Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,564 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
(*
Title: Singleton.thy
Author: Diego Marmsoler
*)
section "A Theory of Singletons"
text\<open>
In the following, we formalize the specification of the singleton pattern as described in~\cite{Marmsoler2018c}.
\<close>
theory Singleton
imports DynamicArchitectures.Dynamic_Architecture_Calculus
begin
subsection Singletons
text \<open>
In the following we formalize a variant of the Singleton pattern.
\<close>
locale singleton = dynamic_component cmp active
for active :: "'id \<Rightarrow> cnf \<Rightarrow> bool" ("\<parallel>_\<parallel>\<^bsub>_\<^esub>" [0,110]60)
and cmp :: "'id \<Rightarrow> cnf \<Rightarrow> 'cmp" ("\<sigma>\<^bsub>_\<^esub>(_)" [0,110]60) +
assumes alwaysActive: "\<And>k. \<exists>id. \<parallel>id\<parallel>\<^bsub>k\<^esub>"
and unique: "\<exists>id. \<forall>k. \<forall>id'. (\<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id = id')"
begin
subsubsection "Calculus Interpretation"
text \<open>
\noindent
@{thm[source] baIA}: @{thm baIA [no_vars]}
\<close>
text \<open>
\noindent
@{thm[source] baIN1}: @{thm baIN1 [no_vars]}
\<close>
text \<open>
\noindent
@{thm[source] baIN2}: @{thm baIN2 [no_vars]}
\<close>
subsubsection "Architectural Guarantees"
definition "the_singleton \<equiv> THE id. \<forall>k. \<forall>id'. \<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id' = id"
theorem ts_prop:
fixes k::cnf
shows "\<And>id. \<parallel>id\<parallel>\<^bsub>k\<^esub> \<Longrightarrow> id = the_singleton"
and "\<parallel>the_singleton\<parallel>\<^bsub>k\<^esub>"
proof -
{ fix id
assume a1: "\<parallel>id\<parallel>\<^bsub>k\<^esub>"
have "(THE id. \<forall>k. \<forall>id'. \<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id' = id) = id"
proof (rule the_equality)
show "\<forall>k id'. \<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id' = id"
proof
fix k show "\<forall>id'. \<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id' = id"
proof
fix id' show "\<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id' = id"
proof
assume "\<parallel>id'\<parallel>\<^bsub>k\<^esub>"
from unique have "\<exists>id. \<forall>k. \<forall>id'. (\<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id = id')" .
then obtain i'' where "\<forall>k. \<forall>id'. (\<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> i'' = id')" by auto
with \<open>\<parallel>id'\<parallel>\<^bsub>k\<^esub>\<close> have "id=i''" and "id'=i''" using a1 by auto
thus "id' = id" by simp
qed
qed
qed
next
fix i'' show "\<forall>k id'. \<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id' = i'' \<Longrightarrow> i'' = id" using a1 by auto
qed
hence "\<parallel>id\<parallel>\<^bsub>k\<^esub> \<Longrightarrow> id = the_singleton" by (simp add: the_singleton_def)
} note g1 = this
thus "\<And>id. \<parallel>id\<parallel>\<^bsub>k\<^esub> \<Longrightarrow> id = the_singleton" by simp
from alwaysActive obtain id where "\<parallel>id\<parallel>\<^bsub>k\<^esub>" by blast
with g1 have "id = the_singleton" by simp
with \<open>\<parallel>id\<parallel>\<^bsub>k\<^esub>\<close> show "\<parallel>the_singleton\<parallel>\<^bsub>k\<^esub>" by simp
qed
declare ts_prop(2)[simp]
lemma lNact_active[simp]:
fixes cid t n
shows "\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n\<^esub> = n"
using lNact_active ts_prop(2) by auto
lemma lNxt_active[simp]:
fixes cid t n
shows "\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub> = n"
by (simp add: nxtAct_active)
lemma baI[intro]:
fixes t n a
assumes "\<phi> (\<sigma>\<^bsub>the_singleton\<^esub>(t n))"
shows "eval the_singleton t t' n [\<phi>]\<^sub>b" using assms by (simp add: baIANow)
lemma baE[elim]:
fixes t n a
assumes "eval the_singleton t t' n [\<phi>]\<^sub>b"
shows "\<phi> (\<sigma>\<^bsub>the_singleton\<^esub>(t n))" using assms by (simp add: baEANow)
lemma evtE[elim]:
fixes t id n a
assumes "eval the_singleton t t' n (\<diamond>\<^sub>b \<gamma>)"
shows "\<exists>n'\<ge>n. eval the_singleton t t' n' \<gamma>"
proof -
have "\<parallel>the_singleton\<parallel>\<^bsub>t n\<^esub>" by simp
with assms obtain n' where "n'\<ge>\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub>" and "(\<exists>i\<ge>n'. \<parallel>the_singleton\<parallel>\<^bsub>t i\<^esub> \<and>
(\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> eval the_singleton t t' n'' \<gamma>)) \<or>
\<not> (\<exists>i\<ge>n'. \<parallel>the_singleton\<parallel>\<^bsub>t i\<^esub>) \<and> eval the_singleton t t' n' \<gamma>" using evtEA[of n "the_singleton" t] by blast
moreover have "\<parallel>the_singleton\<parallel>\<^bsub>t n'\<^esub>" by simp
ultimately have
"\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> eval the_singleton t t' n'' \<gamma>" by auto
hence "eval the_singleton t t' n' \<gamma>" by simp
moreover from \<open>n'\<ge>\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub>\<close> have "n'\<ge>n" by (simp add: nxtAct_active)
ultimately show ?thesis by auto
qed
lemma globE[elim]:
fixes t id n a
assumes "eval the_singleton t t' n (\<box>\<^sub>b \<gamma>)"
shows "\<forall>n'\<ge>n. eval the_singleton t t' n' \<gamma>"
proof
fix n' show "n \<le> n' \<longrightarrow> eval the_singleton t t' n' \<gamma>"
proof
assume "n\<le>n'"
hence "\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> n'" by simp
moreover have "\<parallel>the_singleton\<parallel>\<^bsub>t n\<^esub>" by simp
ultimately show "eval the_singleton t t' n' \<gamma>"
using \<open>eval the_singleton t t' n (\<box>\<^sub>b \<gamma>)\<close> globEA by blast
qed
qed
lemma untilI[intro]:
fixes t::"nat \<Rightarrow> cnf"
and t'::"nat \<Rightarrow> 'cmp"
and n::nat
and n'::nat
assumes "n'\<ge>n"
and "eval the_singleton t t' n' \<gamma>"
and "\<And>n''. \<lbrakk>n\<le>n''; n''<n'\<rbrakk> \<Longrightarrow> eval the_singleton t t' n'' \<gamma>'"
shows "eval the_singleton t t' n (\<gamma>' \<UU>\<^sub>b \<gamma>)"
proof -
have "\<parallel>the_singleton\<parallel>\<^bsub>t n\<^esub>" by simp
moreover from \<open>n'\<ge>n\<close> have "\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> n'" by simp
moreover have "\<parallel>the_singleton\<parallel>\<^bsub>t n'\<^esub>" by simp
moreover have
"\<exists>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'\<^esub> \<and> eval the_singleton t t' n'' \<gamma> \<and>
(\<forall>n'''\<ge>\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub>. n''' < \<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n''\<^esub> \<longrightarrow>
(\<exists>n''''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'''\<^esub>. n'''' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'''\<^esub> \<and> eval the_singleton t t' n'''' \<gamma>'))"
proof -
have "n'\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>" by simp
moreover have "n' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'\<^esub>" by simp
moreover from assms(3) have "(\<forall>n''\<ge>\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub>. n'' < \<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow>
(\<exists>n'''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n''\<^esub>. n''' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n''\<^esub> \<and> eval the_singleton t t' n''' \<gamma>'))"
by auto
ultimately show ?thesis using \<open>eval the_singleton t t' n' \<gamma>\<close> by auto
qed
ultimately show ?thesis using untilIA[of n "the_singleton" t n' t' \<gamma> \<gamma>'] by blast
qed
lemma untilE[elim]:
fixes t id n \<gamma>' \<gamma>
assumes "eval the_singleton t t' n (\<gamma>' \<UU>\<^sub>b \<gamma>)"
shows "\<exists>n'\<ge>n. eval the_singleton t t' n' \<gamma> \<and> (\<forall>n''\<ge>n. n'' < n' \<longrightarrow> eval the_singleton t t' n'' \<gamma>')"
proof -
have "\<parallel>the_singleton\<parallel>\<^bsub>t n\<^esub>" by simp
with \<open>eval the_singleton t t' n (\<gamma>' \<UU>\<^sub>b \<gamma>)\<close> obtain n' where "n'\<ge>\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub>" and
"(\<exists>i\<ge>n'. \<parallel>the_singleton\<parallel>\<^bsub>t i\<^esub>) \<and>
(\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> eval the_singleton t t' n'' \<gamma>) \<and>
(\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n\<^esub>. n'' < \<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> eval the_singleton t t' n'' \<gamma>') \<or>
\<not> (\<exists>i\<ge>n'. \<parallel>the_singleton\<parallel>\<^bsub>t i\<^esub>) \<and>
eval the_singleton t t' n' \<gamma> \<and> (\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n\<^esub>. n'' < n' \<longrightarrow> eval the_singleton t t' n'' \<gamma>')"
using untilEA[of n "the_singleton" t t' \<gamma>' \<gamma>] by auto
moreover have "\<parallel>the_singleton\<parallel>\<^bsub>t n'\<^esub>" by simp
ultimately have
"(\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> eval the_singleton t t' n'' \<gamma>) \<and>
(\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n\<^esub>. n'' < \<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> eval the_singleton t t' n'' \<gamma>')" by auto
hence "eval the_singleton t t' n' \<gamma>" and "(\<forall>n''\<ge>n. n'' < n' \<longrightarrow> eval the_singleton t t' n'' \<gamma>')" by auto
with \<open>eval the_singleton t t' n' \<gamma>\<close> \<open>n'\<ge>\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub>\<close> show ?thesis by auto
qed
end
end
|