Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 7,974 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
(*
Authors: Jose Divasón
Sebastiaan Joosten
René Thiemann
Akihisa Yamada
*)
subsection \<open>Karatsuba's Multiplication Algorithm for Polynomials\<close>
theory Karatsuba_Multiplication
imports
Polynomial_Interpolation.Missing_Polynomial
begin
lemma karatsuba_main_step: fixes f :: "'a :: comm_ring_1 poly"
assumes f: "f = monom_mult n f1 + f0" and g: "g = monom_mult n g1 + g0"
shows
"monom_mult (n + n) (f1 * g1) + (monom_mult n (f1 * g1 - (f1 - f0) * (g1 - g0) + f0 * g0) + f0 * g0) = f * g"
unfolding assms
by (auto simp: field_simps mult_monom monom_mult_def)
lemma karatsuba_single_sided: fixes f :: "'a :: comm_ring_1 poly"
assumes "f = monom_mult n f1 + f0"
shows "monom_mult n (f1 * g) + f0 * g = f * g"
unfolding assms by (auto simp: field_simps mult_monom monom_mult_def)
definition split_at :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list \<times> 'a list" where
[code del]: "split_at n xs = (take n xs, drop n xs)"
lemma split_at_code[code]:
"split_at n [] = ([],[])"
"split_at n (x # xs) = (if n = 0 then ([], x # xs) else case split_at (n-1) xs of (bef,aft)
\<Rightarrow> (x # bef, aft))"
unfolding split_at_def by (force, cases n, auto)
fun coeffs_minus :: "'a :: ab_group_add list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
"coeffs_minus (x # xs) (y # ys) = ((x - y) # coeffs_minus xs ys)"
| "coeffs_minus xs [] = xs"
| "coeffs_minus [] ys = map uminus ys"
text \<open>The following constant determines at which size we will switch to the standard
multiplication algorithm.\<close>
definition karatsuba_lower_bound where [termination_simp]: "karatsuba_lower_bound = (7 :: nat)"
fun karatsuba_main :: "'a :: comm_ring_1 list \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> nat \<Rightarrow> 'a poly" where
"karatsuba_main f n g m = (if n \<le> karatsuba_lower_bound \<or> m \<le> karatsuba_lower_bound then
let ff = poly_of_list f in foldr (\<lambda>a p. smult a ff + pCons 0 p) g 0
else let n2 = n div 2 in
if m > n2 then (case split_at n2 f of
(f0,f1) \<Rightarrow> case split_at n2 g of
(g0,g1) \<Rightarrow> let
p1 = karatsuba_main f1 (n - n2) g1 (m - n2);
p2 = karatsuba_main (coeffs_minus f1 f0) n2 (coeffs_minus g1 g0) n2;
p3 = karatsuba_main f0 n2 g0 n2
in monom_mult (n2 + n2) p1 + (monom_mult n2 (p1 - p2 + p3) + p3))
else case split_at n2 f of
(f0,f1) \<Rightarrow> let
p1 = karatsuba_main f1 (n - n2) g m;
p2 = karatsuba_main f0 n2 g m
in monom_mult n2 p1 + p2)"
declare karatsuba_main.simps[simp del]
lemma poly_of_list_split_at: assumes "split_at n f = (f0,f1)"
shows "poly_of_list f = monom_mult n (poly_of_list f1) + poly_of_list f0"
proof -
from assms have id: "f1 = drop n f" "f0 = take n f" unfolding split_at_def by auto
show ?thesis unfolding id
proof (rule poly_eqI)
fix i
show "coeff (poly_of_list f) i =
coeff (monom_mult n (poly_of_list (drop n f)) + poly_of_list (take n f)) i"
unfolding monom_mult_def coeff_monom_mult coeff_add poly_of_list_def coeff_Poly
by (cases "n \<le> i"; cases "i \<ge> length f", auto simp: nth_default_nth nth_default_beyond)
qed
qed
lemma coeffs_minus: "poly_of_list (coeffs_minus f1 f0) = poly_of_list f1 - poly_of_list f0"
proof (rule poly_eqI, unfold poly_of_list_def coeff_diff coeff_Poly)
fix i
show "nth_default 0 (coeffs_minus f1 f0) i = nth_default 0 f1 i - nth_default 0 f0 i"
proof (induct f1 f0 arbitrary: i rule: coeffs_minus.induct)
case (1 x xs y ys)
thus ?case by (cases i, auto)
next
case (3 x xs)
thus ?case unfolding coeffs_minus.simps
by (subst nth_default_map_eq[of uminus 0 0], auto)
qed auto
qed
lemma karatsuba_main: "karatsuba_main f n g m = poly_of_list f * poly_of_list g"
proof (induct n arbitrary: f g m rule: less_induct)
case (less n f g m)
note simp[simp] = karatsuba_main.simps[of f n g m]
show ?case (is "?lhs = ?rhs")
proof (cases "(n \<le> karatsuba_lower_bound \<or> m \<le> karatsuba_lower_bound) = False")
case False
hence lhs: "?lhs = foldr (\<lambda>a p. smult a (poly_of_list f) + pCons 0 p) g 0" by simp
have rhs: "?rhs = poly_of_list g * poly_of_list f" by simp
also have "\<dots> = foldr (\<lambda>a p. smult a (poly_of_list f) + pCons 0 p) (strip_while ((=) 0) g) 0"
unfolding times_poly_def fold_coeffs_def poly_of_list_impl ..
also have "\<dots> = ?lhs" unfolding lhs
proof (induct g)
case (Cons x xs)
have "\<forall>x\<in>set xs. x = 0 \<Longrightarrow> foldr (\<lambda>a p. smult a (Poly f) + pCons 0 p) xs 0 = 0"
by (induct xs, auto)
thus ?case using Cons by (auto simp: cCons_def Cons)
qed auto
finally show ?thesis by simp
next
case True
let ?n2 = "n div 2"
have "?n2 < n" "n - ?n2 < n" using True unfolding karatsuba_lower_bound_def by auto
note IH = less[OF this(1)] less[OF this(2)]
obtain f1 f0 where f: "split_at ?n2 f = (f0,f1)" by force
obtain g1 g0 where g: "split_at ?n2 g = (g0,g1)" by force
note fsplit = poly_of_list_split_at[OF f]
note gsplit = poly_of_list_split_at[OF g]
show "?lhs = ?rhs" unfolding simp Let_def f g split IH True if_False coeffs_minus
karatsuba_single_sided[OF fsplit] karatsuba_main_step[OF fsplit gsplit] by auto
qed
qed
definition karatsuba_mult_poly :: "'a :: comm_ring_1 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
"karatsuba_mult_poly f g = (let ff = coeffs f; gg = coeffs g; n = length ff; m = length gg
in (if n \<le> karatsuba_lower_bound \<or> m \<le> karatsuba_lower_bound then if n \<le> m
then foldr (\<lambda>a p. smult a g + pCons 0 p) ff 0
else foldr (\<lambda>a p. smult a f + pCons 0 p) gg 0
else if n \<le> m
then karatsuba_main gg m ff n
else karatsuba_main ff n gg m))"
lemma karatsuba_mult_poly: "karatsuba_mult_poly f g = f * g"
proof -
note d = karatsuba_mult_poly_def Let_def
let ?len = "length (coeffs f) \<le> length (coeffs g)"
show ?thesis (is "?lhs = ?rhs")
proof (cases "length (coeffs f) \<le> karatsuba_lower_bound \<or> length (coeffs g) \<le> karatsuba_lower_bound")
case True note outer = this
show ?thesis
proof (cases ?len)
case True
with outer have "?lhs = foldr (\<lambda>a p. smult a g + pCons 0 p) (coeffs f) 0" unfolding d by auto
also have "\<dots> = ?rhs" unfolding times_poly_def fold_coeffs_def by auto
finally show ?thesis .
next
case False
with outer have "?lhs = foldr (\<lambda>a p. smult a f + pCons 0 p) (coeffs g) 0" unfolding d by auto
also have "\<dots> = g * f" unfolding times_poly_def fold_coeffs_def by auto
also have "\<dots> = ?rhs" by simp
finally show ?thesis .
qed
next
case False note outer = this
show ?thesis
proof (cases ?len)
case True
with outer have "?lhs = karatsuba_main (coeffs g) (length (coeffs g)) (coeffs f) (length (coeffs f))"
unfolding d by auto
also have "\<dots> = g * f" unfolding karatsuba_main by auto
also have "\<dots> = ?rhs" by auto
finally show ?thesis .
next
case False
with outer have "?lhs = karatsuba_main (coeffs f) (length (coeffs f)) (coeffs g) (length (coeffs g))"
unfolding d by auto
also have "\<dots> = ?rhs" unfolding karatsuba_main by auto
finally show ?thesis .
qed
qed
qed
lemma karatsuba_mult_poly_code_unfold[code_unfold]: "(*) = karatsuba_mult_poly"
by (intro ext, unfold karatsuba_mult_poly, auto)
text \<open>The following declaration will resolve a race-conflict between @{thm karatsuba_mult_poly_code_unfold}
and @{thm monom_mult_unfold}.\<close>
lemmas karatsuba_monom_mult_code_unfold[code_unfold] =
monom_mult_unfold[where f = "f :: 'a :: comm_ring_1 poly" for f, unfolded karatsuba_mult_poly_code_unfold]
end
|