Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,312 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
section "Collecting Semantics of Commands"

theory Collecting
imports Complete_Lattice_ix ACom
begin

subsection "Annotated commands as a complete lattice"

(* Orderings could also be lifted generically (thus subsuming the
instantiation for preord and order), but then less_eq_acom would need to
become a definition, eg less_eq_acom = lift2 less_eq, and then proofs would
need to unfold this defn first. *)

instantiation acom :: (order) order
begin

fun less_eq_acom :: "('a::order)acom \<Rightarrow> 'a acom \<Rightarrow> bool" where
"(SKIP {S}) \<le> (SKIP {S'}) = (S \<le> S')" |
"(x ::= e {S}) \<le> (x' ::= e' {S'}) = (x=x' \<and> e=e' \<and> S \<le> S')" |
"(c1;;c2) \<le> (c1';;c2') = (c1 \<le> c1' \<and> c2 \<le> c2')" |
"(IF b THEN c1 ELSE c2 {S}) \<le> (IF b' THEN c1' ELSE c2' {S'}) =
  (b=b' \<and> c1 \<le> c1' \<and> c2 \<le> c2' \<and> S \<le> S')" |
"({Inv} WHILE b DO c {P}) \<le> ({Inv'} WHILE b' DO c' {P'}) =
  (b=b' \<and> c \<le> c' \<and> Inv \<le> Inv' \<and> P \<le> P')" |
"less_eq_acom _ _ = False"

lemma SKIP_le: "SKIP {S} \<le> c \<longleftrightarrow> (\<exists>S'. c = SKIP {S'} \<and> S \<le> S')"
by (cases c) auto

lemma Assign_le: "x ::= e {S} \<le> c \<longleftrightarrow> (\<exists>S'. c = x ::= e {S'} \<and> S \<le> S')"
by (cases c) auto

lemma Seq_le: "c1;;c2 \<le> c \<longleftrightarrow> (\<exists>c1' c2'. c = c1';;c2' \<and> c1 \<le> c1' \<and> c2 \<le> c2')"
by (cases c) auto

lemma If_le: "IF b THEN c1 ELSE c2 {S} \<le> c \<longleftrightarrow>
  (\<exists>c1' c2' S'. c= IF b THEN c1' ELSE c2' {S'} \<and> c1 \<le> c1' \<and> c2 \<le> c2' \<and> S \<le> S')"
by (cases c) auto

lemma While_le: "{Inv} WHILE b DO c {P} \<le> w \<longleftrightarrow>
  (\<exists>Inv' c' P'. w = {Inv'} WHILE b DO c' {P'} \<and> c \<le> c' \<and> Inv \<le> Inv' \<and> P \<le> P')"
by (cases w) auto

definition less_acom :: "'a acom \<Rightarrow> 'a acom \<Rightarrow> bool" where
"less_acom x y = (x \<le> y \<and> \<not> y \<le> x)"

instance
proof (standard,goal_cases)
  case 1 show ?case by(simp add: less_acom_def)
next
  case (2 x) thus ?case by (induct x) auto
next
  case (3 x y z) thus ?case
  apply(induct x y arbitrary: z rule: less_eq_acom.induct)
  apply (auto intro: le_trans simp: SKIP_le Assign_le Seq_le If_le While_le)
  done
next
  case (4 x y) thus ?case
  apply(induct x y rule: less_eq_acom.induct)
  apply (auto intro: le_antisym)
  done
qed

end

fun sub\<^sub>1 :: "'a acom \<Rightarrow> 'a acom" where
"sub\<^sub>1(c1;;c2) = c1" |
"sub\<^sub>1(IF b THEN c1 ELSE c2 {S}) = c1" |
"sub\<^sub>1({I} WHILE b DO c {P}) = c"

fun sub\<^sub>2 :: "'a acom \<Rightarrow> 'a acom" where
"sub\<^sub>2(c1;;c2) = c2" |
"sub\<^sub>2(IF b THEN c1 ELSE c2 {S}) = c2"

fun invar :: "'a acom \<Rightarrow> 'a" where
"invar({I} WHILE b DO c {P}) = I"

fun lift :: "('a set \<Rightarrow> 'b) \<Rightarrow> com \<Rightarrow> 'a acom set \<Rightarrow> 'b acom"
where
"lift F com.SKIP M = (SKIP {F (post ` M)})" |
"lift F (x ::= a) M = (x ::= a {F (post ` M)})" |
"lift F (c1;;c2) M =
  lift F c1 (sub\<^sub>1 ` M);; lift F c2 (sub\<^sub>2 ` M)" |
"lift F (IF b THEN c1 ELSE c2) M =
  IF b THEN lift F c1 (sub\<^sub>1 ` M) ELSE lift F c2 (sub\<^sub>2 ` M)
  {F (post ` M)}" |
"lift F (WHILE b DO c) M =
 {F (invar ` M)}
 WHILE b DO lift F c (sub\<^sub>1 ` M)
 {F (post ` M)}"

global_interpretation Complete_Lattice_ix "%c. {c'. strip c' = c}" "lift Inter"
proof (standard,goal_cases)
  case (1 A _ a)
  have "a:A \<Longrightarrow> lift Inter (strip a) A \<le> a"
  proof(induction a arbitrary: A)
    case Seq from Seq.prems show ?case by(force intro!: Seq.IH)
  next
    case If from If.prems show ?case by(force intro!: If.IH)
  next
    case While from While.prems show ?case by(force intro!: While.IH)
  qed force+
  with 1 show ?case by auto
next
  case (2 b i A)
  thus ?case
  proof(induction b arbitrary: i A)
    case SKIP thus ?case by (force simp:SKIP_le)
  next
    case Assign thus ?case by (force simp:Assign_le)
  next
    case Seq from Seq.prems show ?case
      by (force intro!: Seq.IH simp:Seq_le)
  next
    case If from If.prems show ?case by (force simp: If_le intro!: If.IH)
  next
    case While from While.prems show ?case
      by(fastforce simp: While_le intro: While.IH)
  qed
next
  case (3 A i)
  have "strip(lift Inter i A) = i"
  proof(induction i arbitrary: A)
    case Seq from Seq.prems show ?case
      by (fastforce simp: strip_eq_Seq subset_iff intro!: Seq.IH)
  next
    case If from If.prems show ?case
      by (fastforce intro!: If.IH simp: strip_eq_If)
  next
    case While from While.prems show ?case
      by(fastforce intro: While.IH simp: strip_eq_While)
  qed auto
  thus ?case by auto
qed

lemma le_post: "c \<le> d \<Longrightarrow> post c \<le> post d"
by(induction c d rule: less_eq_acom.induct) auto

subsection "Collecting semantics"

fun step :: "state set \<Rightarrow> state set acom \<Rightarrow> state set acom" where
"step S (SKIP {P}) = (SKIP {S})" |
"step S (x ::= e {P}) =
  (x ::= e {{s'. \<exists>s\<in>S. s' = s(x := aval e s)}})" |
"step S (c1;; c2) = step S c1;; step (post c1) c2" |
"step S (IF b THEN c1 ELSE c2 {P}) =
   IF b THEN step {s:S. bval b s} c1 ELSE step {s:S. \<not> bval b s} c2
   {post c1 \<union> post c2}" |
"step S ({Inv} WHILE b DO c {P}) =
  {S \<union> post c} WHILE b DO (step {s:Inv. bval b s} c) {{s:Inv. \<not> bval b s}}"

definition CS :: "com \<Rightarrow> state set acom" where
"CS c = lfp (step UNIV) c"

lemma mono2_step: "c1 \<le> c2 \<Longrightarrow> S1 \<subseteq> S2 \<Longrightarrow> step S1 c1 \<le> step S2 c2"
proof(induction c1 c2 arbitrary: S1 S2 rule: less_eq_acom.induct)
  case 2 thus ?case by fastforce
next
  case 3 thus ?case by(simp add: le_post)
next
  case 4 thus ?case by(simp add: subset_iff)(metis le_post subsetD)+
next
  case 5 thus ?case by(simp add: subset_iff) (metis le_post subsetD)
qed auto

lemma mono_step: "mono (step S)"
by(blast intro: monoI mono2_step)

lemma strip_step: "strip(step S c) = strip c"
by (induction c arbitrary: S) auto

lemma lfp_cs_unfold: "lfp (step S) c = step S (lfp (step S) c)"
apply(rule lfp_unfold[OF _  mono_step])
apply(simp add: strip_step)
done

lemma CS_unfold: "CS c = step UNIV (CS c)"
by (metis CS_def lfp_cs_unfold)

lemma strip_CS[simp]: "strip(CS c) = c"
by(simp add: CS_def index_lfp[simplified])

end