab /\
      midpoint(b,c) = mbc /\
      midpoint(c,a) = mac /\
      dist(ncenter,mbc) = nradius /\
      dist(ncenter,mac) = nradius /\
      dist(ncenter,mab) = nradius /\
      collinear {a,b,fab} /\ orthogonal (a - b) (c - fab) /\
      collinear {b,c,fbc} /\ orthogonal (b - c) (a - fbc) /\
      collinear {c,a,fac} /\ orthogonal (c - a) (b - fac)
      ==> dist(ncenter,fab) = nradius /\
          dist(ncenter,fbc) = nradius /\
          dist(ncenter,fac) = nradius`,
  REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d /\ e <=> b /\ c /\ d /\ a /\ e`] THEN
  REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SYM) MP_TAC)) THEN
  ASM_REWRITE_TAC[dist; NORM_EQ_SQUARE; REAL_POS] THEN
  REWRITE_TAC[COLLINEAR_3_2D] THEN
  REWRITE_TAC[orthogonal; dist; NORM_POW_2] THEN
  ASM_REWRITE_TAC[midpoint] THEN
  REWRITE_TAC[DOT_2; DOT_LSUB; DOT_RSUB] THEN
  REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_SUB_COMPONENT;
              VECTOR_MUL_COMPONENT; VEC_COMPONENT] THEN
  SIMP_TAC[] THEN CONV_TAC REAL_RING);;

let NINE_POINT_CIRCLE_2 = prove
 (`!a b c:real^2 mbc mac mab fbc fac fab ncenter nradius.
      ~(collinear {a,b,c}) /\
      midpoint(a,b) = mab /\
      midpoint(b,c) = mbc /\
      midpoint(c,a) = mac /\
      dist(ncenter,mbc) = nradius /\
      dist(ncenter,mac) = nradius /\
      dist(ncenter,mab) = nradius /\
      collinear {a,b,fab} /\ orthogonal (a - b) (c - fab) /\
      collinear {b,c,fbc} /\ orthogonal (b - c) (a - fbc) /\
      collinear {c,a,fac} /\ orthogonal (c - a) (b - fac) /\
      collinear {oc,a,fbc} /\ collinear {oc,b,fac} /\ collinear{oc,c,fab}
      ==> dist(ncenter,midpoint(oc,a)) = nradius /\
          dist(ncenter,midpoint(oc,b)) = nradius /\
          dist(ncenter,midpoint(oc,c)) = nradius`,
  REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d /\ e <=> b /\ c /\ d /\ a /\ e`] THEN
  REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SYM) MP_TAC)) THEN
  ASM_REWRITE_TAC[dist; NORM_EQ_SQUARE; REAL_POS] THEN
  REWRITE_TAC[COLLINEAR_3_2D] THEN
  REWRITE_TAC[orthogonal; dist; NORM_POW_2] THEN
  ASM_REWRITE_TAC[midpoint] THEN
  REWRITE_TAC[DOT_2; DOT_LSUB; DOT_RSUB] THEN
  REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_SUB_COMPONENT;
              VECTOR_MUL_COMPONENT; VEC_COMPONENT] THEN
  SIMP_TAC[] THEN CONV_TAC REAL_RING);;