Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,130 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
(* ========================================================================= *)
(* Feuerbach's theorem. *)
(* ========================================================================= *)
needs "Multivariate/convex.ml";;
(* ------------------------------------------------------------------------- *)
(* Algebraic condition for two circles to be tangent to each other. *)
(* ------------------------------------------------------------------------- *)
let CIRCLES_TANGENT = prove
(`!r1 r2 c1 c2.
&0 <= r1 /\ &0 <= r2 /\
(dist(c1,c2) = r1 + r2 \/ dist(c1,c2) = abs(r1 - r2))
==> c1 = c2 /\ r1 = r2 \/
?!x:real^2. dist(c1,x) = r1 /\ dist(c2,x) = r2`,
MATCH_MP_TAC REAL_WLOG_LE THEN CONJ_TAC THENL
[REPEAT GEN_TAC THEN MATCH_MP_TAC(MESON[]
`(!x y. P x y <=> Q y x) ==> ((!x y. P x y) <=> (!x y. Q x y))`) THEN
MESON_TAC[DIST_SYM; REAL_ADD_SYM; REAL_ABS_SUB]; ALL_TAC] THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
ASM_CASES_TAC `r1 = &0` THENL
[ASM_REWRITE_TAC[DIST_EQ_0; MESON[] `(?!x. a = x /\ P x) <=> P a`] THEN
REWRITE_TAC[DIST_SYM] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
ASM_CASES_TAC `r2 = &0` THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[REAL_ARITH `r1 <= r2 ==> abs(r1 - r2) = r2 - r1`] THEN
ASM_REWRITE_TAC[REAL_LE_LT] THEN STRIP_TAC THENL
[DISJ2_TAC THEN REWRITE_TAC[EXISTS_UNIQUE] THEN
EXISTS_TAC `c1 + r1 / (r1 + r2) % (c2 - c1):real^2` THEN CONJ_TAC THENL
[REWRITE_TAC[dist;
VECTOR_ARITH `c1 - (c1 + a % (x - y)):real^2 = a % (y - x)`;
VECTOR_ARITH `z - (x + a % (z - x)):real^N = (a - &1) % (x - z)`] THEN
ASM_REWRITE_TAC[NORM_MUL; GSYM dist] THEN
ASM_SIMP_TAC[REAL_ABS_DIV; REAL_ABS_NEG;
REAL_FIELD `&0 < r1 /\ &0 < r2
==> r1 / (r1 + r2) - &1 = --r2 / (r1 + r2)`] THEN
ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE; REAL_LT_ADD] THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD;
X_GEN_TAC `y:real^2` THEN STRIP_TAC THEN
SUBGOAL_THEN `(y:real^2) IN segment[c1,c2]` MP_TAC THENL
[ASM_REWRITE_TAC[GSYM BETWEEN_IN_SEGMENT; between] THEN
ASM_MESON_TAC[DIST_SYM];
REWRITE_TAC[IN_SEGMENT]] THEN
DISCH_THEN(X_CHOOSE_THEN `u:real` MP_TAC) THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN SUBST_ALL_TAC THEN
UNDISCH_TAC `dist(c1:real^2,(&1 - u) % c1 + u % c2) = r1` THEN
REWRITE_TAC[VECTOR_ARITH
`(&1 - u) % c1 + u % c2:real^N = c1 + u % (c2 - c1)`] THEN
REWRITE_TAC[NORM_ARITH `dist(x:real^2,x + y) = norm y`] THEN
ONCE_REWRITE_TAC[GSYM NORM_NEG] THEN
REWRITE_TAC[VECTOR_ARITH `--(a % (x - y)):real^N = a % (y - x)`] THEN
ASM_REWRITE_TAC[NORM_MUL; GSYM dist; real_abs] THEN
DISCH_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD];
ASM_CASES_TAC `r1:real = r2` THENL
[ASM_MESON_TAC[REAL_SUB_REFL; DIST_EQ_0]; DISJ2_TAC] THEN
SUBGOAL_THEN `r1 < r2` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[EXISTS_UNIQUE] THEN
EXISTS_TAC `c2 + r2 / (r2 - r1) % (c1 - c2):real^2` THEN CONJ_TAC THENL
[REWRITE_TAC[dist;
VECTOR_ARITH `c1 - (c1 + a % (x - y)):real^2 = --(a % (x - y)) /\
c1 - (c2 + a % (c1 - c2)):real^2 = (&1 - a) % (c1 - c2)`] THEN
ASM_REWRITE_TAC[NORM_MUL; NORM_NEG; GSYM dist] THEN
ASM_SIMP_TAC[REAL_ABS_DIV; REAL_ABS_NEG;
REAL_FIELD `r1 < r2 ==> &1 - r2 / (r2 - r1) = --(r1 / (r2 - r1))`] THEN
ASM_SIMP_TAC[real_abs; REAL_SUB_LE; REAL_LT_IMP_LE] THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD;
X_GEN_TAC `y:real^2` THEN STRIP_TAC THEN
SUBGOAL_THEN `(c1:real^2) IN segment[c2,y]` MP_TAC THENL
[ASM_REWRITE_TAC[GSYM BETWEEN_IN_SEGMENT; between] THEN
ONCE_REWRITE_TAC[DIST_SYM] THEN ASM_REAL_ARITH_TAC;
REWRITE_TAC[IN_SEGMENT]] THEN
DISCH_THEN(X_CHOOSE_THEN `u:real` MP_TAC) THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_CASES_TAC `u = &0` THENL
[ASM_REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_RID; REAL_SUB_RZERO] THEN
REWRITE_TAC[VECTOR_MUL_LID] THEN ASM_MESON_TAC[DIST_EQ_0; REAL_SUB_0];
ALL_TAC] THEN
DISCH_THEN SUBST_ALL_TAC THEN
UNDISCH_TAC `dist((&1 - u) % c2 + u % y:real^2,c2) = r2 - r1` THEN
REWRITE_TAC[VECTOR_ARITH
`(&1 - u) % c1 + u % c2:real^N = c1 + u % (c2 - c1)`] THEN
REWRITE_TAC[NORM_ARITH `dist(x + y:real^2,x) = norm y`] THEN
ONCE_REWRITE_TAC[GSYM NORM_NEG] THEN
REWRITE_TAC[VECTOR_ARITH `--(a % (x - y)):real^N = a % (y - x)`] THEN
ASM_REWRITE_TAC[NORM_MUL; GSYM dist; real_abs] THEN
REWRITE_TAC[VECTOR_ARITH
`c + v % ((c + u % (y - c)) - c):real^2 = c + v % u % (y - c)`] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_ARITH
`y:real^2 = c + u % v % (y - c) <=>
(&1 - u * v) % (y - c) = vec 0`] THEN
DISJ1_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD]]);;
(* ------------------------------------------------------------------------- *)
(* Feuerbach's theorem *)
(* *)
(* Given a non-degenerate triangle abc, let the circle passing through *)
(* the midpoints of its sides (the "9 point circle") have center "ncenter" *)
(* and radius "nradius". Now suppose the circle with center "icenter" and *)
(* radius "iradius" is tangent to three sides (either internally or *)
(* externally to one side and two produced sides), meaning that it's either *)
(* the inscribed circle or one of the three escribed circles. Then the two *)
(* circles are tangent to each other, i.e. either they are identical or they *)
(* touch at exactly one point. *)
(* ------------------------------------------------------------------------- *)
let FEUERBACH = prove
(`!a b c mbc mac mab pbc pac pab ncenter icenter nradius iradius.
~(collinear {a,b,c}) /\
midpoint(a,b) = mab /\
midpoint(b,c) = mbc /\
midpoint(c,a) = mac /\
dist(ncenter,mbc) = nradius /\
dist(ncenter,mac) = nradius /\
dist(ncenter,mab) = nradius /\
dist(icenter,pbc) = iradius /\
dist(icenter,pac) = iradius /\
dist(icenter,pab) = iradius /\
collinear {a,b,pab} /\ orthogonal (a - b) (icenter - pab) /\
collinear {b,c,pbc} /\ orthogonal (b - c) (icenter - pbc) /\
collinear {a,c,pac} /\ orthogonal (a - c) (icenter - pac)
==> ncenter = icenter /\ nradius = iradius \/
?!x:real^2. dist(ncenter,x) = nradius /\ dist(icenter,x) = iradius`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC CIRCLES_TANGENT THEN
POP_ASSUM MP_TAC THEN MAP_EVERY (fun t ->
ASM_CASES_TAC t THENL [ALL_TAC; ASM_MESON_TAC[DIST_POS_LE]])
[`&0 <= nradius`; `&0 <= iradius`] THEN
ASM_REWRITE_TAC[dist; NORM_EQ_SQUARE] THEN
ASM_SIMP_TAC[REAL_LE_ADD; REAL_ABS_POS; GSYM NORM_POW_2; GSYM dist] THEN
REWRITE_TAC[REAL_POW2_ABS] THEN POP_ASSUM_LIST(K ALL_TAC) THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d /\ e <=> b /\ c /\ d /\ a /\ e`] THEN
GEOM_ORIGIN_TAC `a:real^2` THEN
GEOM_NORMALIZE_TAC `b:real^2` THEN CONJ_TAC THENL
[REWRITE_TAC[INSERT_AC; COLLINEAR_2]; ALL_TAC] THEN
GEOM_BASIS_MULTIPLE_TAC 1 `b:real^2` THEN
SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_2; ARITH; real_abs] THEN
GEN_TAC THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[REAL_MUL_RID] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[VECTOR_MUL_LID] THEN
REPEAT GEN_TAC THEN
REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SYM) MP_TAC)) THEN
REWRITE_TAC[COLLINEAR_3_2D] THEN
REWRITE_TAC[orthogonal; dist; NORM_POW_2] THEN
ASM_REWRITE_TAC[midpoint] THEN
REWRITE_TAC[DOT_2; DOT_LSUB; DOT_RSUB] THEN
SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_SUB_COMPONENT; VEC_COMPONENT;
VECTOR_MUL_COMPONENT; BASIS_COMPONENT; DIMINDEX_2; ARITH] THEN
CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* As a little bonus, verify that the circle passing through the *)
(* midpoints of the sides is indeed a 9-point circle, i.e. it passes *)
(* through the feet of the altitudes and the midpoints of the lines joining *)
(* the vertices to the orthocenter (where the alititudes intersect). *)
(* ------------------------------------------------------------------------- *)
let NINE_POINT_CIRCLE_1 = prove
(`!a b c:real^2 mbc mac mab fbc fac fab ncenter nradius.
~(collinear {a,b,c}) /\
midpoint(a,b) = mab /\
midpoint(b,c) = mbc /\
midpoint(c,a) = mac /\
dist(ncenter,mbc) = nradius /\
dist(ncenter,mac) = nradius /\
dist(ncenter,mab) = nradius /\
collinear {a,b,fab} /\ orthogonal (a - b) (c - fab) /\
collinear {b,c,fbc} /\ orthogonal (b - c) (a - fbc) /\
collinear {c,a,fac} /\ orthogonal (c - a) (b - fac)
==> dist(ncenter,fab) = nradius /\
dist(ncenter,fbc) = nradius /\
dist(ncenter,fac) = nradius`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d /\ e <=> b /\ c /\ d /\ a /\ e`] THEN
REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SYM) MP_TAC)) THEN
ASM_REWRITE_TAC[dist; NORM_EQ_SQUARE; REAL_POS] THEN
REWRITE_TAC[COLLINEAR_3_2D] THEN
REWRITE_TAC[orthogonal; dist; NORM_POW_2] THEN
ASM_REWRITE_TAC[midpoint] THEN
REWRITE_TAC[DOT_2; DOT_LSUB; DOT_RSUB] THEN
REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_SUB_COMPONENT;
VECTOR_MUL_COMPONENT; VEC_COMPONENT] THEN
SIMP_TAC[] THEN CONV_TAC REAL_RING);;
let NINE_POINT_CIRCLE_2 = prove
(`!a b c:real^2 mbc mac mab fbc fac fab ncenter nradius.
~(collinear {a,b,c}) /\
midpoint(a,b) = mab /\
midpoint(b,c) = mbc /\
midpoint(c,a) = mac /\
dist(ncenter,mbc) = nradius /\
dist(ncenter,mac) = nradius /\
dist(ncenter,mab) = nradius /\
collinear {a,b,fab} /\ orthogonal (a - b) (c - fab) /\
collinear {b,c,fbc} /\ orthogonal (b - c) (a - fbc) /\
collinear {c,a,fac} /\ orthogonal (c - a) (b - fac) /\
collinear {oc,a,fbc} /\ collinear {oc,b,fac} /\ collinear{oc,c,fab}
==> dist(ncenter,midpoint(oc,a)) = nradius /\
dist(ncenter,midpoint(oc,b)) = nradius /\
dist(ncenter,midpoint(oc,c)) = nradius`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d /\ e <=> b /\ c /\ d /\ a /\ e`] THEN
REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SYM) MP_TAC)) THEN
ASM_REWRITE_TAC[dist; NORM_EQ_SQUARE; REAL_POS] THEN
REWRITE_TAC[COLLINEAR_3_2D] THEN
REWRITE_TAC[orthogonal; dist; NORM_POW_2] THEN
ASM_REWRITE_TAC[midpoint] THEN
REWRITE_TAC[DOT_2; DOT_LSUB; DOT_RSUB] THEN
REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_SUB_COMPONENT;
VECTOR_MUL_COMPONENT; VEC_COMPONENT] THEN
SIMP_TAC[] THEN CONV_TAC REAL_RING);;
|