Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,974 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
(*
    Authors:      Jose Divasón
                  Sebastiaan Joosten
                  René Thiemann
                  Akihisa Yamada
*)
subsection \<open>Karatsuba's Multiplication Algorithm for Polynomials\<close>
theory Karatsuba_Multiplication
imports 
  Polynomial_Interpolation.Missing_Polynomial
begin

lemma karatsuba_main_step: fixes f :: "'a :: comm_ring_1 poly"
  assumes f: "f = monom_mult n f1 + f0" and g: "g = monom_mult n g1 + g0" 
  shows 
    "monom_mult (n + n) (f1 * g1) + (monom_mult n (f1 * g1 - (f1 - f0) * (g1 - g0) + f0 * g0) + f0 * g0) = f * g"
  unfolding assms
  by (auto simp: field_simps mult_monom monom_mult_def)  

lemma karatsuba_single_sided: fixes f :: "'a :: comm_ring_1 poly" 
  assumes "f = monom_mult n f1 + f0"
  shows "monom_mult n (f1 * g) + f0 * g = f * g"
  unfolding assms by (auto simp: field_simps mult_monom monom_mult_def)  


definition split_at :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list \<times> 'a list" where 
  [code del]: "split_at n xs = (take n xs, drop n xs)" 
  
lemma split_at_code[code]: 
  "split_at n [] = ([],[])"
  "split_at n (x # xs) = (if n = 0 then ([], x # xs) else case split_at (n-1) xs of (bef,aft)
    \<Rightarrow> (x # bef, aft))"
  unfolding split_at_def by (force, cases n, auto)

fun coeffs_minus :: "'a :: ab_group_add list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
  "coeffs_minus (x # xs) (y # ys) = ((x - y) # coeffs_minus xs ys)" 
| "coeffs_minus xs [] = xs" 
| "coeffs_minus [] ys = map uminus ys" 
  
text \<open>The following constant determines at which size we will switch to the standard 
   multiplication algorithm.\<close>
definition karatsuba_lower_bound where [termination_simp]: "karatsuba_lower_bound = (7 :: nat)" 

fun karatsuba_main :: "'a :: comm_ring_1 list \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> nat \<Rightarrow> 'a poly" where
  "karatsuba_main f n g m = (if n \<le> karatsuba_lower_bound \<or> m \<le> karatsuba_lower_bound then 
    let ff = poly_of_list f in foldr (\<lambda>a p. smult a ff + pCons 0 p) g 0
   else let n2 = n div 2 in 
   if m > n2 then (case split_at n2 f of 
   (f0,f1) \<Rightarrow> case split_at n2 g of
   (g0,g1) \<Rightarrow> let 
      p1 = karatsuba_main f1 (n - n2) g1 (m - n2);
      p2 = karatsuba_main (coeffs_minus f1 f0) n2 (coeffs_minus g1 g0) n2;
      p3 = karatsuba_main f0 n2 g0 n2 
      in monom_mult (n2 + n2) p1 + (monom_mult n2 (p1 - p2 + p3) + p3))
    else case split_at n2 f of
    (f0,f1) \<Rightarrow> let 
       p1 = karatsuba_main f1 (n - n2) g m; 
       p2 = karatsuba_main f0 n2 g m
     in monom_mult n2 p1 + p2)" 

declare karatsuba_main.simps[simp del]

lemma poly_of_list_split_at: assumes "split_at n f = (f0,f1)" 
  shows "poly_of_list f = monom_mult n (poly_of_list f1) + poly_of_list f0"
proof -
  from assms have id: "f1 = drop n f" "f0 = take n f" unfolding split_at_def by auto
  show ?thesis unfolding id
  proof (rule poly_eqI)
    fix i
    show "coeff (poly_of_list f) i = 
      coeff (monom_mult n (poly_of_list (drop n f)) + poly_of_list (take n f)) i" 
      unfolding monom_mult_def coeff_monom_mult coeff_add poly_of_list_def coeff_Poly
      by (cases "n \<le> i"; cases "i \<ge> length f", auto simp: nth_default_nth nth_default_beyond)
  qed
qed
        
lemma coeffs_minus: "poly_of_list (coeffs_minus f1 f0) = poly_of_list f1 - poly_of_list f0" 
proof (rule poly_eqI, unfold poly_of_list_def coeff_diff coeff_Poly)
  fix i
  show "nth_default 0 (coeffs_minus f1 f0) i = nth_default 0 f1 i - nth_default 0 f0 i" 
  proof (induct f1 f0 arbitrary: i rule: coeffs_minus.induct)
    case (1 x xs y ys)
    thus ?case by (cases i, auto)
  next
    case (3 x xs)
    thus ?case unfolding coeffs_minus.simps
      by (subst nth_default_map_eq[of uminus 0 0], auto)    
  qed auto
qed

lemma karatsuba_main: "karatsuba_main f n g m = poly_of_list f * poly_of_list g" 
proof (induct n arbitrary: f g m rule: less_induct)
  case (less n f g m)
  note simp[simp] = karatsuba_main.simps[of f n g m]
  show ?case (is "?lhs = ?rhs")
  proof (cases "(n \<le> karatsuba_lower_bound \<or> m \<le> karatsuba_lower_bound) = False")
    case False
    hence lhs: "?lhs = foldr (\<lambda>a p. smult a (poly_of_list f) + pCons 0 p) g 0" by simp
    have rhs: "?rhs = poly_of_list g * poly_of_list f" by simp 
    also have "\<dots> = foldr (\<lambda>a p. smult a (poly_of_list f) + pCons 0 p) (strip_while ((=) 0) g) 0" 
      unfolding times_poly_def fold_coeffs_def poly_of_list_impl ..
    also have "\<dots> = ?lhs" unfolding lhs 
    proof (induct g)
      case (Cons x xs)
      have "\<forall>x\<in>set xs. x = 0 \<Longrightarrow> foldr (\<lambda>a p. smult a (Poly f) + pCons 0 p) xs 0 = 0" 
        by (induct xs, auto)        
      thus ?case using Cons by (auto simp: cCons_def Cons)
    qed auto
    finally show ?thesis by simp
  next
    case True
    let ?n2 = "n div 2" 
    have "?n2 < n" "n - ?n2 < n" using True unfolding karatsuba_lower_bound_def by auto
    note IH = less[OF this(1)] less[OF this(2)]
    obtain f1 f0 where f: "split_at ?n2 f = (f0,f1)" by force
    obtain g1 g0 where g: "split_at ?n2 g = (g0,g1)" by force
    note fsplit = poly_of_list_split_at[OF f]
    note gsplit = poly_of_list_split_at[OF g]
    show "?lhs = ?rhs" unfolding simp Let_def f g split IH True if_False coeffs_minus
      karatsuba_single_sided[OF fsplit] karatsuba_main_step[OF fsplit gsplit] by auto
  qed
qed


definition karatsuba_mult_poly :: "'a :: comm_ring_1 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
  "karatsuba_mult_poly f g = (let ff = coeffs f; gg = coeffs g; n = length ff; m = length gg
    in (if n \<le> karatsuba_lower_bound \<or> m \<le> karatsuba_lower_bound then if n \<le> m 
    then foldr (\<lambda>a p. smult a g + pCons 0 p) ff 0 
    else foldr (\<lambda>a p. smult a f + pCons 0 p) gg 0 
    else if n \<le> m 
    then karatsuba_main gg m ff n 
    else karatsuba_main ff n gg m))" 
  
lemma karatsuba_mult_poly: "karatsuba_mult_poly f g = f * g" 
proof -
  note d = karatsuba_mult_poly_def Let_def 
  let ?len = "length (coeffs f) \<le> length (coeffs g)" 
  show ?thesis (is "?lhs = ?rhs")
  proof (cases "length (coeffs f) \<le> karatsuba_lower_bound \<or> length (coeffs g) \<le> karatsuba_lower_bound")
    case True note outer = this
    show ?thesis
    proof (cases ?len)
      case True
      with outer have "?lhs = foldr (\<lambda>a p. smult a g + pCons 0 p) (coeffs f) 0" unfolding d by auto
      also have "\<dots> = ?rhs" unfolding times_poly_def fold_coeffs_def by auto
      finally show ?thesis .
    next
      case False
      with outer have "?lhs = foldr (\<lambda>a p. smult a f + pCons 0 p) (coeffs g) 0" unfolding d by auto
      also have "\<dots> = g * f" unfolding times_poly_def fold_coeffs_def by auto
      also have "\<dots> = ?rhs" by simp
      finally show ?thesis .
    qed
  next
    case False note outer = this
    show ?thesis
    proof (cases ?len)
      case True   
      with outer have "?lhs = karatsuba_main (coeffs g) (length (coeffs g)) (coeffs f) (length (coeffs f))" 
        unfolding d by auto
      also have "\<dots> = g * f" unfolding karatsuba_main by auto
      also have "\<dots> = ?rhs" by auto
      finally show ?thesis .
    next
      case False
      with outer have "?lhs = karatsuba_main (coeffs f) (length (coeffs f)) (coeffs g) (length (coeffs g))" 
        unfolding d by auto
      also have "\<dots> = ?rhs" unfolding karatsuba_main by auto
      finally show ?thesis .
    qed
  qed
qed

lemma karatsuba_mult_poly_code_unfold[code_unfold]: "(*) = karatsuba_mult_poly" 
  by (intro ext, unfold karatsuba_mult_poly, auto)

text \<open>The following declaration will resolve a race-conflict between @{thm karatsuba_mult_poly_code_unfold}
  and @{thm monom_mult_unfold}.\<close>
lemmas karatsuba_monom_mult_code_unfold[code_unfold] = 
  monom_mult_unfold[where f = "f :: 'a :: comm_ring_1 poly" for f, unfolded karatsuba_mult_poly_code_unfold]

end