Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 16,830 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
(* ========================================================================= *)
(* The Cayley-Hamilton theorem (for real matrices).                          *)
(* ========================================================================= *)

needs "Multivariate/complexes.ml";;
needs "Multivariate/msum.ml";;

(* ------------------------------------------------------------------------- *)
(* Powers of a square matrix (mpow).                                         *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("mpow",(24,"left"));;

let mpow = define
  `(!A:real^N^N. A mpow 0 = (mat 1 :real^N^N)) /\
   (!A:real^N^N n. A mpow (SUC n) = A ** A mpow n)`;;

let MPOW_ADD = prove
 (`!A:real^N^N m n. A mpow (m + n) = A mpow m ** A mpow n`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[ADD_CLAUSES; mpow; MATRIX_MUL_LID] THEN
  REWRITE_TAC[MATRIX_MUL_ASSOC]);;

let MPOW_1 = prove
 (`!A:real^N^N. A mpow 1 = A`,
  REWRITE_TAC[num_CONV `1`; mpow] THEN
  REWRITE_TAC[SYM(num_CONV `1`); MATRIX_MUL_RID]);;

let MPOW_SUC = prove
 (`!A:real^N^N n. A mpow (SUC n) = A mpow n ** A`,
  REWRITE_TAC[ADD1; MPOW_ADD; MPOW_1]);;

(* ------------------------------------------------------------------------- *)
(* The main lemma underlying the proof.                                      *)
(* ------------------------------------------------------------------------- *)

let MATRIC_POLYFUN_EQ_0 = prove
 (`!n A:num->real^N^M.
        (!x. msum(0..n) (\i. x pow i %% A i) = mat 0) <=>
        (!i. i IN 0..n ==> A i = mat 0)`,
  SIMP_TAC[CART_EQ; MSUM_COMPONENT; MAT_COMPONENT; LAMBDA_BETA;
           FINITE_NUMSEG; COND_ID;
           ONCE_REWRITE_RULE[REAL_MUL_SYM] MATRIX_CMUL_COMPONENT] THEN
  REWRITE_TAC[MESON[]
   `(!x i. P i ==> !j. Q j ==> R x i j) <=>
    (!i. P i ==> !j. Q j ==> !x. R x i j)`] THEN
  REWRITE_TAC[REAL_POLYFUN_EQ_0] THEN MESON_TAC[]);;

let MATRIC_POLY_LEMMA = prove
 (`!(A:real^N^N) B (C:real^N^N) n.
        (!x. msum (0..n) (\i. (x pow i) %% B i) ** (A - x %% mat 1) = C)
        ==> C = mat 0`,
  SIMP_TAC[GSYM MSUM_MATRIX_RMUL; FINITE_NUMSEG; MATRIX_SUB_LDISTRIB] THEN
  REWRITE_TAC[MATRIX_MUL_RMUL] THEN ONCE_REWRITE_TAC[MATRIX_MUL_LMUL] THEN
  ONCE_REWRITE_TAC[MATRIX_CMUL_ASSOC] THEN
  REWRITE_TAC[GSYM(CONJUNCT2 real_pow)] THEN
  SIMP_TAC[MSUM_SUB; FINITE_NUMSEG] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `!x. msum(0..SUC n)
         (\i. x pow i %% (((if i = 0 then (--C:real^N^N) else mat 0) +
                           (if i <= n then B i ** (A:real^N^N) else mat 0)) -
                          (if i = 0 then mat 0 else B(i - 1) ** mat 1))) =
        mat 0`
  MP_TAC THENL
   [SIMP_TAC[MATRIX_CMUL_SUB_LDISTRIB; MSUM_SUB; FINITE_NUMSEG;
             MATRIX_CMUL_ADD_LDISTRIB; MSUM_ADD] THEN
    ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[MATRIX_CMUL_RZERO] THEN
    ONCE_REWRITE_TAC[MESON[]
     `(if p then mat 0 else x) = (if ~p then x else mat 0)`] THEN
    REWRITE_TAC[GSYM MSUM_RESTRICT_SET; IN_NUMSEG] THEN
    REWRITE_TAC[ARITH_RULE `(0 <= i /\ i <= SUC n) /\ i = 0 <=> i = 0`;
      ARITH_RULE `(0 <= i /\ i <= SUC n) /\ i <= n <=> 0 <= i /\ i <= n`;
      ARITH_RULE `(0 <= i /\ i <= SUC n) /\ ~(i = 0) <=>
                  1 <= i /\ i <= SUC n`] THEN
    REWRITE_TAC[SING_GSPEC; GSYM numseg; MSUM_SING; real_pow] THEN
    REWRITE_TAC[MATRIX_CMUL_LID] THEN
    FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC ONCE_DEPTH_CONV [GSYM th]) THEN
    REWRITE_TAC[MATRIX_NEG_SUB] THEN REWRITE_TAC[MATRIX_SUB; AC MATRIX_ADD_AC
     `(((A:real^N^N) + --B) + B) + C = (--B + B) + A + C`] THEN
    REWRITE_TAC[MATRIX_ADD_LNEG; MATRIX_ADD_LID] THEN
    REWRITE_TAC[num_CONV `1`] THEN REWRITE_TAC[ADD1; MSUM_OFFSET] THEN
    REWRITE_TAC[ADD_CLAUSES; ADD_SUB; MATRIX_ADD_RNEG];
    REWRITE_TAC[MATRIC_POLYFUN_EQ_0; IN_NUMSEG; LE_0] THEN DISCH_TAC THEN
    SUBGOAL_THEN `!i:num. B(n - i) = (mat 0:real^N^N)` MP_TAC THENL
     [MATCH_MP_TAC num_INDUCTION THEN CONJ_TAC THENL
       [FIRST_X_ASSUM(MP_TAC o SPEC `SUC n`) THEN
        REWRITE_TAC[LE_REFL; SUB_0; NOT_SUC; ARITH_RULE `~(SUC n <= n)`] THEN
        REWRITE_TAC[MATRIX_ADD_LID; SUC_SUB1; MATRIX_MUL_RID] THEN
        REWRITE_TAC[MATRIX_SUB_LZERO; MATRIX_NEG_EQ_0];
        X_GEN_TAC `m:num` THEN DISCH_TAC THEN
        DISJ_CASES_TAC(ARITH_RULE `n - SUC m = n - m \/ m < n`) THEN
        ASM_REWRITE_TAC[] THEN
        FIRST_X_ASSUM(MP_TAC o SPEC `n - m:num`) THEN
        ASM_SIMP_TAC[ARITH_RULE `m < n ==> ~(n - m = 0)`;
                     ARITH_RULE `n - m <= SUC n /\ n - m <= n`] THEN
        REWRITE_TAC[MATRIX_MUL_LZERO; MATRIX_ADD_LID; MATRIX_SUB_LZERO] THEN
        REWRITE_TAC[MATRIX_MUL_RID; MATRIX_NEG_EQ_0] THEN
        ASM_SIMP_TAC[ARITH_RULE `n - m - 1 = n - SUC m`]];
      DISCH_THEN(MP_TAC o SPEC `n:num`) THEN REWRITE_TAC[SUB_REFL] THEN
      DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `0`) THEN
      ASM_REWRITE_TAC[LE_0; MATRIX_MUL_LZERO; MATRIX_ADD_RID] THEN
      REWRITE_TAC[MATRIX_SUB_RZERO; MATRIX_NEG_EQ_0]]]);;

(* ------------------------------------------------------------------------- *)
(* Show that cofactor and determinant are n-1 and n degree polynomials.      *)
(* ------------------------------------------------------------------------- *)

let POLYFUN_N_CONST = prove
 (`!c n. ?b. !x. c = sum(0..n) (\i. b i * x pow i)`,
  REPEAT STRIP_TAC THEN
  EXISTS_TAC `\i. if i = 0 then c else &0` THEN
  REWRITE_TAC[COND_RAND; COND_RATOR; REAL_MUL_LZERO] THEN
  REWRITE_TAC[GSYM SUM_RESTRICT_SET; IN_NUMSEG] THEN
  REWRITE_TAC[ARITH_RULE `(0 <= i /\ i <= n) /\ i = 0 <=> i = 0`] THEN
  REWRITE_TAC[SING_GSPEC; SUM_SING; real_pow; REAL_MUL_RID]);;

let POLYFUN_N_ADD = prove
 (`!f g. (?b. !x. f(x) = sum(0..n) (\i. b i * x pow i)) /\
         (?c. !x. g(x) = sum(0..n) (\i. c i * x pow i))
         ==> ?d. !x. f(x) + g(x) = sum(0..n) (\i. d i * x pow i)`,
  REPEAT STRIP_TAC THEN
  EXISTS_TAC `\i. (b:num->real) i + c i` THEN
  ASM_REWRITE_TAC[SUM_ADD_NUMSEG; REAL_ADD_RDISTRIB]);;

let POLYFUN_N_CMUL = prove
 (`!f c. (?b. !x. f(x) = sum(0..n) (\i. b i * x pow i))
         ==> ?b. !x. c * f(x) = sum(0..n) (\i. b i * x pow i)`,
  REPEAT STRIP_TAC THEN
  EXISTS_TAC `\i. c * (b:num->real) i` THEN
  ASM_REWRITE_TAC[SUM_LMUL; GSYM REAL_MUL_ASSOC]);;

let POLYFUN_N_SUM = prove
 (`!f s. FINITE s /\
         (!a. a IN s ==> ?b. !x. f x a = sum(0..n) (\i. b i * x pow i))
         ==> ?b. !x. sum s (f x) = sum(0..n) (\i. b i * x pow i)`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[SUM_CLAUSES; FORALL_IN_INSERT; NOT_IN_EMPTY; POLYFUN_N_CONST] THEN
  REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN
  MATCH_MP_TAC POLYFUN_N_ADD THEN ASM_SIMP_TAC[]);;

let POLYFUN_N_PRODUCT = prove
 (`!f s n. FINITE s /\
           (!a:A. a IN s ==> ?c d. !x. f x a = c + d * x) /\ CARD(s) <= n
           ==> ?b. !x. product s (f x) = sum(0..n) (\i. b i * x pow i)`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; POLYFUN_N_CONST; FORALL_IN_INSERT] THEN
  REPEAT GEN_TAC THEN DISCH_THEN(fun th ->
    DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
  ASM_SIMP_TAC[CARD_CLAUSES] THEN
  INDUCT_TAC THENL [ARITH_TAC; REWRITE_TAC[LE_SUC]] THEN DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_TAC `b:num->real`) THEN
  FIRST_X_ASSUM(X_CHOOSE_THEN `c:real` (X_CHOOSE_TAC `d:real`)) THEN
  ASM_REWRITE_TAC[] THEN
  EXISTS_TAC `\i. (if i <= n then c * b i else &0) +
                  (if ~(i = 0) then d * b(i - 1) else &0)` THEN
  X_GEN_TAC `x:real` THEN
  REWRITE_TAC[REAL_ADD_RDISTRIB; SUM_ADD_NUMSEG] THEN
  REWRITE_TAC[COND_RAND; COND_RATOR; GSYM SUM_LMUL; REAL_MUL_LZERO] THEN
  REWRITE_TAC[GSYM SUM_RESTRICT_SET; IN_NUMSEG] THEN
  REWRITE_TAC[ARITH_RULE
   `((0 <= i /\ i <= SUC n) /\ i <= n <=> 0 <= i /\ i <= n) /\
    ((0 <= i /\ i <= SUC n) /\ ~(i = 0) <=> 1 <= i /\ i <= SUC n)`] THEN
  REWRITE_TAC[GSYM numseg] THEN
  REWRITE_TAC[MESON[num_CONV `1`; ADD1] `1..SUC n = 0+1..n+1`] THEN
  REWRITE_TAC[SUM_OFFSET; ADD_SUB; REAL_POW_ADD] THEN
  BINOP_TAC THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN REAL_ARITH_TAC);;

let COFACTOR_ENTRY_AS_POLYFUN = prove
 (`!A:real^N^N x i j.
        1 <= i /\ i <= dimindex(:N) /\
        1 <= j /\ j <= dimindex(:N)
        ==> ?c. !x. cofactor(A - x %% mat 1)$i$j =
                    sum(0..dimindex(:N)-1) (\i. c(i) * x pow i)`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[cofactor; LAMBDA_BETA; det] THEN
  MATCH_MP_TAC POLYFUN_N_SUM THEN
  SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; FORALL_IN_GSPEC] THEN
  X_GEN_TAC `p:num->num` THEN DISCH_TAC THEN
  MATCH_MP_TAC POLYFUN_N_CMUL THEN
  SUBGOAL_THEN `1..dimindex(:N) = i INSERT ((1..dimindex(:N)) DELETE i)`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_INSERT; IN_DELETE; IN_NUMSEG] THEN ASM_ARITH_TAC;
    SIMP_TAC[PRODUCT_CLAUSES; FINITE_DELETE; FINITE_NUMSEG]] THEN
  ASM_REWRITE_TAC[IN_DELETE; IN_NUMSEG] THEN
  MATCH_MP_TAC POLYFUN_N_CMUL THEN
  MATCH_MP_TAC POLYFUN_N_PRODUCT THEN
  SIMP_TAC[CARD_DELETE; FINITE_DELETE; FINITE_NUMSEG] THEN
  ASM_REWRITE_TAC[IN_NUMSEG; IN_DELETE; CARD_NUMSEG_1; LE_REFL] THEN
  X_GEN_TAC `k:num` THEN STRIP_TAC THEN
  SUBGOAL_THEN `(p:num->num) k IN 1..dimindex(:N)` MP_TAC THENL
   [ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_NUMSEG]; ALL_TAC] THEN
  ASM_SIMP_TAC[IN_NUMSEG; LAMBDA_BETA] THEN STRIP_TAC THEN
  ASM_CASES_TAC `(p:num->num) k = j` THEN ASM_REWRITE_TAC[] THENL
   [REPEAT(EXISTS_TAC `&0`) THEN REAL_ARITH_TAC; ALL_TAC] THEN
  ASM_SIMP_TAC[MATRIX_SUB_COMPONENT; MATRIX_CMUL_COMPONENT; MAT_COMPONENT] THEN
  REWRITE_TAC[REAL_ARITH `a - x * d:real = a + (--d) * x`] THEN MESON_TAC[]);;

let DETERMINANT_AS_POLYFUN = prove
 (`!A:real^N^N.
        ?c. !x. det(A - x %% mat 1) =
                sum(0..dimindex(:N)) (\i. c(i) * x pow i)`,
  GEN_TAC THEN REWRITE_TAC[det] THEN
  MATCH_MP_TAC POLYFUN_N_SUM THEN
  SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; FORALL_IN_GSPEC] THEN
  X_GEN_TAC `p:num->num` THEN DISCH_TAC THEN
  MATCH_MP_TAC POLYFUN_N_CMUL THEN MATCH_MP_TAC POLYFUN_N_PRODUCT THEN
  SIMP_TAC[FINITE_NUMSEG; CARD_NUMSEG_1; LE_REFL; IN_NUMSEG] THEN
  X_GEN_TAC `k:num` THEN STRIP_TAC THEN
  SUBGOAL_THEN `(p:num->num) k IN 1..dimindex(:N)` MP_TAC THENL
   [ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_NUMSEG]; ALL_TAC] THEN
  ASM_SIMP_TAC[IN_NUMSEG; LAMBDA_BETA] THEN STRIP_TAC THEN
  ASM_SIMP_TAC[MATRIX_SUB_COMPONENT; MATRIX_CMUL_COMPONENT; MAT_COMPONENT] THEN
  REWRITE_TAC[REAL_ARITH `a - x * d:real = a + (--d) * x`] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Hence define characteristic polynomial coefficients.                      *)
(* ------------------------------------------------------------------------- *)

let char_poly = new_specification ["char_poly"]
  (REWRITE_RULE[SKOLEM_THM] DETERMINANT_AS_POLYFUN);;

(* ------------------------------------------------------------------------- *)
(* Now the Cayley-Hamilton proof.                                            *)
(* ------------------------------------------------------------------------- *)

let COFACTOR_AS_MATRIC_POLYNOMIAL = prove
 (`!A:real^N^N. ?C.
      !x. cofactor(A - x %% mat 1) =
          msum(0..dimindex(:N)-1) (\i. x pow i %% C i)`,
  GEN_TAC THEN SIMP_TAC[CART_EQ; MSUM_COMPONENT; FINITE_NUMSEG] THEN
  MP_TAC(ISPEC `A:real^N^N` COFACTOR_ENTRY_AS_POLYFUN) THEN
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  REWRITE_TAC[IMP_IMP] THEN REWRITE_TAC[LAMBDA_SKOLEM] THEN
  DISCH_THEN(X_CHOOSE_THEN `c:(num->real)^N^N` ASSUME_TAC) THEN
  EXISTS_TAC `(\i. lambda j k. ((c:(num->real)^N^N)$j$k) i):num->real^N^N` THEN
  MAP_EVERY X_GEN_TAC [`x:real`; `i:num`] THEN STRIP_TAC THEN
  X_GEN_TAC `j:num` THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN
  MATCH_MP_TAC SUM_EQ_NUMSEG THEN REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[MATRIX_CMUL_COMPONENT; LAMBDA_BETA] THEN REAL_ARITH_TAC);;

let MATRIC_POWER_DIFFERENCE = prove
 (`!A:real^N^N x n.
        A mpow (SUC n) - x pow (SUC n) %% mat 1 =
        msum (0..n) (\i. x pow i %% A mpow (n - i)) ** (A - x %% mat 1)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THENL
   [REWRITE_TAC[MSUM_CLAUSES_NUMSEG; real_pow; SUB_0; mpow] THEN
    REWRITE_TAC[MATRIX_MUL_RID; MATRIX_CMUL_LID; MATRIX_MUL_LID] THEN
    REWRITE_TAC[REAL_MUL_RID];
    MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC
     `(A mpow SUC n - x pow SUC n %% mat 1) ** A +
      (x pow (SUC n) %% mat 1 :real^N^N) ** (A - x %% mat 1:real^N^N)` THEN
    CONJ_TAC THENL
     [GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MPOW_SUC] THEN
      REWRITE_TAC[MATRIX_SUB_RDISTRIB; MATRIX_SUB_LDISTRIB] THEN
      REWRITE_TAC[MATRIX_SUB; MATRIX_MUL_LMUL; MATRIX_MUL_LID] THEN
      REWRITE_TAC[GSYM MATRIX_ADD_ASSOC] THEN AP_TERM_TAC THEN
      REWRITE_TAC[MATRIX_ADD_ASSOC; MATRIX_ADD_LNEG; MATRIX_ADD_LID] THEN
      REWRITE_TAC[real_pow; MATRIX_CMUL_ASSOC] THEN REWRITE_TAC[REAL_MUL_AC];

      ASM_REWRITE_TAC[MSUM_CLAUSES_NUMSEG; LE_0] THEN
      REWRITE_TAC[SUB_REFL; mpow; MATRIX_ADD_RDISTRIB] THEN
      AP_THM_TAC THEN AP_TERM_TAC THEN
      SIMP_TAC[GSYM MSUM_MATRIX_RMUL; FINITE_NUMSEG] THEN
      MATCH_MP_TAC MSUM_EQ THEN REWRITE_TAC[FINITE_NUMSEG] THEN
      X_GEN_TAC `i:num` THEN REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN
      ASM_SIMP_TAC[MATRIX_MUL_LMUL] THEN AP_TERM_TAC THEN
      ASM_SIMP_TAC[ARITH_RULE `i <= n ==> SUC n - i = SUC(n - i)`] THEN
      REWRITE_TAC[MPOW_SUC; GSYM MATRIX_MUL_ASSOC] THEN AP_TERM_TAC THEN
      REWRITE_TAC[MATRIX_SUB_LDISTRIB; MATRIX_SUB_RDISTRIB] THEN
      REWRITE_TAC[MATRIX_MUL_RMUL; MATRIX_MUL_LMUL] THEN
      REWRITE_TAC[MATRIX_MUL_LID; MATRIX_MUL_RID]]]);;

let MATRIC_CHARPOLY_DIFFERENCE = prove
 (`!A:real^N^N. ?B.
      !x. msum(0..dimindex(:N)) (\i. char_poly A i %% A mpow i) -
          sum(0..dimindex(:N)) (\i. char_poly A i * x pow i) %% mat 1 =
          msum(0..(dimindex(:N)-1)) (\i. x pow i %% B i) ** (A - x %% mat 1)`,
  GEN_TAC THEN SPEC_TAC(`dimindex(:N)`,`n:num`) THEN
  SPEC_TAC(`char_poly(A:real^N^N)`,`c:num->real`) THEN
  GEN_TAC THEN INDUCT_TAC THEN
  SIMP_TAC[MSUM_CLAUSES_NUMSEG; SUM_CLAUSES_NUMSEG; LE_0] THENL
   [EXISTS_TAC `(\i. mat 0):num->real^N^N` THEN
    CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[MSUM_CLAUSES_NUMSEG] THEN
    REWRITE_TAC[real_pow; MATRIX_MUL_LMUL; MATRIX_MUL_LZERO; mpow;
                REAL_MUL_RID; MATRIX_CMUL_RZERO; MATRIX_SUB_REFL];
    FIRST_X_ASSUM(X_CHOOSE_TAC `B:num->real^N^N`) THEN
    REWRITE_TAC[MATRIX_SUB; MATRIX_NEG_ADD; MATRIX_CMUL_ADD_RDISTRIB] THEN
    ONCE_REWRITE_TAC[AC MATRIX_ADD_AC
     `(A + B) + (C + D):real^N^N = (A + C) + (B + D)`] THEN
    ASM_REWRITE_TAC[GSYM MATRIX_SUB] THEN
    REWRITE_TAC[GSYM MATRIX_CMUL_ASSOC; GSYM MATRIX_CMUL_SUB_LDISTRIB] THEN
    REWRITE_TAC[MATRIC_POWER_DIFFERENCE; SUC_SUB1] THEN
    EXISTS_TAC `(\i. (if i <= n - 1 then B i else mat 0) +
                     c(SUC n) %% A mpow (n - i)):num->real^N^N` THEN
    X_GEN_TAC `x:real` THEN REWRITE_TAC[MATRIX_CMUL_ADD_LDISTRIB] THEN
    SIMP_TAC[MSUM_ADD; FINITE_NUMSEG; MATRIX_ADD_RDISTRIB] THEN
    REWRITE_TAC[GSYM MATRIX_MUL_LMUL] THEN
    BINOP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THENL
     [REWRITE_TAC[COND_RAND; COND_RATOR; MATRIX_CMUL_RZERO] THEN
      REWRITE_TAC[GSYM MSUM_RESTRICT_SET; IN_NUMSEG] THEN
      REWRITE_TAC[numseg; ARITH_RULE
       `(0 <= i /\ i <= n) /\ i <= n - 1 <=> 0 <= i /\ i <= n - 1`];
      SIMP_TAC[GSYM MSUM_LMUL; FINITE_NUMSEG; MATRIX_CMUL_ASSOC] THEN
      REWRITE_TAC[REAL_MUL_SYM]]]);;

let CAYLEY_HAMILTON = prove
 (`!A:real^N^N. msum(0..dimindex(:N)) (\i. char_poly A i %% A mpow i) = mat 0`,
  GEN_TAC THEN MATCH_MP_TAC MATRIC_POLY_LEMMA THEN MATCH_MP_TAC(MESON[]
   `!g. (!x. g x = k) /\ (?a b c. !x. f a b c x = g x)
        ==> ?a b c. !x. f a b c x = k`) THEN
  EXISTS_TAC
   `\x. (msum(0..dimindex(:N)) (\i. char_poly A i %% (A:real^N^N) mpow i) -
         sum(0..dimindex(:N)) (\i. char_poly A i * x pow i) %% mat 1) +
        sum(0..dimindex(:N)) (\i. char_poly A i * x pow i) %% mat 1` THEN
  REWRITE_TAC[] THEN CONJ_TAC THENL
   [REWRITE_TAC[MATRIX_SUB; GSYM MATRIX_ADD_ASSOC; MATRIX_ADD_LNEG] THEN
    REWRITE_TAC[MATRIX_ADD_RID];
    X_CHOOSE_THEN `B:num->real^N^N` (fun th -> ONCE_REWRITE_TAC[th])
     (ISPEC `A:real^N^N` MATRIC_CHARPOLY_DIFFERENCE) THEN
    REWRITE_TAC[GSYM char_poly; GSYM MATRIX_MUL_LEFT_COFACTOR] THEN
    REWRITE_TAC[GSYM MATRIX_ADD_RDISTRIB] THEN
    REWRITE_TAC[GSYM COFACTOR_TRANSP; TRANSP_MATRIX_SUB] THEN
    REWRITE_TAC[TRANSP_MATRIX_CMUL; TRANSP_MAT] THEN
    X_CHOOSE_THEN `C:num->real^N^N` (fun th -> ONCE_REWRITE_TAC[th])
     (ISPEC `transp A:real^N^N` COFACTOR_AS_MATRIC_POLYNOMIAL) THEN
    MAP_EVERY EXISTS_TAC
     [`A:real^N^N`; `(\i. B i + C i):num->real^N^N`; `dimindex(:N)-1`] THEN
    SIMP_TAC[GSYM MSUM_ADD; FINITE_NUMSEG; MATRIX_CMUL_ADD_LDISTRIB]]);;