Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 15,777 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
(* ========================================================================= *)
(* Ballot problem. *)
(* ========================================================================= *)
needs "Library/binomial.ml";;
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* Restricted function space. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("-->",(13,"right"));;
let funspace = new_definition
`(s --> t) = {f:A->B | (!x. x IN s ==> f(x) IN t) /\
(!x. ~(x IN s) ==> f(x) = @y. T)}`;;
let FUNSPACE_EMPTY = prove
(`({} --> t) = {(\x. @y. T)}`,
REWRITE_TAC[EXTENSION; IN_SING; funspace; IN_ELIM_THM; NOT_IN_EMPTY] THEN
REWRITE_TAC[FUN_EQ_THM]);;
let HAS_SIZE_FUNSPACE = prove
(`!s:A->bool t:B->bool m n.
s HAS_SIZE m /\ t HAS_SIZE n ==> (s --> t) HAS_SIZE (n EXP m)`,
REWRITE_TAC[HAS_SIZE; GSYM CONJ_ASSOC] THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
[SIMP_TAC[CARD_CLAUSES; FINITE_RULES; FUNSPACE_EMPTY; NOT_IN_EMPTY] THEN
REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
ASM_REWRITE_TAC[EXP; ARITH];
ALL_TAC] THEN
REWRITE_TAC[GSYM HAS_SIZE] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(x INSERT s) --> t =
IMAGE (\(y:B,g) u:A. if u = x then y else g(u))
{y,g | y IN t /\ g IN s --> t}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; funspace; IN_ELIM_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b /\ c) /\ d <=> d /\ a /\ b /\ c`] THEN
REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
X_GEN_TAC `f:A->B` THEN EQ_TAC THENL
[STRIP_TAC THEN MAP_EVERY EXISTS_TAC
[`(f:A->B) x`; `\u. if u = x then @y. T else (f:A->B) u`] THEN
REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[IN_INSERT];
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`y:B`; `g:A->B`] THEN
STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_MESON_TAC[IN_INSERT]];
ALL_TAC] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
[REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ d <=> d /\ a /\ b`] THEN
REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
REWRITE_TAC[FUN_EQ_THM; funspace; IN_ELIM_THM] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
[ASM_MESON_TAC[IN_INSERT]; ALL_TAC] THEN
X_GEN_TAC `u:A` THEN ASM_CASES_TAC `u:A = x` THEN ASM_MESON_TAC[];
ALL_TAC] THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN ASM_SIMP_TAC[CARD_CLAUSES; EXP] THEN
MATCH_MP_TAC HAS_SIZE_PRODUCT THEN ASM_MESON_TAC[]);;
let FINITE_FUNSPACE = prove
(`!s t. FINITE s /\ FINITE t ==> FINITE(s --> t)`,
MESON_TAC[HAS_SIZE_FUNSPACE; HAS_SIZE]);;
(* ------------------------------------------------------------------------- *)
(* Definition of the problem. *)
(* ------------------------------------------------------------------------- *)
let vote_INDUCT,vote_RECURSION = define_type
"vote = A | B";;
let all_countings = new_definition
`all_countings a b =
let n = a + b in
CARD {f | f IN (1..n --> {A,B}) /\
CARD { i | i IN 1..n /\ f(i) = A} = a /\
CARD { i | i IN 1..n /\ f(i) = B} = b}`;;
let valid_countings = new_definition
`valid_countings a b =
let n = a + b in
CARD {f | f IN (1..n --> {A,B}) /\
CARD { i | i IN 1..n /\ f(i) = A} = a /\
CARD { i | i IN 1..n /\ f(i) = B} = b /\
!m. 1 <= m /\ m <= n
==> CARD { i | i IN 1..m /\ f(i) = A} >
CARD { i | i IN 1..m /\ f(i) = B}}`;;
(* ------------------------------------------------------------------------- *)
(* Various lemmas. *)
(* ------------------------------------------------------------------------- *)
let vote_CASES = cases "vote"
and vote_DISTINCT = distinctness "vote";;
let FINITE_COUNTINGS = prove
(`FINITE {f | f IN (1..n --> {A,B}) /\ P f}`,
MATCH_MP_TAC FINITE_RESTRICT THEN
MATCH_MP_TAC FINITE_FUNSPACE THEN
REWRITE_TAC[FINITE_NUMSEG; FINITE_INSERT; FINITE_RULES]);;
let UNIV_VOTE = prove
(`(:vote) = {A,B}`,
REWRITE_TAC[EXTENSION; IN_UNIV; IN_INSERT; NOT_IN_EMPTY; vote_CASES]);;
let ADD1_NOT_IN_NUMSEG = prove
(`!m n. ~((n + 1) IN m..n)`,
REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC);;
let NUMSEG_1_CLAUSES = prove
(`!n. 1..(n+1) = (n + 1) INSERT (1..n)`,
REWRITE_TAC[GSYM ADD1; NUMSEG_CLAUSES; ARITH_RULE `1 <= SUC n`]);;
let NUMSEG_RESTRICT_SUC = prove
(`{i | i IN 1..(n+1) /\ P i} =
if P(n + 1) then (n + 1) INSERT {i | i IN 1..n /\ P i}
else {i | i IN 1..n /\ P i}`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; NUMSEG_1_CLAUSES; IN_INSERT] THEN
ASM_MESON_TAC[ADD1_NOT_IN_NUMSEG]);;
let CARD_NUMSEG_RESTRICT_SUC = prove
(`CARD {i | i IN 1..(n+1) /\ P i} =
if P(n + 1) then CARD {i | i IN 1..n /\ P i} + 1
else CARD {i | i IN 1..n /\ P i}`,
REPEAT GEN_TAC THEN REWRITE_TAC[NUMSEG_RESTRICT_SUC] THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC[CARD_CLAUSES; FINITE_RESTRICT; FINITE_NUMSEG] THEN
REWRITE_TAC[IN_ELIM_THM; ADD1_NOT_IN_NUMSEG; ADD1]);;
let FORALL_RANGE_SUC = prove
(`(!i. 1 <= i /\ i <= n + 1 ==> P i) <=>
P(n + 1) /\ (!i. 1 <= i /\ i <= n ==> P i)`,
REWRITE_TAC[ARITH_RULE `i <= n + 1 <=> i <= n \/ i = n + 1`] THEN
MESON_TAC[ARITH_RULE `1 <= n + 1`]);;
let IN_NUMSEG_RESTRICT_FALSE = prove
(`m <= n
==> (i IN 1..m /\ (if i = n + 1 then p i else q i) <=> i IN 1..m /\ q i)`,
REWRITE_TAC[IN_NUMSEG] THEN
MESON_TAC[ARITH_RULE `i <= m /\ m <= n ==> ~(i = n + 1)`]);;
let CARD_NUMSEG_RESTRICT_EXTREMA = prove
(`(CARD {i | i IN 1..n /\ P i} = n <=> !i. 1 <= i /\ i <= n ==> P i) /\
(CARD {i | i IN 1..n /\ P i} = 0 <=> !i. 1 <= i /\ i <= n ==> ~(P i))`,
SIMP_TAC[CARD_EQ_0; FINITE_RESTRICT; FINITE_NUMSEG] THEN
MP_TAC(ISPECL [`{i | i IN 1..n /\ P i}`; `1..n`] SUBSET_CARD_EQ) THEN
SIMP_TAC[FINITE_NUMSEG; SUBSET; IN_ELIM_THM; CARD_NUMSEG_1] THEN
DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_NUMSEG; IN_ELIM_THM] THEN
MESON_TAC[]);;
let VOTE_NOT_EQ = prove
(`(!x. ~(x = A) <=> x = B) /\
(!x. ~(x = B) <=> x = A)`,
MESON_TAC[vote_CASES; vote_DISTINCT]);;
let FUNSPACE_FIXED = prove
(`{f | f IN (s --> t) /\ (!i. i IN s ==> f i = a)} =
if s = {} \/ a IN t then {(\i. if i IN s then a else @x. T)} else {}`,
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN GEN_TAC THEN
COND_CASES_TAC THEN
ASM_REWRITE_TAC[IN_ELIM_THM; funspace; NOT_IN_EMPTY; IN_SING] THEN
REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[]);;
let COUNTING_LEMMA = prove
(`CARD {f | f IN (1..(n+1) --> {A,B}) /\ P f} =
CARD {f | f IN (1..n --> {A,B}) /\ P (\i. if i = n + 1 then A else f i)} +
CARD {f | f IN (1..n --> {A,B}) /\ P (\i. if i = n + 1 then B else f i)}`,
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `CARD {f | f IN (1..(n+1) --> {A,B}) /\ f(n+1) = A /\ P f} +
CARD {f | f IN (1..(n+1) --> {A,B}) /\ f(n+1) = B /\ P f}` THEN
CONJ_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_UNION_EQ THEN
REWRITE_TAC[FINITE_COUNTINGS; EXTENSION; IN_INTER; IN_UNION] THEN
REWRITE_TAC[IN_ELIM_THM; NOT_IN_EMPTY] THEN
MESON_TAC[vote_CASES; vote_DISTINCT];
ALL_TAC] THEN
BINOP_TAC THEN
MATCH_MP_TAC BIJECTIONS_CARD_EQ THEN
EXISTS_TAC `\f i. if i = n + 1 then @x:vote. T else f i` THENL
[EXISTS_TAC `\f i. if i = n + 1 then A else f i`;
EXISTS_TAC `\f i. if i = n + 1 then B else f i`] THEN
REWRITE_TAC[FINITE_COUNTINGS] THEN
REWRITE_TAC[IN_ELIM_THM; funspace; GSYM UNIV_VOTE; IN_UNIV] THEN
REWRITE_TAC[NUMSEG_1_CLAUSES; IN_INSERT] THEN REPEAT STRIP_TAC THEN
TRY(FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[]
`P x ==> x = y ==> P y`))) THEN
TRY(GEN_REWRITE_TAC I [FUN_EQ_THM]) THEN ASM_MESON_TAC[ADD1_NOT_IN_NUMSEG]);;
(* ------------------------------------------------------------------------- *)
(* Recurrence relations. *)
(* ------------------------------------------------------------------------- *)
let ALL_COUNTINGS_0 = prove
(`!a. all_countings a 0 = 1 /\ all_countings 0 a = 1`,
REWRITE_TAC[all_countings; CARD_NUMSEG_RESTRICT_EXTREMA; GSYM IN_NUMSEG;
LET_DEF; LET_END_DEF; ADD_CLAUSES; VOTE_NOT_EQ] THEN
REWRITE_TAC[FUNSPACE_FIXED; IN_INSERT] THEN
SIMP_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; ARITH_SUC]);;
let VALID_COUNTINGS_0 = prove
(`valid_countings 0 0 = 1 /\
!a. valid_countings (SUC a) 0 = 1 /\ valid_countings 0 (SUC a) = 0`,
let lemma = prove
(`{x} INTER s = if x IN s then {x} else {}`,
COND_CASES_TAC THEN ASM SET_TAC[]) in
REWRITE_TAC[valid_countings; CARD_NUMSEG_RESTRICT_EXTREMA; GSYM IN_NUMSEG;
LET_DEF; LET_END_DEF; ADD_CLAUSES; VOTE_NOT_EQ;
TAUT `a /\ a /\ b <=> a /\ b`] THEN
REWRITE_TAC[CONJUNCT1 NUMSEG_CLAUSES; ARITH_EQ; NOT_IN_EMPTY] THEN
CONJ_TAC THENL
[REWRITE_TAC[funspace; IN_ELIM_THM; NOT_IN_EMPTY; GSYM FUN_EQ_THM] THEN
REWRITE_TAC[SET_RULE `{x | x = a} = {a}`] THEN
SIMP_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; ARITH];
ALL_TAC] THEN
ONCE_REWRITE_TAC[SET_RULE `{x | P x /\ Q x /\ R x} =
{x | P x /\ Q x} INTER {x | R x}`] THEN
REWRITE_TAC[FUNSPACE_FIXED; IN_INSERT; lemma] THEN
REWRITE_TAC[IN_ELIM_THM] THEN
GEN_TAC THEN CONJ_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; ARITH] THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[NOT_FORALL_THM] THENL
[X_GEN_TAC `k:num` THEN DISCH_TAC THEN
MATCH_MP_TAC(ARITH_RULE `b = 0 /\ ~(a = 0) ==> a > b`) THEN
ASM_SIMP_TAC[CARD_NUMSEG_RESTRICT_EXTREMA] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_NUMSEG]) THEN
DISCH_THEN(ASSUME_TAC o MATCH_MP (ARITH_RULE
`1 <= k /\ k <= a ==> 1 <= k /\ !i. i <= k ==> i <= a`)) THEN
ASM_SIMP_TAC[IN_NUMSEG; vote_DISTINCT] THEN
DISCH_THEN(MP_TAC o SPEC `1`) THEN POP_ASSUM MP_TAC THEN ARITH_TAC;
EXISTS_TAC `1` THEN REWRITE_TAC[NUMSEG_SING; IN_SING] THEN
REWRITE_TAC[IN_NUMSEG; LE_REFL; ARITH_RULE `1 <= SUC n`] THEN
MATCH_MP_TAC(ARITH_RULE `b = 0 /\ ~(a = 0) ==> ~(b > a)`) THEN
ONCE_REWRITE_TAC[SET_RULE `{x | x = a /\ P x} = {x | x = a /\ P a}`] THEN
REWRITE_TAC[IN_NUMSEG; LE_REFL; ARITH_RULE `1 <= SUC n`] THEN
SIMP_TAC[vote_DISTINCT; SET_RULE `{x | F} = {} /\ {x | x = a} = {a}`;
CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; ARITH]]);;
let ALL_COUNTINGS_SUC = prove
(`!a b. all_countings (a + 1) (b + 1) =
all_countings a (b + 1) + all_countings (a + 1) b`,
REPEAT GEN_TAC THEN REWRITE_TAC[all_countings] THEN
SUBST1_TAC(ARITH_RULE `(a + 1) + (b + 1) = (a + b + 1) + 1`) THEN
SUBST1_TAC(ARITH_RULE `(a + 1) + b = a + b + 1`) THEN
ABBREV_TAC `n = a + b + 1` THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
GEN_REWRITE_TAC LAND_CONV [COUNTING_LEMMA] THEN
REWRITE_TAC[] THEN BINOP_TAC THEN
ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
REWRITE_TAC[vote_DISTINCT] THEN
REWRITE_TAC[CARD_NUMSEG_RESTRICT_SUC] THEN
SIMP_TAC[IN_NUMSEG_RESTRICT_FALSE; LE_REFL; EQ_ADD_RCANCEL]);;
let VALID_COUNTINGS_SUC = prove
(`!a b. valid_countings (a + 1) (b + 1) =
if a <= b then 0
else valid_countings a (b + 1) + valid_countings (a + 1) b`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `b:num < a` THEN ASM_REWRITE_TAC[GSYM NOT_LT] THEN
REWRITE_TAC[valid_countings] THEN
SUBST1_TAC(ARITH_RULE `(a + 1) + (b + 1) = (a + b + 1) + 1`) THEN
SUBST1_TAC(ARITH_RULE `(a + 1) + b = a + b + 1`) THEN
ABBREV_TAC `n = a + b + 1` THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
GEN_REWRITE_TAC LAND_CONV [COUNTING_LEMMA] THEN REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
REWRITE_TAC[vote_DISTINCT] THEN
REWRITE_TAC[FORALL_RANGE_SUC] THEN
REWRITE_TAC[CARD_NUMSEG_RESTRICT_SUC] THEN
SIMP_TAC[IN_NUMSEG_RESTRICT_FALSE; LE_REFL; EQ_ADD_RCANCEL] THEN
SIMP_TAC[MESON[] `x = a /\ y = b /\ P x y <=> x = a /\ y = b /\ P a b`] THEN
ASM_REWRITE_TAC[GT; LT_ADD_RCANCEL] THEN
REWRITE_TAC[SET_RULE `{x | F} = EMPTY`; CARD_CLAUSES; ADD_CLAUSES]);;
(* ------------------------------------------------------------------------- *)
(* Main result. *)
(* ------------------------------------------------------------------------- *)
let ALL_COUNTINGS = prove
(`!a b. all_countings a b = binom(a + b,a)`,
INDUCT_TAC THEN
REWRITE_TAC[ADD_CLAUSES; BINOM_REFL; binom; ALL_COUNTINGS_0] THEN
INDUCT_TAC THEN
REWRITE_TAC[ADD_CLAUSES; BINOM_REFL; binom; ALL_COUNTINGS_0] THEN
REWRITE_TAC[ARITH_RULE `1 = a + 1 <=> a = 0`; BINOM_EQ_0;
ARITH_RULE `a < SUC a`] THEN
REWRITE_TAC[ALL_COUNTINGS_SUC; ADD1] THEN
ASM_REWRITE_TAC[binom; GSYM ADD1] THEN
REWRITE_TAC[ADD_CLAUSES; ADD_AC]);;
let VALID_COUNTINGS = prove
(`!a b. (a + b) * valid_countings a b = (a - b) * binom(a + b,a)`,
INDUCT_TAC THENL
[REWRITE_TAC[VALID_COUNTINGS_0; SUB_0; MULT_CLAUSES] THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[VALID_COUNTINGS_0; MULT_CLAUSES; ADD_CLAUSES];
ALL_TAC] THEN
INDUCT_TAC THENL
[REWRITE_TAC[VALID_COUNTINGS_0; ADD_CLAUSES; BINOM_REFL; SUB_0];
ALL_TAC] THEN
REWRITE_TAC[ADD1; VALID_COUNTINGS_SUC] THEN REWRITE_TAC[GSYM ADD1] THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC[MULT_CLAUSES; ARITH_RULE `a <= b ==> SUC a - SUC b = 0`] THEN
MATCH_MP_TAC(NUM_RING
`~(a + b + 1 = 0) /\
(SUC a + SUC b) *
((SUC a + b) * (a + SUC b) * y + (a + SUC b) * (SUC a + b) * z) =
(SUC a + b) * (a + SUC b) * w
==> (SUC a + SUC b) * (y + z) = w`) THEN
ASM_REWRITE_TAC[ADD_EQ_0; ARITH] THEN
MP_TAC(SPECL [`SUC b`; `a:num`] BINOM_FACT) THEN
MP_TAC(SPECL [`b:num`; `SUC a`] BINOM_FACT) THEN
MP_TAC(SPECL [`SUC b`; `SUC a`] BINOM_FACT) THEN
REWRITE_TAC[ADD_CLAUSES; FACT] THEN
SUBST1_TAC(ARITH_RULE `b + a:num = a + b`) THEN
MAP_EVERY (fun t -> MP_TAC(SPEC t FACT_LT))
[`a:num`; `b:num`; `a + b:num`] THEN
ASM_SIMP_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD;
GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_SUB; REAL_OF_NUM_LE; LT_NZ;
ARITH_RULE `~(a <= b) ==> b <= SUC a /\ SUC b <= a /\ SUC b <= SUC a`] THEN
CONV_TAC REAL_RING);;
let BALLOT = prove
(`!a b. &(valid_countings a b) =
if a <= b then if b = 0 then &1 else &0
else (&a - &b) / (&a + &b) * &(all_countings a b)`,
REPEAT INDUCT_TAC THEN REWRITE_TAC[ALL_COUNTINGS_0; VALID_COUNTINGS_0] THEN
REWRITE_TAC[LE_REFL; REAL_MUL_LID; LE_0; NOT_SUC; CONJUNCT1 LE] THEN
SIMP_TAC[REAL_ADD_RID; REAL_SUB_RZERO; REAL_DIV_REFL; REAL_OF_NUM_EQ;
NOT_SUC; REAL_MUL_LID] THEN
MP_TAC(SPECL [`SUC a`; `SUC b`] VALID_COUNTINGS) THEN
REWRITE_TAC[GSYM ALL_COUNTINGS; LE_SUC] THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC[ARITH_RULE `a <= b ==> (SUC a - SUC b) = 0`] THEN
REWRITE_TAC[MULT_EQ_0; MULT_CLAUSES; ADD_EQ_0; NOT_SUC; REAL_OF_NUM_EQ] THEN
ASM_SIMP_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD;
GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_SUB;
ARITH_RULE `~(a <= b) ==> SUC b <= SUC a`] THEN
CONV_TAC REAL_FIELD);;
|