Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,312 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
section "Collecting Semantics of Commands"
theory Collecting
imports Complete_Lattice_ix ACom
begin
subsection "Annotated commands as a complete lattice"
(* Orderings could also be lifted generically (thus subsuming the
instantiation for preord and order), but then less_eq_acom would need to
become a definition, eg less_eq_acom = lift2 less_eq, and then proofs would
need to unfold this defn first. *)
instantiation acom :: (order) order
begin
fun less_eq_acom :: "('a::order)acom \<Rightarrow> 'a acom \<Rightarrow> bool" where
"(SKIP {S}) \<le> (SKIP {S'}) = (S \<le> S')" |
"(x ::= e {S}) \<le> (x' ::= e' {S'}) = (x=x' \<and> e=e' \<and> S \<le> S')" |
"(c1;;c2) \<le> (c1';;c2') = (c1 \<le> c1' \<and> c2 \<le> c2')" |
"(IF b THEN c1 ELSE c2 {S}) \<le> (IF b' THEN c1' ELSE c2' {S'}) =
(b=b' \<and> c1 \<le> c1' \<and> c2 \<le> c2' \<and> S \<le> S')" |
"({Inv} WHILE b DO c {P}) \<le> ({Inv'} WHILE b' DO c' {P'}) =
(b=b' \<and> c \<le> c' \<and> Inv \<le> Inv' \<and> P \<le> P')" |
"less_eq_acom _ _ = False"
lemma SKIP_le: "SKIP {S} \<le> c \<longleftrightarrow> (\<exists>S'. c = SKIP {S'} \<and> S \<le> S')"
by (cases c) auto
lemma Assign_le: "x ::= e {S} \<le> c \<longleftrightarrow> (\<exists>S'. c = x ::= e {S'} \<and> S \<le> S')"
by (cases c) auto
lemma Seq_le: "c1;;c2 \<le> c \<longleftrightarrow> (\<exists>c1' c2'. c = c1';;c2' \<and> c1 \<le> c1' \<and> c2 \<le> c2')"
by (cases c) auto
lemma If_le: "IF b THEN c1 ELSE c2 {S} \<le> c \<longleftrightarrow>
(\<exists>c1' c2' S'. c= IF b THEN c1' ELSE c2' {S'} \<and> c1 \<le> c1' \<and> c2 \<le> c2' \<and> S \<le> S')"
by (cases c) auto
lemma While_le: "{Inv} WHILE b DO c {P} \<le> w \<longleftrightarrow>
(\<exists>Inv' c' P'. w = {Inv'} WHILE b DO c' {P'} \<and> c \<le> c' \<and> Inv \<le> Inv' \<and> P \<le> P')"
by (cases w) auto
definition less_acom :: "'a acom \<Rightarrow> 'a acom \<Rightarrow> bool" where
"less_acom x y = (x \<le> y \<and> \<not> y \<le> x)"
instance
proof (standard,goal_cases)
case 1 show ?case by(simp add: less_acom_def)
next
case (2 x) thus ?case by (induct x) auto
next
case (3 x y z) thus ?case
apply(induct x y arbitrary: z rule: less_eq_acom.induct)
apply (auto intro: le_trans simp: SKIP_le Assign_le Seq_le If_le While_le)
done
next
case (4 x y) thus ?case
apply(induct x y rule: less_eq_acom.induct)
apply (auto intro: le_antisym)
done
qed
end
fun sub\<^sub>1 :: "'a acom \<Rightarrow> 'a acom" where
"sub\<^sub>1(c1;;c2) = c1" |
"sub\<^sub>1(IF b THEN c1 ELSE c2 {S}) = c1" |
"sub\<^sub>1({I} WHILE b DO c {P}) = c"
fun sub\<^sub>2 :: "'a acom \<Rightarrow> 'a acom" where
"sub\<^sub>2(c1;;c2) = c2" |
"sub\<^sub>2(IF b THEN c1 ELSE c2 {S}) = c2"
fun invar :: "'a acom \<Rightarrow> 'a" where
"invar({I} WHILE b DO c {P}) = I"
fun lift :: "('a set \<Rightarrow> 'b) \<Rightarrow> com \<Rightarrow> 'a acom set \<Rightarrow> 'b acom"
where
"lift F com.SKIP M = (SKIP {F (post ` M)})" |
"lift F (x ::= a) M = (x ::= a {F (post ` M)})" |
"lift F (c1;;c2) M =
lift F c1 (sub\<^sub>1 ` M);; lift F c2 (sub\<^sub>2 ` M)" |
"lift F (IF b THEN c1 ELSE c2) M =
IF b THEN lift F c1 (sub\<^sub>1 ` M) ELSE lift F c2 (sub\<^sub>2 ` M)
{F (post ` M)}" |
"lift F (WHILE b DO c) M =
{F (invar ` M)}
WHILE b DO lift F c (sub\<^sub>1 ` M)
{F (post ` M)}"
global_interpretation Complete_Lattice_ix "%c. {c'. strip c' = c}" "lift Inter"
proof (standard,goal_cases)
case (1 A _ a)
have "a:A \<Longrightarrow> lift Inter (strip a) A \<le> a"
proof(induction a arbitrary: A)
case Seq from Seq.prems show ?case by(force intro!: Seq.IH)
next
case If from If.prems show ?case by(force intro!: If.IH)
next
case While from While.prems show ?case by(force intro!: While.IH)
qed force+
with 1 show ?case by auto
next
case (2 b i A)
thus ?case
proof(induction b arbitrary: i A)
case SKIP thus ?case by (force simp:SKIP_le)
next
case Assign thus ?case by (force simp:Assign_le)
next
case Seq from Seq.prems show ?case
by (force intro!: Seq.IH simp:Seq_le)
next
case If from If.prems show ?case by (force simp: If_le intro!: If.IH)
next
case While from While.prems show ?case
by(fastforce simp: While_le intro: While.IH)
qed
next
case (3 A i)
have "strip(lift Inter i A) = i"
proof(induction i arbitrary: A)
case Seq from Seq.prems show ?case
by (fastforce simp: strip_eq_Seq subset_iff intro!: Seq.IH)
next
case If from If.prems show ?case
by (fastforce intro!: If.IH simp: strip_eq_If)
next
case While from While.prems show ?case
by(fastforce intro: While.IH simp: strip_eq_While)
qed auto
thus ?case by auto
qed
lemma le_post: "c \<le> d \<Longrightarrow> post c \<le> post d"
by(induction c d rule: less_eq_acom.induct) auto
subsection "Collecting semantics"
fun step :: "state set \<Rightarrow> state set acom \<Rightarrow> state set acom" where
"step S (SKIP {P}) = (SKIP {S})" |
"step S (x ::= e {P}) =
(x ::= e {{s'. \<exists>s\<in>S. s' = s(x := aval e s)}})" |
"step S (c1;; c2) = step S c1;; step (post c1) c2" |
"step S (IF b THEN c1 ELSE c2 {P}) =
IF b THEN step {s:S. bval b s} c1 ELSE step {s:S. \<not> bval b s} c2
{post c1 \<union> post c2}" |
"step S ({Inv} WHILE b DO c {P}) =
{S \<union> post c} WHILE b DO (step {s:Inv. bval b s} c) {{s:Inv. \<not> bval b s}}"
definition CS :: "com \<Rightarrow> state set acom" where
"CS c = lfp (step UNIV) c"
lemma mono2_step: "c1 \<le> c2 \<Longrightarrow> S1 \<subseteq> S2 \<Longrightarrow> step S1 c1 \<le> step S2 c2"
proof(induction c1 c2 arbitrary: S1 S2 rule: less_eq_acom.induct)
case 2 thus ?case by fastforce
next
case 3 thus ?case by(simp add: le_post)
next
case 4 thus ?case by(simp add: subset_iff)(metis le_post subsetD)+
next
case 5 thus ?case by(simp add: subset_iff) (metis le_post subsetD)
qed auto
lemma mono_step: "mono (step S)"
by(blast intro: monoI mono2_step)
lemma strip_step: "strip(step S c) = strip c"
by (induction c arbitrary: S) auto
lemma lfp_cs_unfold: "lfp (step S) c = step S (lfp (step S) c)"
apply(rule lfp_unfold[OF _ mono_step])
apply(simp add: strip_step)
done
lemma CS_unfold: "CS c = step UNIV (CS c)"
by (metis CS_def lfp_cs_unfold)
lemma strip_CS[simp]: "strip(CS c) = c"
by(simp add: CS_def index_lfp[simplified])
end
|