Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 185,452 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 |
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Constructions of Schemes}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we introduce ways of constructing schemes out of others.
A basic reference is \cite{EGA}.
\section{Relative glueing}
\label{section-relative-glueing}
\noindent
The following lemma is relevant in case we are trying to construct a
scheme $X$ over $S$, and we already know how to construct the restriction
of $X$ to the affine opens of $S$. The actual result is completely general
and works in the setting of (locally) ringed spaces, although our proof
is written in the language of schemes.
\begin{lemma}
\label{lemma-relative-glueing}
Let $S$ be a scheme.
Let $\mathcal{B}$ be a basis for the topology of $S$.
Suppose given the following data:
\begin{enumerate}
\item For every $U \in \mathcal{B}$ a scheme $f_U : X_U \to U$ over $U$.
\item For $U, V \in \mathcal{B}$ with $V \subset U$ a morphism
$\rho^U_V : X_V \to X_U$ over $U$.
\end{enumerate}
Assume that
\begin{enumerate}
\item[(a)] each $\rho^U_V$ induces an isomorphism
$X_V \to f_U^{-1}(V)$ of schemes over $V$,
\item[(b)] whenever $W, V, U \in \mathcal{B}$, with
$W \subset V \subset U$ we have $\rho^U_W = \rho^U_V \circ \rho ^V_W$.
\end{enumerate}
Then there exists a morphism $f : X \to S$ of schemes
and isomorphisms $i_U : f^{-1}(U) \to X_U$ over $U \in \mathcal{B}$
such that for $V, U \in \mathcal{B}$ with $V \subset U$ the composition
$$
\xymatrix{
X_V \ar[r]^{i_V^{-1}} &
f^{-1}(V) \ar[rr]^{inclusion} & &
f^{-1}(U) \ar[r]^{i_U} &
X_U
}
$$
is the morphism $\rho^U_V$. Moreover $X$ is unique up to
unique isomorphism over $S$.
\end{lemma}
\begin{proof}
To prove this we will use Schemes, Lemma \ref{schemes-lemma-glue-functors}.
First we define a contravariant functor $F$ from the category of schemes
to the category of sets. Namely, for a scheme $T$ we set
$$
F(T) =
\left\{
\begin{matrix}
(g, \{h_U\}_{U \in \mathcal{B}}),
\ g : T \to S, \ h_U : g^{-1}(U) \to X_U, \\
f_U \circ h_U = g|_{g^{-1}(U)},
\ h_U|_{g^{-1}(V)} = \rho^U_V \circ h_V
\ \forall\ V, U \in \mathcal{B}, V \subset U
\end{matrix}
\right\}.
$$
The restriction mapping $F(T) \to F(T')$ given a morphism
$T' \to T$ is just gotten by composition.
For any $W \in \mathcal{B}$ we consider the subfunctor
$F_W \subset F$ consisting of those systems $(g, \{h_U\})$
such that $g(T) \subset W$.
\medskip\noindent
First we show $F$ satisfies the sheaf property for the Zariski topology.
Suppose that $T$ is a scheme, $T = \bigcup V_i$ is an open covering,
and $\xi_i \in F(V_i)$ is an element such that
$\xi_i|_{V_i \cap V_j} = \xi_j|_{V_i \cap V_j}$.
Say $\xi_i = (g_i, \{h_{i, U}\})$. Then we immediately see that
the morphisms $g_i$ glue to a unique global morphism
$g : T \to S$. Moreover, it is clear that
$g^{-1}(U) = \bigcup g_i^{-1}(U)$. Hence the morphisms
$h_{i, U} : g_i^{-1}(U) \to X_U$ glue to a unique morphism
$h_U : g^{-1}(U) \to X_U$. It is easy to verify that the system
$(g, \{h_U\})$ is an element of $F(T)$. Hence $F$ satisfies the
sheaf property for the Zariski topology.
\medskip\noindent
Next we verify that each $F_W$, $W \in \mathcal{B}$ is representable.
Namely, we claim that the transformation of functors
$$
F_W \longrightarrow \Mor(-, X_W), \ (g, \{h_U\}) \longmapsto h_W
$$
is an isomorphism. To see this suppose that $T$ is a scheme and
$\alpha : T \to X_W$ is a morphism. Set $g = f_W \circ \alpha$.
For any $U \in \mathcal{B}$ such that $U \subset W$ we can
define $h_U : g^{-1}(U) \to X_U$ be the composition
$(\rho^W_U)^{-1} \circ \alpha|_{g^{-1}(U)}$. This works because
the image $\alpha(g^{-1}(U))$ is contained in $f_W^{-1}(U)$ and
condition (a) of the lemma. It is clear that
$f_U \circ h_U = g|_{g^{-1}(U)}$ for such a $U$.
Moreover, if also $V \in \mathcal{B}$ and $V \subset U \subset W$,
then $\rho^U_V \circ h_V = h_U|_{g^{-1}(V)}$ by property (b)
of the lemma. We still have to define $h_U$ for an arbitrary
element $U \in \mathcal{B}$. Since $\mathcal{B}$ is a basis for
the topology on $S$ we can find an open covering
$U \cap W = \bigcup U_i$ with $U_i \in \mathcal{B}$. Since $g$ maps into $W$
we have
$g^{-1}(U) = g^{-1}(U \cap W) = \bigcup g^{-1}(U_i)$.
Consider the morphisms
$h_i = \rho^U_{U_i} \circ h_{U_i} : g^{-1}(U_i) \to X_U$.
It is a simple matter to use condition (b) of the lemma
to prove that
$h_i|_{g^{-1}(U_i) \cap g^{-1}(U_j)} = h_j|_{g^{-1}(U_i) \cap g^{-1}(U_j)}$.
Hence these morphisms glue to give the desired morphism
$h_U : g^{-1}(U) \to X_U$. We omit the (easy) verification that
the system $(g, \{h_U\})$ is an element of $F_W(T)$ which
maps to $\alpha$ under the displayed arrow above.
\medskip\noindent
Next, we verify each $F_W \subset F$ is representable by open immersions.
This is clear from the definitions.
\medskip\noindent
Finally we have to verify
the collection $(F_W)_{W \in \mathcal{B}}$ covers $F$.
This is clear by construction and the fact that $\mathcal{B}$ is
a basis for the topology of $S$.
\medskip\noindent
Let $X$ be a scheme representing the functor $F$.
Let $(f, \{i_U\}) \in F(X)$ be a ``universal family''.
Since each $F_W$ is representable by $X_W$ (via the morphism of functors
displayed above) we see that $i_W : f^{-1}(W) \to X_W$
is an isomorphism as desired. The lemma is proved.
\end{proof}
\begin{lemma}
\label{lemma-relative-glueing-sheaves}
Let $S$ be a scheme.
Let $\mathcal{B}$ be a basis for the topology of $S$.
Suppose given the following data:
\begin{enumerate}
\item For every $U \in \mathcal{B}$ a scheme $f_U : X_U \to U$ over $U$.
\item For every $U \in \mathcal{B}$ a quasi-coherent sheaf $\mathcal{F}_U$
over $X_U$.
\item For every pair $U, V \in \mathcal{B}$ such that
$V \subset U$ a morphism $\rho^U_V : X_V \to X_U$.
\item For every pair $U, V \in \mathcal{B}$ such that
$V \subset U$ a morphism
$\theta^U_V : (\rho^U_V)^*\mathcal{F}_U \to \mathcal{F}_V$.
\end{enumerate}
Assume that
\begin{enumerate}
\item[(a)] each $\rho^U_V$ induces an isomorphism
$X_V \to f_U^{-1}(V)$ of schemes over $V$,
\item[(b)] each $\theta^U_V$ is an isomorphism,
\item[(c)] whenever $W, V, U \in \mathcal{B}$, with
$W \subset V \subset U$ we have $\rho^U_W = \rho^U_V \circ \rho ^V_W$,
\item[(d)] whenever $W, V, U \in \mathcal{B}$, with
$W \subset V \subset U$ we have
$\theta^U_W = \theta^V_W \circ (\rho^V_W)^*\theta^U_V$.
\end{enumerate}
Then there exists a morphism of schemes $f : X \to S$
together with a quasi-coherent sheaf $\mathcal{F}$ on $X$
and isomorphisms $i_U : f^{-1}(U) \to X_U$ and
$\theta_U : i_U^*\mathcal{F}_U \to \mathcal{F}|_{f^{-1}(U)}$
over $U \in \mathcal{B}$ such that
for $V, U \in \mathcal{B}$ with $V \subset U$ the composition
$$
\xymatrix{
X_V \ar[r]^{i_V^{-1}} &
f^{-1}(V) \ar[rr]^{inclusion} & &
f^{-1}(U) \ar[r]^{i_U} &
X_U
}
$$
is the morphism $\rho^U_V$, and the composition
\begin{equation}
\label{equation-glue}
(\rho^U_V)^*\mathcal{F}_U
=
(i_V^{-1})^*((i_U^*\mathcal{F}_U)|_{f^{-1}(V)})
\xrightarrow{\theta_U|_{f^{-1}(V)}}
(i_V^{-1})^*(\mathcal{F}|_{f^{-1}(V)})
\xrightarrow{\theta_V^{-1}}
\mathcal{F}_V
\end{equation}
is equal to $\theta^U_V$. Moreover $(X, \mathcal{F})$ is unique
up to unique isomorphism over $S$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-relative-glueing} we get the scheme $X$ over $S$
and the isomorphisms $i_U$.
Set $\mathcal{F}'_U = i_U^*\mathcal{F}_U$ for $U \in \mathcal{B}$.
This is a quasi-coherent $\mathcal{O}_{f^{-1}(U)}$-module.
The maps
$$
\mathcal{F}'_U|_{f^{-1}(V)} =
i_U^*\mathcal{F}_U|_{f^{-1}(V)} =
i_V^*(\rho^U_V)^*\mathcal{F}_U \xrightarrow{i_V^*\theta^U_V}
i_V^*\mathcal{F}_V = \mathcal{F}'_V
$$
define isomorphisms
$(\theta')^U_V : \mathcal{F}'_U|_{f^{-1}(V)} \to \mathcal{F}'_V$
whenever $V \subset U$ are elements of $\mathcal{B}$.
Condition (d) says exactly that this is compatible in case
we have a triple of elements $W \subset V \subset U$ of $\mathcal{B}$.
This allows us to get well defined isomorphisms
$$
\varphi_{12} :
\mathcal{F}'_{U_1}|_{f^{-1}(U_1 \cap U_2)}
\longrightarrow
\mathcal{F}'_{U_2}|_{f^{-1}(U_1 \cap U_2)}
$$
whenever $U_1, U_2 \in \mathcal{B}$ by covering the intersection
$U_1 \cap U_2 = \bigcup V_j$ by elements $V_j$ of $\mathcal{B}$
and taking
$$
\varphi_{12}|_{V_j} =
\left((\theta')^{U_2}_{V_j}\right)^{-1}
\circ
(\theta')^{U_1}_{V_j}.
$$
We omit the verification that these maps do indeed glue to a
$\varphi_{12}$ and we omit the verification of the
cocycle condition of a glueing datum for sheaves
(as in Sheaves, Section \ref{sheaves-section-glueing-sheaves}).
By Sheaves, Lemma \ref{sheaves-lemma-glue-sheaves}
we get our $\mathcal{F}$ on $X$. We omit the verification
of (\ref{equation-glue}).
\end{proof}
\begin{remark}
\label{remark-relative-glueing-functorial}
There is a functoriality property for the constructions explained
in Lemmas \ref{lemma-relative-glueing} and
\ref{lemma-relative-glueing-sheaves}. Namely, suppose given
two collections of data $(f_U : X_U \to U, \rho^U_V)$ and
$(g_U : Y_U \to U, \sigma^U_V)$ as in Lemma \ref{lemma-relative-glueing}.
Suppose for every $U \in \mathcal{B}$ given
a morphism $h_U : X_U \to Y_U$ over $U$ compatible with
the restrictions $\rho^U_V$ and $\sigma^U_V$. Functoriality
means that this gives rise to a morphism of schemes
$h : X \to Y$ over $S$ restricting back to the morphisms $h_U$,
where $f : X \to S$ is obtained from
the datum $(f_U : X_U \to U, \rho^U_V)$ and $g : Y \to S$
is obtained from the datum $(g_U : Y_U \to U, \sigma^U_V)$.
\medskip\noindent
Similarly, suppose given
two collections of data
$(f_U : X_U \to U, \mathcal{F}_U, \rho^U_V, \theta^U_V)$ and
$(g_U : Y_U \to U, \mathcal{G}_U, \sigma^U_V, \eta^U_V)$
as in Lemma \ref{lemma-relative-glueing-sheaves}.
Suppose for every $U \in \mathcal{B}$ given
a morphism $h_U : X_U \to Y_U$ over $U$ compatible with
the restrictions $\rho^U_V$ and $\sigma^U_V$, and a morphism
$\tau_U : h_U^*\mathcal{G}_U \to \mathcal{F}_U$ compatible with
the maps $\theta^U_V$ and $\eta^U_V$. Functoriality
means that these give rise to a morphism of schemes
$h : X \to Y$ over $S$ restricting back to the morphisms $h_U$,
and a morphism $h^*\mathcal{G} \to \mathcal{F}$ restricting back
to the maps $h_U$
where $(f : X \to S, \mathcal{F})$ is obtained from the datum
$(f_U : X_U \to U, \mathcal{F}_U, \rho^U_V, \theta^U_V)$ and
where $(g : Y \to S, \mathcal{G})$ is obtained from the datum
$(g_U : Y_U \to U, \mathcal{G}_U, \sigma^U_V, \eta^U_V)$.
\medskip\noindent
We omit the verifications and we omit a suitable formulation of
``equivalence of categories'' between relative glueing data
and relative objects.
\end{remark}
\section{Relative spectrum via glueing}
\label{section-spec-via-glueing}
\begin{situation}
\label{situation-relative-spec}
Here $S$ is a scheme, and $\mathcal{A}$ is a quasi-coherent
$\mathcal{O}_S$-algebra. This means that $\mathcal{A}$ is a
sheaf of $\mathcal{O}_S$-algebras which is quasi-coherent as an
$\mathcal{O}_S$-module.
\end{situation}
\noindent
In this section we outline how to construct a morphism
of schemes
$$
\underline{\Spec}_S(\mathcal{A}) \longrightarrow S
$$
by glueing the spectra $\Spec(\Gamma(U, \mathcal{A}))$
where $U$ ranges over the affine opens of $S$. We first show that the
spectra of the values of $\mathcal{A}$ over affines form a
suitable collection of schemes, as in Lemma \ref{lemma-relative-glueing}.
\begin{lemma}
\label{lemma-spec-inclusion}
In Situation \ref{situation-relative-spec}.
Suppose $U \subset U' \subset S$ are affine opens.
Let $A = \mathcal{A}(U)$ and $A' = \mathcal{A}(U')$.
The map of rings $A' \to A$ induces a morphism
$\Spec(A) \to \Spec(A')$, and the diagram
$$
\xymatrix{
\Spec(A) \ar[r] \ar[d] &
\Spec(A') \ar[d] \\
U \ar[r] &
U'
}
$$
is cartesian.
\end{lemma}
\begin{proof}
Let $R = \mathcal{O}_S(U)$ and $R' = \mathcal{O}_S(U')$.
Note that the map $R \otimes_{R'} A' \to A$ is an isomorphism as
$\mathcal{A}$ is quasi-coherent
(see Schemes, Lemma \ref{schemes-lemma-widetilde-pullback} for example).
The result follows from the description of the fibre product of
affine schemes in
Schemes, Lemma \ref{schemes-lemma-fibre-product-affine-schemes}.
\end{proof}
\noindent
In particular the morphism $\Spec(A) \to \Spec(A')$
of the lemma is an open immersion.
\begin{lemma}
\label{lemma-transitive-spec}
In Situation \ref{situation-relative-spec}.
Suppose $U \subset U' \subset U'' \subset S$ are affine opens.
Let $A = \mathcal{A}(U)$, $A' = \mathcal{A}(U')$ and $A'' = \mathcal{A}(U'')$.
The composition of the morphisms
$\Spec(A) \to \Spec(A')$, and
$\Spec(A') \to \Spec(A'')$ of
Lemma \ref{lemma-spec-inclusion} gives the
morphism $\Spec(A) \to \Spec(A'')$
of Lemma \ref{lemma-spec-inclusion}.
\end{lemma}
\begin{proof}
This follows as the map $A'' \to A$ is the composition of $A'' \to A'$ and
$A' \to A$ (because $\mathcal{A}$ is a sheaf).
\end{proof}
\begin{lemma}
\label{lemma-glue-relative-spec}
In Situation \ref{situation-relative-spec}.
There exists a morphism of schemes
$$
\pi : \underline{\Spec}_S(\mathcal{A}) \longrightarrow S
$$
with the following properties:
\begin{enumerate}
\item for every affine open $U \subset S$ there exists an isomorphism
$i_U : \pi^{-1}(U) \to \Spec(\mathcal{A}(U))$, and
\item for $U \subset U' \subset S$ affine open the composition
$$
\xymatrix{
\Spec(\mathcal{A}(U)) \ar[r]^{i_U^{-1}} &
\pi^{-1}(U) \ar[rr]^{inclusion} & &
\pi^{-1}(U') \ar[r]^{i_{U'}} &
\Spec(\mathcal{A}(U'))
}
$$
is the open immersion of Lemma \ref{lemma-spec-inclusion} above.
\end{enumerate}
\end{lemma}
\begin{proof}
Follows immediately from
Lemmas \ref{lemma-relative-glueing},
\ref{lemma-spec-inclusion}, and
\ref{lemma-transitive-spec}.
\end{proof}
\section{Relative spectrum as a functor}
\label{section-spec}
\noindent
We place ourselves in Situation \ref{situation-relative-spec}, i.e.,
$S$ is a scheme and $\mathcal{A}$ is a quasi-coherent sheaf of
$\mathcal{O}_S$-algebras.
\medskip\noindent
For any $f : T \to S$ the pullback
$f^*\mathcal{A}$ is a quasi-coherent sheaf of $\mathcal{O}_T$-algebras.
We are going to consider pairs $(f : T \to S, \varphi)$ where
$f$ is a morphism of schemes and $\varphi : f^*\mathcal{A} \to \mathcal{O}_T$
is a morphism of $\mathcal{O}_T$-algebras. Note that this is the
same as giving a $f^{-1}\mathcal{O}_S$-algebra homomorphism
$\varphi : f^{-1}\mathcal{A} \to \mathcal{O}_T$, see
Sheaves, Lemma \ref{sheaves-lemma-adjointness-tensor-restrict}.
This is also the same as giving an $\mathcal{O}_S$-algebra map
$\varphi : \mathcal{A} \to f_*\mathcal{O}_T$, see
Sheaves, Lemma \ref{sheaves-lemma-adjoint-push-pull-modules}.
We will use all three ways of thinking about $\varphi$,
without further mention.
\medskip\noindent
Given such a
pair $(f : T \to S, \varphi)$ and a morphism $a : T' \to T$ we get
a second pair $(f' = f \circ a, \varphi' = a^*\varphi)$ which we
call the pullback of $(f, \varphi)$. One way to describe
$\varphi' = a^*\varphi$ is as the composition
$\mathcal{A} \to f_*\mathcal{O}_T \to f'_*\mathcal{O}_{T'}$
where the second map is $f_*a^\sharp$ with
$a^\sharp : \mathcal{O}_T \to a_*\mathcal{O}_{T'}$.
In this way we have defined a functor
\begin{eqnarray}
\label{equation-spec}
F : \Sch^{opp} & \longrightarrow & \textit{Sets} \\
T & \longmapsto & F(T) = \{\text{pairs }(f, \varphi) \text{ as above}\}
\nonumber
\end{eqnarray}
\begin{lemma}
\label{lemma-spec-base-change}
In Situation \ref{situation-relative-spec}.
Let $F$ be the functor
associated to $(S, \mathcal{A})$ above.
Let $g : S' \to S$ be a morphism of schemes.
Set $\mathcal{A}' = g^*\mathcal{A}$. Let $F'$ be the
functor associated to $(S', \mathcal{A}')$ above.
Then there is a canonical isomorphism
$$
F' \cong h_{S'} \times_{h_S} F
$$
of functors.
\end{lemma}
\begin{proof}
A pair $(f' : T \to S', \varphi' : (f')^*\mathcal{A}' \to \mathcal{O}_T)$
is the same as a pair $(f, \varphi : f^*\mathcal{A} \to \mathcal{O}_T)$
together with a factorization of $f$ as $f = g \circ f'$. Namely with
this notation we have
$(f')^* \mathcal{A}' = (f')^*g^*\mathcal{A} = f^*\mathcal{A}$.
Hence the lemma.
\end{proof}
\begin{lemma}
\label{lemma-spec-affine}
In Situation \ref{situation-relative-spec}.
Let $F$ be the functor associated to $(S, \mathcal{A})$ above.
If $S$ is affine, then $F$ is representable by the
affine scheme $\Spec(\Gamma(S, \mathcal{A}))$.
\end{lemma}
\begin{proof}
Write $S = \Spec(R)$ and $A = \Gamma(S, \mathcal{A})$.
Then $A$ is an $R$-algebra and $\mathcal{A} = \widetilde A$.
The ring map $R \to A$ gives rise to a canonical map
$$
f_{univ} : \Spec(A)
\longrightarrow
S = \Spec(R).
$$
We have
$f_{univ}^*\mathcal{A} = \widetilde{A \otimes_R A}$
by Schemes, Lemma \ref{schemes-lemma-widetilde-pullback}.
Hence there is a canonical map
$$
\varphi_{univ} :
f_{univ}^*\mathcal{A} = \widetilde{A \otimes_R A}
\longrightarrow
\widetilde A = \mathcal{O}_{\Spec(A)}
$$
coming from the $A$-module map $A \otimes_R A \to A$,
$a \otimes a' \mapsto aa'$. We claim that the pair
$(f_{univ}, \varphi_{univ})$ represents $F$ in this case.
In other words we claim that for any scheme $T$ the map
$$
\Mor(T, \Spec(A)) \longrightarrow \{\text{pairs } (f, \varphi)\},\quad
a \longmapsto (f_{univ} \circ a, a^*\varphi_{univ})
$$
is bijective.
\medskip\noindent
Let us construct the inverse map.
For any pair $(f : T \to S, \varphi)$ we get the induced
ring map
$$
\xymatrix{
A = \Gamma(S, \mathcal{A}) \ar[r]^{f^*} &
\Gamma(T, f^*\mathcal{A}) \ar[r]^{\varphi} &
\Gamma(T, \mathcal{O}_T)
}
$$
This induces a morphism of schemes $T \to \Spec(A)$
by Schemes, Lemma \ref{schemes-lemma-morphism-into-affine}.
\medskip\noindent
The verification that this map is inverse to the map
displayed above is omitted.
\end{proof}
\begin{lemma}
\label{lemma-spec}
In Situation \ref{situation-relative-spec}.
The functor $F$ is representable by a scheme.
\end{lemma}
\begin{proof}
We are going to use Schemes, Lemma \ref{schemes-lemma-glue-functors}.
\medskip\noindent
First we check that $F$ satisfies the sheaf property for the
Zariski topology. Namely, suppose that $T$ is a scheme,
that $T = \bigcup_{i \in I} U_i$ is an open covering,
and that $(f_i, \varphi_i) \in F(U_i)$ such that
$(f_i, \varphi_i)|_{U_i \cap U_j} = (f_j, \varphi_j)|_{U_i \cap U_j}$.
This implies that the morphisms $f_i : U_i \to S$
glue to a morphism of schemes $f : T \to S$ such that
$f|_{I_i} = f_i$, see Schemes, Section \ref{schemes-section-glueing-schemes}.
Thus $f_i^*\mathcal{A} = f^*\mathcal{A}|_{U_i}$ and by assumption the
morphisms $\varphi_i$ agree on $U_i \cap U_j$. Hence by Sheaves,
Section \ref{sheaves-section-glueing-sheaves} these glue to a
morphism of $\mathcal{O}_T$-algebras $f^*\mathcal{A} \to \mathcal{O}_T$.
This proves that $F$ satisfies the sheaf condition with respect to
the Zariski topology.
\medskip\noindent
Let $S = \bigcup_{i \in I} U_i$ be an affine open covering.
Let $F_i \subset F$ be the subfunctor consisting of
those pairs $(f : T \to S, \varphi)$ such that
$f(T) \subset U_i$.
\medskip\noindent
We have to show each $F_i$ is representable.
This is the case because $F_i$ is identified with
the functor associated to $U_i$ equipped with
the quasi-coherent $\mathcal{O}_{U_i}$-algebra $\mathcal{A}|_{U_i}$,
by Lemma \ref{lemma-spec-base-change}.
Thus the result follows from Lemma \ref{lemma-spec-affine}.
\medskip\noindent
Next we show that $F_i \subset F$ is representable by open immersions.
Let $(f : T \to S, \varphi) \in F(T)$. Consider $V_i = f^{-1}(U_i)$.
It follows from the definition of $F_i$ that given $a : T' \to T$
we gave $a^*(f, \varphi) \in F_i(T')$ if and only if $a(T') \subset V_i$.
This is what we were required to show.
\medskip\noindent
Finally, we have to show that the collection $(F_i)_{i \in I}$
covers $F$. Let $(f : T \to S, \varphi) \in F(T)$.
Consider $V_i = f^{-1}(U_i)$. Since $S = \bigcup_{i \in I} U_i$
is an open covering of $S$ we see that $T = \bigcup_{i \in I} V_i$
is an open covering of $T$. Moreover $(f, \varphi)|_{V_i} \in F_i(V_i)$.
This finishes the proof of the lemma.
\end{proof}
\begin{lemma}
\label{lemma-glueing-gives-functor-spec}
In Situation \ref{situation-relative-spec}.
The scheme $\pi : \underline{\Spec}_S(\mathcal{A}) \to S$
constructed in Lemma \ref{lemma-glue-relative-spec}
and the scheme representing the functor $F$ are
canonically isomorphic as schemes over $S$.
\end{lemma}
\begin{proof}
Let $X \to S$ be the scheme representing the functor $F$.
Consider the sheaf of $\mathcal{O}_S$-algebras
$\mathcal{R} = \pi_*\mathcal{O}_{\underline{\Spec}_S(\mathcal{A})}$.
By construction of $\underline{\Spec}_S(\mathcal{A})$
we have isomorphisms $\mathcal{A}(U) \to \mathcal{R}(U)$
for every affine open $U \subset S$; this follows from
Lemma \ref{lemma-glue-relative-spec} part (1).
For $U \subset U' \subset S$ open these isomorphisms are
compatible with the restriction mappings; this follows from
Lemma \ref{lemma-glue-relative-spec} part (2).
Hence by Sheaves, Lemma \ref{sheaves-lemma-restrict-basis-equivalence-modules}
these isomorphisms result from an isomorphism of $\mathcal{O}_S$-algebras
$\varphi : \mathcal{A} \to \mathcal{R}$. Hence this gives an element
$(\underline{\Spec}_S(\mathcal{A}), \varphi)
\in F(\underline{\Spec}_S(\mathcal{A}))$.
Since $X$ represents the functor $F$ we get a corresponding
morphism of schemes $can : \underline{\Spec}_S(\mathcal{A}) \to X$
over $S$.
\medskip\noindent
Let $U \subset S$ be any affine open. Let $F_U \subset F$ be
the subfunctor of $F$ corresponding to pairs $(f, \varphi)$ over
schemes $T$ with $f(T) \subset U$. Clearly the base change
$X_U$ represents $F_U$. Moreover, $F_U$ is represented by
$\Spec(\mathcal{A}(U)) = \pi^{-1}(U)$ according to
Lemma \ref{lemma-spec-affine}. In other words $X_U \cong \pi^{-1}(U)$.
We omit the verification that this identification is brought about
by the base change of the morphism $can$ to $U$.
\end{proof}
\begin{definition}
\label{definition-relative-spec}
Let $S$ be a scheme. Let $\mathcal{A}$ be a quasi-coherent sheaf of
$\mathcal{O}_S$-algebras. The {\it relative spectrum of $\mathcal{A}$ over
$S$}, or simply the {\it spectrum of $\mathcal{A}$ over $S$} is the scheme
constructed in Lemma \ref{lemma-glue-relative-spec} which represents the
functor $F$ (\ref{equation-spec}), see
Lemma \ref{lemma-glueing-gives-functor-spec}.
We denote it $\pi : \underline{\Spec}_S(\mathcal{A}) \to S$.
The ``universal family'' is a morphism of $\mathcal{O}_S$-algebras
$$
\mathcal{A}
\longrightarrow
\pi_*\mathcal{O}_{\underline{\Spec}_S(\mathcal{A})}
$$
\end{definition}
\noindent
The following lemma says among other things that forming the
relative spectrum commutes with base change.
\begin{lemma}
\label{lemma-spec-properties}
Let $S$ be a scheme. Let $\mathcal{A}$ be a quasi-coherent
sheaf of $\mathcal{O}_S$-algebras. Let
$\pi : \underline{\Spec}_S(\mathcal{A}) \to S$
be the relative spectrum of $\mathcal{A}$ over $S$.
\begin{enumerate}
\item For every affine open $U \subset S$ the inverse image
$\pi^{-1}(U)$ is affine.
\item For every morphism $g : S' \to S$ we have
$S' \times_S \underline{\Spec}_S(\mathcal{A}) =
\underline{\Spec}_{S'}(g^*\mathcal{A})$.
\item
The universal map
$$
\mathcal{A}
\longrightarrow
\pi_*\mathcal{O}_{\underline{\Spec}_S(\mathcal{A})}
$$
is an isomorphism of $\mathcal{O}_S$-algebras.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) comes from the description of the relative spectrum
by glueing, see Lemma \ref{lemma-glue-relative-spec}.
Part (2) follows immediately from Lemma \ref{lemma-spec-base-change}.
Part (3) follows because it is local on $S$ and it is clear in case $S$
is affine by Lemma \ref{lemma-spec-affine} for example.
\end{proof}
\begin{lemma}
\label{lemma-canonical-morphism}
Let $f : X \to S$ be a quasi-compact and quasi-separated morphism
of schemes. By Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}
the sheaf $f_*\mathcal{O}_X$ is a quasi-coherent sheaf of
$\mathcal{O}_S$-algebras. There is a canonical morphism
$$
can : X \longrightarrow \underline{\Spec}_S(f_*\mathcal{O}_X)
$$
of schemes over $S$.
For any affine open $U \subset S$ the restriction $can|_{f^{-1}(U)}$
is identified with the canonical morphism
$$
f^{-1}(U) \longrightarrow \Spec(\Gamma(f^{-1}(U), \mathcal{O}_X))
$$
coming from Schemes, Lemma \ref{schemes-lemma-morphism-into-affine}.
\end{lemma}
\begin{proof}
The morphism comes, via the definition of $\underline{\Spec}$
as the scheme representing the functor $F$, from the canonical map
$\varphi : f^*f_*\mathcal{O}_X \to \mathcal{O}_X$ (which by adjointness of
push and pull corresponds to
$\text{id} : f_*\mathcal{O}_X \to f_*\mathcal{O}_X$).
The statement on the restriction to $f^{-1}(U)$
follows from the description of the relative spectrum over
affines, see Lemma \ref{lemma-spec-affine}.
\end{proof}
\section{Affine n-space}
\label{section-affine-n-space}
\noindent
As an application of the relative spectrum
we define affine $n$-space over a base scheme
$S$ as follows. For any integer $n \geq 0$ we can consider the
quasi-coherent sheaf of $\mathcal{O}_S$-algebras
$\mathcal{O}_S[T_1, \ldots, T_n]$. It is quasi-coherent because
as a sheaf of $\mathcal{O}_S$-modules it is just the direct sum
of copies of $\mathcal{O}_S$ indexed by multi-indices.
\begin{definition}
\label{definition-affine-n-space}
Let $S$ be a scheme and $n \geq 0$.
The scheme
$$
\mathbf{A}^n_S =
\underline{\Spec}_S(\mathcal{O}_S[T_1, \ldots, T_n])
$$
over $S$ is called {\it affine $n$-space over $S$}.
If $S = \Spec(R)$ is affine then we also call this
{\it affine $n$-space over $R$} and we denote it $\mathbf{A}^n_R$.
\end{definition}
\noindent
Note that $\mathbf{A}^n_R = \Spec(R[T_1, \ldots, T_n])$.
For any morphism $g : S' \to S$ of schemes we have
$g^*\mathcal{O}_S[T_1, \ldots, T_n] = \mathcal{O}_{S'}[T_1, \ldots, T_n]$
and hence $\mathbf{A}^n_{S'} = S' \times_S \mathbf{A}^n_S$ is the base
change. Therefore an alternative definition of affine $n$-space
is the formula
$$
\mathbf{A}^n_S = S \times_{\Spec(\mathbf{Z})} \mathbf{A}^n_{\mathbf{Z}}.
$$
Also, a morphism from an $S$-scheme $f : X \to S$
to $\mathbf{A}^n_S$ is given by a homomorphism of
$\mathcal{O}_S$-algebras
$\mathcal{O}_S[T_1, \ldots, T_n] \to f_*\mathcal{O}_X$.
This is clearly the same thing as giving the images of the $T_i$.
In other words, a morphism from $X$ to $\mathbf{A}^n_S$ over $S$
is the same as giving $n$ elements
$h_1, \ldots, h_n \in \Gamma(X, \mathcal{O}_X)$.
\section{Vector bundles}
\label{section-vector-bundle}
\noindent
Let $S$ be a scheme.
Let $\mathcal{E}$ be a quasi-coherent sheaf of $\mathcal{O}_S$-modules.
By Modules, Lemma \ref{modules-lemma-whole-tensor-algebra-permanence}
the symmetric algebra $\text{Sym}(\mathcal{E})$ of
$\mathcal{E}$ over $\mathcal{O}_S$
is a quasi-coherent sheaf of $\mathcal{O}_S$-algebras.
Hence it makes sense to apply the construction of the
previous section to it.
\begin{definition}
\label{definition-vector-bundle}
Let $S$ be a scheme. Let $\mathcal{E}$ be a quasi-coherent
$\mathcal{O}_S$-module\footnote{The reader may expect here
the condition that $\mathcal{E}$ is finite locally free. We do not
do so in order to be consistent with \cite[II, Definition 1.7.8]{EGA}.}.
The {\it vector bundle associated to $\mathcal{E}$} is
$$
\mathbf{V}(\mathcal{E}) = \underline{\Spec}_S(\text{Sym}(\mathcal{E})).
$$
\end{definition}
\noindent
The vector bundle associated to $\mathcal{E}$ comes with a bit
of extra structure. Namely, we have a grading
$$
\pi_*\mathcal{O}_{\mathbf{V}(\mathcal{E})} =
\bigoplus\nolimits_{n \geq 0} \text{Sym}^n(\mathcal{E}).
$$
which turns $\pi_*\mathcal{O}_{\mathbf{V}(\mathcal{E})}$
into a graded $\mathcal{O}_S$-algebra. Conversely, we can recover
$\mathcal{E}$ from the degree $1$ part of this.
Thus we define an abstract vector bundle as follows.
\begin{definition}
\label{definition-abstract-vector-bundle}
Let $S$ be a scheme. A {\it vector bundle $\pi : V \to S$ over $S$} is an
affine morphism of schemes such that $\pi_*\mathcal{O}_V$ is endowed with
the structure of a graded $\mathcal{O}_S$-algebra
$\pi_*\mathcal{O}_V = \bigoplus\nolimits_{n \geq 0} \mathcal{E}_n$
such that $\mathcal{E}_0 = \mathcal{O}_S$ and such that the maps
$$
\text{Sym}^n(\mathcal{E}_1) \longrightarrow \mathcal{E}_n
$$
are isomorphisms for all $n \geq 0$. A {\it morphism of vector bundles
over $S$} is a morphism $f : V \to V'$ such that the induced map
$$
f^* : \pi'_*\mathcal{O}_{V'} \longrightarrow \pi_*\mathcal{O}_V
$$
is compatible with the given gradings.
\end{definition}
\noindent
An example of a vector bundle over $S$ is affine $n$-space
$\mathbf{A}^n_S$ over $S$, see Definition \ref{definition-affine-n-space}.
This is true because
$\mathcal{O}_S[T_1, \ldots, T_n] = \text{Sym}(\mathcal{O}_S^{\oplus n})$.
\begin{lemma}
\label{lemma-category-vector-bundles}
The category of vector bundles over a scheme $S$ is
anti-equivalent to the category of quasi-coherent $\mathcal{O}_S$-modules.
\end{lemma}
\begin{proof}
Omitted. Hint: In one direction one uses the functor
$\underline{\Spec}_S(\text{Sym}^*_{\mathcal{O}_S}(-))$
and in the other the functor
$(\pi : V \to S) \leadsto (\pi_*\mathcal{O}_V)_1$ where the subscript
indicates we take the degree $1$ part.
\end{proof}
\section{Cones}
\label{section-cone}
\noindent
In algebraic geometry cones correspond to graded algebras. By our conventions
a graded ring or algebra $A$ comes with a grading
$A = \bigoplus_{d \geq 0} A_d$ by the nonnegative integers, see
Algebra, Section \ref{algebra-section-graded}.
\begin{definition}
\label{definition-cone}
Let $S$ be a scheme. Let $\mathcal{A}$ be a quasi-coherent
graded $\mathcal{O}_S$-algebra. Assume that $\mathcal{O}_S \to \mathcal{A}_0$
is an isomorphism\footnote{Often one imposes the assumption that
$\mathcal{A}$ is generated by $\mathcal{A}_1$ over $\mathcal{O}_S$. We do not
assume this in order to be consistent with \cite[II, (8.3.1)]{EGA}.}.
The {\it cone associated to $\mathcal{A}$} or the
{\it affine cone associated to $\mathcal{A}$}
is
$$
C(\mathcal{A}) = \underline{\Spec}_S(\mathcal{A}).
$$
\end{definition}
\noindent
The cone associated to a graded sheaf of $\mathcal{O}_S$-algebras
comes with a bit of extra structure. Namely, we obtain a grading
$$
\pi_*\mathcal{O}_{C(\mathcal{A})} =
\bigoplus\nolimits_{n \geq 0} \mathcal{A}_n
$$
Thus we can define an abstract cone as follows.
\begin{definition}
\label{definition-abstract-cone}
Let $S$ be a scheme. A {\it cone $\pi : C \to S$ over $S$} is an
affine morphism of schemes such that $\pi_*\mathcal{O}_C$ is endowed with
the structure of a graded $\mathcal{O}_S$-algebra
$\pi_*\mathcal{O}_C = \bigoplus\nolimits_{n \geq 0} \mathcal{A}_n$
such that $\mathcal{A}_0 = \mathcal{O}_S$. A {\it morphism of cones}
from $\pi : C \to S$ to $\pi' : C' \to S$
is a morphism $f : C \to C'$ such that the induced map
$$
f^* : \pi'_*\mathcal{O}_{C'} \longrightarrow \pi_*\mathcal{O}_C
$$
is compatible with the given gradings.
\end{definition}
\noindent
Any vector bundle is an example of a cone. In fact the category of
vector bundles over $S$ is a full subcategory of the category of cones
over $S$.
\section{Proj of a graded ring}
\label{section-proj}
\noindent
In this section we construct Proj of a graded ring
following \cite[II, Section 2]{EGA}.
\medskip\noindent
Let $S$ be a graded ring. Consider the topological space $\text{Proj}(S)$
associated to $S$, see Algebra, Section \ref{algebra-section-proj}.
We will endow this space with a sheaf of rings $\mathcal{O}_{\text{Proj}(S)}$
such that the resulting pair $(\text{Proj}(S), \mathcal{O}_{\text{Proj}(S)})$
will be a scheme.
\medskip\noindent
Recall that $\text{Proj}(S)$ has a basis of open sets $D_{+}(f)$,
$f \in S_d$, $d \geq 1$ which we call {\it standard opens}, see Algebra,
Section \ref{algebra-section-proj}. This terminology will always
imply that $f$ is homogeneous of positive degree even if we forget to
mention it. In addition, the intersection of two standard opens is another:
$D_{+}(f) \cap D_{+}(g) = D_{+}(fg)$, for $f, g \in S$ homogeneous of positive
degree.
\begin{lemma}
\label{lemma-standard-open}
Let $S$ be a graded ring. Let $f \in S$ homogeneous of positive degree.
\begin{enumerate}
\item If $g\in S$ homogeneous of positive degree
and $D_{+}(g) \subset D_{+}(f)$, then
\begin{enumerate}
\item $f$ is invertible in $S_g$, and
$f^{\deg(g)}/g^{\deg(f)}$ is invertible in $S_{(g)}$,
\item $g^e = af$ for some $e \geq 1$ and $a \in S$ homogeneous,
\item there is a canonical $S$-algebra map $S_f \to S_g$,
\item there is a canonical $S_0$-algebra map $S_{(f)} \to S_{(g)}$
compatible with the map $S_f \to S_g$,
\item the map $S_{(f)} \to S_{(g)}$ induces an isomorphism
$$
(S_{(f)})_{g^{\deg(f)}/f^{\deg(g)}} \cong S_{(g)},
$$
\item these maps induce a commutative diagram of
topological spaces
$$
\xymatrix{
D_{+}(g) \ar[d] &
\{\mathbf{Z}\text{-graded primes of }S_g\} \ar[l] \ar[r] \ar[d] &
\Spec(S_{(g)}) \ar[d] \\
D_{+}(f) &
\{\mathbf{Z}\text{-graded primes of }S_f\} \ar[l] \ar[r] &
\Spec(S_{(f)})
}
$$
where the horizontal maps are homeomorphisms and the vertical maps
are open immersions,
\item there are compatible canonical $S_f$ and $S_{(f)}$-module
maps $M_f \to M_g$ and $M_{(f)} \to M_{(g)}$ for any graded $S$-module $M$,
and
\item the map $M_{(f)} \to M_{(g)}$ induces an isomorphism
$$
(M_{(f)})_{g^{\deg(f)}/f^{\deg(g)}} \cong M_{(g)}.
$$
\end{enumerate}
\item Any open covering of $D_{+}(f)$ can be refined to a finite
open covering of the form $D_{+}(f) = \bigcup_{i = 1}^n D_{+}(g_i)$.
\item Let $g_1, \ldots, g_n \in S$ be homogeneous of positive degree.
Then $D_{+}(f) \subset \bigcup D_{+}(g_i)$
if and only if
$g_1^{\deg(f)}/f^{\deg(g_1)}, \ldots, g_n^{\deg(f)}/f^{\deg(g_n)}$
generate the unit ideal in $S_{(f)}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Recall that $D_{+}(g) = \Spec(S_{(g)})$ with identification
given by the ring maps $S \to S_g \leftarrow S_{(g)}$, see
Algebra, Lemma \ref{algebra-lemma-topology-proj}.
Thus $f^{\deg(g)}/g^{\deg(f)}$ is an element of $S_{(g)}$ which is not
contained in any prime ideal, and hence invertible,
see Algebra, Lemma \ref{algebra-lemma-Zariski-topology}.
We conclude that (a) holds.
Write the inverse of $f$ in $S_g$ as $a/g^d$.
We may replace $a$ by its homogeneous part of degree $d\deg(g) - \deg(f)$.
This means $g^d - af$ is annihilated by a power of $g$, whence
$g^e = af$ for some $a \in S$ homogeneous of degree $e\deg(g) - \deg(f)$.
This proves (b).
For (c), the map $S_f \to S_g$ exists by (a) from the universal property
of localization, or we can define it by mapping $b/f^n$
to $a^nb/g^{ne}$. This clearly induces a map of the subrings
$S_{(f)} \to S_{(g)}$ of degree zero elements as well.
We can similarly define $M_f \to M_g$ and $M_{(f)} \to M_{(g)}$ by mapping
$x/f^n$ to $a^nx/g^{ne}$. The statements writing $S_{(g)}$
resp.\ $M_{(g)}$ as principal localizations of $S_{(f)}$ resp.\ $M_{(f)}$
are clear from the formulas above. The maps in the commutative diagram
of topological spaces correspond to the ring maps given above. The
horizontal arrows are homeomorphisms by
Algebra, Lemma \ref{algebra-lemma-topology-proj}.
The vertical arrows are open immersions since the left
one is the inclusion of an open subset.
\medskip\noindent
The open $D_{+}(f)$ is quasi-compact because it is homeomorphic
to $\Spec(S_{(f)})$, see Algebra, Lemma \ref{algebra-lemma-quasi-compact}.
Hence the second statement follows directly
from the fact that the standard opens form
a basis for the topology.
\medskip\noindent
The third statement follows directly from
Algebra, Lemma \ref{algebra-lemma-Zariski-topology}.
\end{proof}
\noindent
In Sheaves, Section \ref{sheaves-section-bases} we defined
the notion of a sheaf on a basis, and we showed that it is
essentially equivalent to the notion of a sheaf on the space,
see Sheaves, Lemmas \ref{sheaves-lemma-extend-off-basis} and
\ref{sheaves-lemma-extend-off-basis-structures}. Moreover,
we showed in
Sheaves, Lemma \ref{sheaves-lemma-cofinal-systems-coverings-standard-case}
that it is sufficient to check the sheaf
condition on a cofinal system of open coverings for each
standard open. By the lemma above it suffices to check
on the finite coverings by standard opens.
\begin{definition}
\label{definition-standard-covering}
Let $S$ be a graded ring.
Suppose that $D_{+}(f) \subset \text{Proj}(S)$ is a standard
open. A {\it standard open covering} of $D_{+}(f)$
is a covering $D_{+}(f) = \bigcup_{i = 1}^n D_{+}(g_i)$,
where $g_1, \ldots, g_n \in S$ are homogeneous of positive degree.
\end{definition}
\noindent
Let $S$ be a graded ring. Let $M$ be a graded $S$-module. We will define
a presheaf $\widetilde M$ on the basis of standard opens.
Suppose that $U \subset \text{Proj}(S)$ is a standard open.
If $f, g \in S$ are homogeneous of positive degree
such that $D_{+}(f) = D_{+}(g)$, then
by Lemma \ref{lemma-standard-open} above there are canonical
maps $M_{(f)} \to M_{(g)}$ and $M_{(g)} \to M_{(f)}$ which are
mutually inverse. Hence we may choose any $f$ such that $U = D_{+}(f)$
and define
$$
\widetilde M(U) = M_{(f)}.
$$
Note that if $D_{+}(g) \subset D_{+}(f)$, then by
Lemma \ref{lemma-standard-open} above we have
a canonical map
$$
\widetilde M(D_{+}(f)) = M_{(f)} \longrightarrow
M_{(g)} = \widetilde M(D_{+}(g)).
$$
Clearly, this defines a presheaf of abelian groups on the basis
of standard opens. If $M = S$, then $\widetilde S$ is a presheaf
of rings on the basis of standard opens. And for general $M$ we
see that $\widetilde M$ is a presheaf of $\widetilde S$-modules
on the basis of standard opens.
\medskip\noindent
Let us compute the stalk of $\widetilde M$ at a point
$x \in \text{Proj}(S)$.
Suppose that $x$ corresponds to the homogeneous prime
ideal $\mathfrak p \subset S$.
By definition of the stalk we see that
$$
\widetilde M_x
=
\colim_{f\in S_d, d > 0, f\not\in \mathfrak p} M_{(f)}
$$
Here the set $\{f \in S_d, d > 0, f \not \in \mathfrak p\}$ is preordered by
the rule $f \geq f' \Leftrightarrow D_{+}(f) \subset D_{+}(f')$.
If $f_1, f_2 \in S \setminus \mathfrak p$ are homogeneous of positive
degree, then we have
$f_1f_2 \geq f_1$ in this ordering. In
Algebra, Section \ref{algebra-section-proj}
we defined $M_{(\mathfrak p)}$ as the module whose elements are fractions
$x/f$ with $x, f$ homogeneous, $\deg(x) = \deg(f)$, $f \not \in \mathfrak p$.
Since $\mathfrak p \in \text{Proj}(S)$ there exists at least
one $f_0 \in S$ homogeneous of positive degree with $f_0 \not\in \mathfrak p$.
Hence $x/f = f_0x/ff_0$ and we see that we may always assume
the denominator of an element in $M_{(\mathfrak p)}$ has positive degree.
From these remarks it follows easily that
$$
\widetilde M_x = M_{(\mathfrak p)}.
$$
\medskip\noindent
Next, we check the sheaf condition for the standard open coverings.
If $D_{+}(f) = \bigcup_{i = 1}^n D_{+}(g_i)$, then the sheaf condition
for this covering is equivalent with the exactness of the
sequence
$$
0 \to M_{(f)} \to \bigoplus M_{(g_i)} \to \bigoplus M_{(g_ig_j)}.
$$
Note that $D_{+}(g_i) = D_{+}(fg_i)$, and hence we can rewrite this
sequence as the sequence
$$
0 \to M_{(f)} \to \bigoplus M_{(fg_i)} \to \bigoplus M_{(fg_ig_j)}.
$$
By Lemma \ref{lemma-standard-open} we see that
$g_1^{\deg(f)}/f^{\deg(g_1)}, \ldots, g_n^{\deg(f)}/f^{\deg(g_n)}$
generate the unit ideal in $S_{(f)}$, and that the modules
$M_{(fg_i)}$, $M_{(fg_ig_j)}$ are the principal localizations
of the $S_{(f)}$-module $M_{(f)}$ at these elements and their products.
Thus we may apply Algebra, Lemma \ref{algebra-lemma-cover-module}
to the module $M_{(f)}$ over $S_{(f)}$ and the elements
$g_1^{\deg(f)}/f^{\deg(g_1)}, \ldots, g_n^{\deg(f)}/f^{\deg(g_n)}$.
We conclude that the sequence is exact. By the remarks
made above, we see that $\widetilde M$ is a sheaf
on the basis of standard opens.
\medskip\noindent
Thus we conclude from the material in
Sheaves, Section \ref{sheaves-section-bases}
that there exists a
unique sheaf of rings $\mathcal{O}_{\text{Proj}(S)}$
which agrees with $\widetilde S$ on the standard opens.
Note that by our computation of stalks above and
Algebra, Lemma \ref{algebra-lemma-proj-prime} the
stalks of this sheaf of rings are all local rings.
\medskip\noindent
Similarly, for any graded $S$-module $M$ there exists
a unique sheaf of $\mathcal{O}_{\text{Proj}(S)}$-modules
$\mathcal{F}$ which agrees with $\widetilde M$ on the
standard opens, see
Sheaves, Lemma \ref{sheaves-lemma-extend-off-basis-module}.
\begin{definition}
\label{definition-structure-sheaf}
Let $S$ be a graded ring.
\begin{enumerate}
\item The {\it structure sheaf $\mathcal{O}_{\text{Proj}(S)}$ of the
homogeneous spectrum of $S$} is the unique sheaf of rings
$\mathcal{O}_{\text{Proj}(S)}$
which agrees with $\widetilde S$ on the basis of standard opens.
\item The locally ringed space
$(\text{Proj}(S), \mathcal{O}_{\text{Proj}(S)})$ is called
the {\it homogeneous spectrum} of $S$ and denoted $\text{Proj}(S)$.
\item The sheaf of $\mathcal{O}_{\text{Proj}(S)}$-modules
extending $\widetilde M$ to all opens of $\text{Proj}(S)$
is called the sheaf of $\mathcal{O}_{\text{Proj}(S)}$-modules
associated to $M$. This sheaf is denoted $\widetilde M$ as
well.
\end{enumerate}
\end{definition}
\noindent
We summarize the results obtained so far.
\begin{lemma}
\label{lemma-proj-sheaves}
Let $S$ be a graded ring. Let $M$ be a graded $S$-module.
Let $\widetilde M$ be the sheaf of $\mathcal{O}_{\text{Proj}(S)}$-modules
associated to $M$.
\begin{enumerate}
\item For every $f \in S$ homogeneous of positive degree we have
$$
\Gamma(D_{+}(f), \mathcal{O}_{\text{Proj}(S)}) = S_{(f)}.
$$
\item For every $f\in S$ homogeneous of positive degree
we have $\Gamma(D_{+}(f), \widetilde M) = M_{(f)}$
as an $S_{(f)}$-module.
\item Whenever $D_{+}(g) \subset D_{+}(f)$ the restriction mappings
on $\mathcal{O}_{\text{Proj}(S)}$ and $\widetilde M$
are the maps
$S_{(f)} \to S_{(g)}$ and $M_{(f)} \to M_{(g)}$ from Lemma
\ref{lemma-standard-open}.
\item Let $\mathfrak p$ be a homogeneous prime of $S$ not containing
$S_{+}$, and let $x \in \text{Proj}(S)$
be the corresponding point. We have
$\mathcal{O}_{\text{Proj}(S), x} = S_{(\mathfrak p)}$.
\item Let $\mathfrak p$ be a homogeneous prime of $S$ not containing
$S_{+}$, and let $x \in \text{Proj}(S)$
be the corresponding point. We have $\mathcal{F}_x = M_{(\mathfrak p)}$
as an $S_{(\mathfrak p)}$-module.
\item
\label{item-map}
There is a canonical ring map
$
S_0 \longrightarrow \Gamma(\text{Proj}(S), \widetilde S)
$
and a canonical $S_0$-module map
$
M_0 \longrightarrow \Gamma(\text{Proj}(S), \widetilde M)
$
compatible with the descriptions of sections over standard opens
and stalks above.
\end{enumerate}
Moreover, all these identifications are functorial in the graded
$S$-module $M$. In particular, the functor $M \mapsto \widetilde M$
is an exact functor from the category of graded $S$-modules
to the category of $\mathcal{O}_{\text{Proj}(S)}$-modules.
\end{lemma}
\begin{proof}
Assertions (1) - (5) are clear from the discussion above.
We see (6) since there are canonical maps $M_0 \to M_{(f)}$,
$x \mapsto x/1$ compatible with the restriction maps
described in (3). The exactness of the functor $M \mapsto \widetilde M$
follows from the fact that the functor $M \mapsto M_{(\mathfrak p)}$
is exact (see Algebra, Lemma \ref{algebra-lemma-proj-prime})
and the fact that exactness of short exact sequences
may be checked on stalks, see
Modules, Lemma \ref{modules-lemma-abelian}.
\end{proof}
\begin{remark}
\label{remark-global-sections-not-isomorphism}
The map from $M_0$ to the global sections of $\widetilde M$
is generally far from being an isomorphism. A trivial
example is to take $S = k[x, y, z]$ with $1 = \deg(x) = \deg(y) = \deg(z)$
(or any number of variables) and to take $M = S/(x^{100}, y^{100}, z^{100})$.
It is easy to see that $\widetilde M = 0$, but $M_0 = k$.
\end{remark}
\begin{lemma}
\label{lemma-standard-open-proj}
Let $S$ be a graded ring. Let $f \in S$ be homogeneous of positive degree.
Suppose that $D(g) \subset \Spec(S_{(f)})$ is a standard open.
Then there exists an $h \in S$ homogeneous of positive degree such that
$D(g)$ corresponds to $D_{+}(h) \subset D_{+}(f)$ via the homeomorphism
of Algebra, Lemma \ref{algebra-lemma-topology-proj}. In fact we can
take $h$ such that $g = h/f^n$ for some $n$.
\end{lemma}
\begin{proof}
Write $g = h/f^n$ for some $h$ homogeneous of positive degree
and some $n \geq 1$. If $D_{+}(h)$ is not contained in
$D_{+}(f)$ then we replace $h$ by $hf$ and $n$ by $n + 1$.
Then $h$ has the required shape and $D_{+}(h) \subset D_{+}(f)$
corresponds to $D(g) \subset \Spec(S_{(f)})$.
\end{proof}
\begin{lemma}
\label{lemma-proj-scheme}
Let $S$ be a graded ring.
The locally ringed space $\text{Proj}(S)$ is a scheme.
The standard opens $D_{+}(f)$ are affine opens.
For any graded $S$-module $M$ the sheaf
$\widetilde M$ is a quasi-coherent sheaf of
$\mathcal{O}_{\text{Proj}(S)}$-modules.
\end{lemma}
\begin{proof}
Consider a standard open $D_{+}(f) \subset \text{Proj}(S)$.
By Lemmas \ref{lemma-standard-open} and \ref{lemma-proj-sheaves}
we have $\Gamma(D_{+}(f), \mathcal{O}_{\text{Proj}(S)}) = S_{(f)}$, and
we have a homeomorphism $\varphi : D_{+}(f) \to \Spec(S_{(f)})$.
For any standard open $D(g) \subset \Spec(S_{(f)})$ we may
pick an $h \in S_{+}$ as in Lemma \ref{lemma-standard-open-proj}.
Then $\varphi^{-1}(D(g)) = D_{+}(h)$, and by
Lemmas \ref{lemma-proj-sheaves} and \ref{lemma-standard-open} we see
$$
\Gamma(D_{+}(h), \mathcal{O}_{\text{Proj}(S)})
=
S_{(h)}
=
(S_{(f)})_{h^{\deg(f)}/f^{\deg(h)}}
=
(S_{(f)})_g
=
\Gamma(D(g), \mathcal{O}_{\Spec(S_{(f)})}).
$$
Thus the restriction of $\mathcal{O}_{\text{Proj}(S)}$ to
$D_{+}(f)$ corresponds via the homeomorphism $\varphi$
exactly to the sheaf $\mathcal{O}_{\Spec(S_{(f)})}$
as defined in Schemes, Section \ref{schemes-section-affine-schemes}.
We conclude that $D_{+}(f)$ is an affine scheme isomorphic to
$\Spec(S_{(f)})$ via $\varphi$ and
hence that $\text{Proj}(S)$ is a scheme.
\medskip\noindent
In exactly the same way we show that $\widetilde M$ is a
quasi-coherent sheaf of $\mathcal{O}_{\text{Proj}(S)}$-modules.
Namely, the argument above will show that
$$
\widetilde M|_{D_{+}(f)} \cong \varphi^*\left(\widetilde{M_{(f)}}\right)
$$
which shows that $\widetilde M$ is quasi-coherent.
\end{proof}
\begin{lemma}
\label{lemma-proj-separated}
Let $S$ be a graded ring.
The scheme $\text{Proj}(S)$ is separated.
\end{lemma}
\begin{proof}
We have to show that the canonical morphism
$\text{Proj}(S) \to \Spec(\mathbf{Z})$
is separated.
We will use Schemes, Lemma \ref{schemes-lemma-characterize-separated}.
Thus it suffices to show given any pair of standard opens
$D_{+}(f)$ and $D_{+}(g)$ that $D_{+}(f) \cap D_{+}(g) = D_{+}(fg)$
is affine (clear) and that the ring map
$$
S_{(f)} \otimes_{\mathbf{Z}} S_{(g)} \longrightarrow S_{(fg)}
$$
is surjective. Any element $s$ in $S_{(fg)}$ is of
the form $s = h/(f^ng^m)$ with $h \in S$ homogeneous of degree
$n\deg(f) + m\deg(g)$. We may multiply $h$ by a suitable
monomial $f^ig^j$ and assume that $n = n' \deg(g)$, and
$m = m' \deg(f)$. Then we can rewrite $s$ as
$s = h/f^{(n' + m')\deg(g)} \cdot f^{m'\deg(g)}/g^{m'\deg(f)}$.
So $s$ is indeed in the image of the displayed arrow.
\end{proof}
\begin{lemma}
\label{lemma-proj-quasi-compact}
Let $S$ be a graded ring.
The scheme $\text{Proj}(S)$ is quasi-compact if and only
if there exist finitely many homogeneous elements
$f_1, \ldots, f_n \in S_{+}$ such that
$S_{+} \subset \sqrt{(f_1, \ldots, f_n)}$. In this case
$\text{Proj}(S) = D_+(f_1) \cup \ldots \cup D_+(f_n)$.
\end{lemma}
\begin{proof}
Given such a collection of elements the standard affine opens
$D_{+}(f_i)$ cover $\text{Proj}(S)$ by
Algebra, Lemma \ref{algebra-lemma-topology-proj}.
Conversely, if $\text{Proj}(S)$ is quasi-compact, then we
may cover it by finitely many standard opens
$D_{+}(f_i)$, $i = 1, \ldots, n$ and we see that
$S_{+} \subset \sqrt{(f_1, \ldots, f_n)}$ by the
lemma referenced above.
\end{proof}
\begin{lemma}
\label{lemma-structure-morphism-proj}
Let $S$ be a graded ring. The scheme $\text{Proj}(S)$ has a canonical morphism
towards the affine scheme $\Spec(S_0)$, agreeing with the map on
topological spaces coming from
Algebra, Definition \ref{algebra-definition-proj}.
\end{lemma}
\begin{proof}
We saw above that our construction of $\widetilde S$,
resp.\ $\widetilde M$ gives a sheaf of $S_0$-algebras, resp.\ $S_0$-modules.
Hence we get a morphism by
Schemes, Lemma \ref{schemes-lemma-morphism-into-affine}.
This morphism, when restricted to $D_{+}(f)$ comes from the
canonical ring map $S_0 \to S_{(f)}$. The maps
$S \to S_f$, $S_{(f)} \to S_f$ are $S_0$-algebra maps, see
Lemma \ref{lemma-standard-open}.
Hence if the homogeneous prime $\mathfrak p \subset S$
corresponds to the $\mathbf{Z}$-graded prime $\mathfrak p' \subset S_f$
and the (usual) prime $\mathfrak p'' \subset S_{(f)}$, then
each of these has the same inverse image in $S_0$.
\end{proof}
\begin{lemma}
\label{lemma-proj-valuative-criterion}
Let $S$ be a graded ring. If $S$ is finitely generated as
an algebra over $S_0$, then
the morphism $\text{Proj}(S) \to \Spec(S_0)$ satisfies
the existence and uniqueness parts of the valuative criterion,
see Schemes, Definition \ref{schemes-definition-valuative-criterion}.
\end{lemma}
\begin{proof}
The uniqueness part follows from the fact that $\text{Proj}(S)$ is
separated (Lemma \ref{lemma-proj-separated} and
Schemes, Lemma \ref{schemes-lemma-separated-implies-valuative}).
Choose $x_i \in S_{+}$ homogeneous, $i = 1, \ldots, n$
which generate $S$ over $S_0$. Let $d_i = \deg(x_i)$ and
set $d = \text{lcm}\{d_i\}$. Suppose we are given a diagram
$$
\xymatrix{
\Spec(K) \ar[r] \ar[d] & \text{Proj}(S) \ar[d] \\
\Spec(A) \ar[r] & \Spec(S_0)
}
$$
as in Schemes, Definition \ref{schemes-definition-valuative-criterion}.
Denote $v : K^* \to \Gamma$ the valuation of $A$, see
Algebra, Definition \ref{algebra-definition-value-group}.
We may choose an $f \in S_{+}$ homogeneous such that
$\Spec(K)$ maps into $D_{+}(f)$. Then we get a commutative
diagram of ring maps
$$
\xymatrix{
K & S_{(f)} \ar[l]^{\varphi} \\
A \ar[u] & S_0 \ar[l] \ar[u]
}
$$
After renumbering we may assume that $\varphi(x_i^{\deg(f)}/f^{d_i})$
is nonzero for $i = 1, \ldots, r$ and zero for $i = r + 1, \ldots, n$.
Since the open sets $D_{+}(x_i)$ cover $\text{Proj}(S)$ we see that $r \geq 1$.
Let $i_0 \in \{1, \ldots, r\}$ be an index minimizing
$\gamma_i = (d/d_i)v(\varphi(x_i^{\deg(f)}/f^{d_i}))$ in $\Gamma$.
For convenience set $x_0 = x_{i_0}$ and $d_0 = d_{i_0}$.
The ring map $\varphi$ factors though a map $\varphi' : S_{(fx_0)} \to K$
which gives a ring map $S_{(x_0)} \to S_{(fx_0)} \to K$.
The algebra $S_{(x_0)}$ is generated over $S_0$ by the elements
$x_1^{e_1} \ldots x_n^{e_n}/x_0^{e_0}$, where $\sum e_i d_i = e_0 d_0$.
If $e_i > 0$ for some $i > r$, then
$\varphi'(x_1^{e_1} \ldots x_n^{e_n}/x_0^{e_0}) = 0$.
If $e_i = 0$ for $i > r$, then we have
\begin{align*}
\deg(f) v(\varphi'(x_1^{e_1} \ldots x_r^{e_r}/x_0^{e_0}))
& =
v(\varphi'(x_1^{e_1 \deg(f)} \ldots x_r^{e_r \deg(f)}/x_0^{e_0 \deg(f)})) \\
& =
\sum e_i v(\varphi'(x_i^{\deg(f)}/f^{d_i}))
- e_0 v(\varphi'(x_0^{\deg(f)}/f^{d_0})) \\
& =
\sum e_i d_i \gamma_i - e_0 d_0 \gamma_0 \\
& \geq
\sum e_i d_i \gamma_0 - e_0 d_0 \gamma_0 = 0
\end{align*}
because $\gamma_0$ is minimal among the $\gamma_i$.
This implies that $S_{(x_0)}$ maps into $A$ via $\varphi'$.
The corresponding morphism of schemes
$\Spec(A) \to \Spec(S_{(x_0)}) = D_{+}(x_0)
\subset \text{Proj}(S)$ provides the morphism fitting into
the first commutative diagram of this proof.
\end{proof}
\noindent
We saw in the proof of Lemma \ref{lemma-proj-valuative-criterion}
that, under the hypotheses of that lemma, the morphism
$\text{Proj}(S) \to \Spec(S_0)$ is quasi-compact as well. Hence (by
Schemes, Proposition \ref{schemes-proposition-characterize-universally-closed})
we see that $\text{Proj}(S) \to \Spec(S_0)$ is universally closed in
the situation of the lemma. We give several examples showing these results
do not hold without some assumption on the graded ring $S$.
\begin{example}
\label{example-not-existence-valuative-big-proj}
Let $\mathbf{C}[X_1, X_2, X_3, \ldots]$ be the graded $\mathbf{C}$-algebra
with each $X_i$ in degree $1$. Consider the ring map
$$
\mathbf{C}[X_1, X_2, X_3, \ldots]
\longrightarrow
\mathbf{C}[t^\alpha ; \alpha \in \mathbf{Q}_{\geq 0}]
$$
which maps $X_i$ to $t^{1/i}$. The right hand side becomes a valuation ring
$A$ upon localization at the ideal $\mathfrak m = (t^\alpha ; \alpha > 0)$.
Let $K$ be the fraction field of $A$. The above gives a morphism
$\Spec(K) \to \text{Proj}(\mathbf{C}[X_1, X_2, X_3, \ldots])$ which does not
extend to a morphism defined on all of $\Spec(A)$.
The reason is that the image of $\Spec(A)$ would be contained
in one of the $D_{+}(X_i)$ but then $X_{i + 1}/X_i$ would map
to an element of $A$ which it doesn't since it maps to
$t^{1/(i + 1) - 1/i}$.
\end{example}
\begin{example}
\label{example-not-existence-valuative-small-proj}
Let $R = \mathbf{C}[t]$ and
$$
S = R[X_1, X_2, X_3, \ldots]/(X_i^2 - tX_{i + 1}).
$$
The grading is such that $R = S_0$ and $\deg(X_i) = 2^{i - 1}$.
Note that if $\mathfrak p \in \text{Proj}(S)$ then
$t \not \in \mathfrak p$ (otherwise $\mathfrak p$ has to contain
all of the $X_i$ which is not allowed for an element of
the homogeneous spectrum). Thus we see that
$D_{+}(X_i) = D_{+}(X_{i + 1})$ for all $i$. Hence
$\text{Proj}(S)$ is quasi-compact; in fact it is affine
since it is equal to $D_{+}(X_1)$. It is easy to see that
the image of $\text{Proj}(S) \to \Spec(R)$ is
$D(t)$. Hence the morphism $\text{Proj}(S) \to \Spec(R)$
is not closed. Thus the valuative criterion cannot apply because
it would imply that the morphism is closed (see
Schemes, Proposition \ref{schemes-proposition-characterize-universally-closed}
).
\end{example}
\begin{example}
\label{example-trivial-proj}
Let $A$ be a ring.
Let $S = A[T]$ as a graded $A$ algebra with $T$ in degree $1$.
Then the canonical morphism $\text{Proj}(S) \to \Spec(A)$
(see Lemma \ref{lemma-structure-morphism-proj})
is an isomorphism.
\end{example}
\begin{example}
\label{example-open-subset-proj}
Let $X = \Spec(A)$ be an affine scheme, and let $U \subset X$
be an open subscheme. Grade $A[T]$ by setting $\deg T = 1$. Define $S$
to be the subring of $A[T]$ generated by $A$ and all $fT^i$, where $i \ge 0$
and where $f \in A$ is such that $D(f) \subset U$. We claim that $S$
is a graded ring with $S_0 = A$ such that $\text{Proj}(S) \cong U$,
and this isomorphism identifies the canonical morphism
$\text{Proj}(S) \to \Spec(A)$ of Lemma \ref{lemma-structure-morphism-proj}
with the inclusion $U \subset X$.
\medskip\noindent
Suppose $\mathfrak p \in \text{Proj}(S)$ is such that every $fT \in S_1$
is in $\mathfrak p$. Then every generator $fT^i$ with $i \ge 1$
is in $\mathfrak p$ because $(fT^i)^2 = (fT)(fT^{2i-1}) \in \mathfrak p$
and $\mathfrak p$ is radical. But then $\mathfrak p \supset S_+$, which
is impossible. Consequently $\text{Proj}(S)$ is covered by the standard
open affine subsets $\{D_+(fT)\}_{fT \in S_1}$.
\medskip\noindent
Observe that, if $fT \in S_1$, then the inclusion $S \subset A[T]$
induces a graded isomorphism of $S[(fT)^{-1}]$ with $A[T, T^{-1}, f^{-1}]$.
Hence the standard open subset $D_+(fT) \cong \Spec(S_{(fT)})$
is isomorphic to $\Spec(A[T, T^{-1}, f^{-1}]_0) = \Spec(A[f^{-1}])$.
It is clear that this isomorphism is a restriction of the canonical morphism
$\text{Proj}(S) \to \Spec(A)$. If in addition $gT \in S_1$, then
$S[(fT)^{-1}, (gT)^{-1}] \cong A[T, T^{-1}, f^{-1}, g^{-1}]$
as graded rings, so $D_+(fT) \cap D_+(gT) \cong \Spec(A[f^{-1}, g^{-1}])$.
Therefore $\text{Proj}(S)$ is the union of open subschemes $D_+(fT)$
which are isomorphic to the open subschemes $D(f) \subset X$
under the canonical morphism, and these open subschemes intersect
in $\text{Proj}(S)$ in the same way they do in $X$.
We conclude that the canonical morphism is an isomorphism of
$\text{Proj}(S)$ with the union of all $D(f) \subset U$, which is $U$.
\end{example}
\section{Quasi-coherent sheaves on Proj}
\label{section-quasi-coherent-proj}
\noindent
Let $S$ be a graded ring. Let $M$ be a graded $S$-module.
We saw in Lemma \ref{lemma-proj-sheaves} how to construct a quasi-coherent
sheaf of modules $\widetilde{M}$ on $\text{Proj}(S)$ and a map
\begin{equation}
\label{equation-map-global-sections}
M_0 \longrightarrow \Gamma(\text{Proj}(S), \widetilde{M})
\end{equation}
of the degree $0$ part of $M$ to the global sections of $\widetilde{M}$.
The degree $0$ part of the $n$th twist $M(n)$ of the graded module $M$ (see
Algebra, Section \ref{algebra-section-graded})
is equal to $M_n$. Hence we can get maps
\begin{equation}
\label{equation-map-global-sections-degree-n}
M_n \longrightarrow \Gamma(\text{Proj}(S), \widetilde{M(n)}).
\end{equation}
We would like to be able to perform this operation for any quasi-coherent
sheaf $\mathcal{F}$ on $\text{Proj}(S)$. We will do this by tensoring
with the $n$th twist of the structure sheaf, see
Definition \ref{definition-twist}. In order to relate the two notions
we will use the following lemma.
\begin{lemma}
\label{lemma-widetilde-tensor}
Let $S$ be a graded ring.
Let $(X, \mathcal{O}_X) = (\text{Proj}(S), \mathcal{O}_{\text{Proj}(S)})$
be the scheme of Lemma \ref{lemma-proj-scheme}.
Let $f \in S_{+}$ be homogeneous. Let $x \in X$ be a point
corresponding to the homogeneous prime $\mathfrak p \subset S$.
Let $M$, $N$ be graded $S$-modules.
There is a canonical map of $\mathcal{O}_{\text{Proj}(S)}$-modules
$$
\widetilde M \otimes_{\mathcal{O}_X} \widetilde N
\longrightarrow
\widetilde{M \otimes_S N}
$$
which induces the canonical map
$
M_{(f)} \otimes_{S_{(f)}} N_{(f)}
\to
(M \otimes_S N)_{(f)}
$
on sections over $D_{+}(f)$ and the canonical map
$
M_{(\mathfrak p)} \otimes_{S_{(\mathfrak p)}} N_{(\mathfrak p)}
\to
(M \otimes_S N)_{(\mathfrak p)}
$
on stalks at $x$. Moreover, the following diagram
$$
\xymatrix{
M_0 \otimes_{S_0} N_0 \ar[r] \ar[d] &
(M \otimes_S N)_0 \ar[d] \\
\Gamma(X, \widetilde M \otimes_{\mathcal{O}_X} \widetilde N) \ar[r] &
\Gamma(X, \widetilde{M \otimes_S N})
}
$$
is commutative where the vertical maps are given by
(\ref{equation-map-global-sections}).
\end{lemma}
\begin{proof}
To construct a morphism as displayed is the same as constructing
a $\mathcal{O}_X$-bilinear map
$$
\widetilde M \times \widetilde N
\longrightarrow
\widetilde{M \otimes_S N}
$$
see Modules, Section \ref{modules-section-tensor-product}.
It suffices to define this on sections over the opens $D_{+}(f)$
compatible with restriction mappings. On $D_{+}(f)$ we use the
$S_{(f)}$-bilinear map
$M_{(f)} \times N_{(f)} \to (M \otimes_S N)_{(f)}$,
$(x/f^n, y/f^m) \mapsto (x \otimes y)/f^{n + m}$. Details omitted.
\end{proof}
\begin{remark}
\label{remark-not-isomorphism}
In general the map constructed in Lemma \ref{lemma-widetilde-tensor}
above is not an isomorphism. Here is an example. Let $k$
be a field. Let $S = k[x, y, z]$ with $k$ in degree $0$ and
$\deg(x) = 1$, $\deg(y) = 2$, $\deg(z) = 3$.
Let $M = S(1)$ and $N = S(2)$, see
Algebra, Section \ref{algebra-section-graded}
for notation. Then $M \otimes_S N = S(3)$.
Note that
\begin{eqnarray*}
S_z
& = &
k[x, y, z, 1/z] \\
S_{(z)}
& = &
k[x^3/z, xy/z, y^3/z^2]
\cong
k[u, v, w]/(uw - v^3) \\
M_{(z)} & = & S_{(z)} \cdot x + S_{(z)} \cdot y^2/z \subset S_z \\
N_{(z)} & = & S_{(z)} \cdot y + S_{(z)} \cdot x^2 \subset S_z \\
S(3)_{(z)} & = & S_{(z)} \cdot z \subset S_z
\end{eqnarray*}
Consider the maximal ideal $\mathfrak m = (u, v, w) \subset S_{(z)}$.
It is not hard to see that both $M_{(z)}/\mathfrak mM_{(z)}$
and $N_{(z)}/\mathfrak mN_{(z)}$ have dimension $2$ over
$\kappa(\mathfrak m)$. But
$S(3)_{(z)}/\mathfrak mS(3)_{(z)}$ has dimension $1$.
Thus the map $M_{(z)} \otimes N_{(z)} \to S(3)_{(z)}$ is not
an isomorphism.
\end{remark}
\section{Invertible sheaves on Proj}
\label{section-invertible-on-proj}
\noindent
Recall from Algebra, Section \ref{algebra-section-graded}
the construction of the twisted module $M(n)$ associated
to a graded module over a graded ring.
\begin{definition}
\label{definition-twist}
Let $S$ be a graded ring. Let $X = \text{Proj}(S)$.
\begin{enumerate}
\item We define $\mathcal{O}_X(n) = \widetilde{S(n)}$.
This is called the $n$th
{\it twist of the structure sheaf of $\text{Proj}(S)$}.
\item For any sheaf of $\mathcal{O}_X$-modules $\mathcal{F}$ we set
$\mathcal{F}(n) = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(n)$.
\end{enumerate}
\end{definition}
\noindent
We are going to use Lemma \ref{lemma-widetilde-tensor}
to construct some canonical maps.
Since $S(n) \otimes_S S(m) = S(n + m)$ we see that there
are canonical maps
\begin{equation}
\label{equation-multiply}
\mathcal{O}_X(n) \otimes_{\mathcal{O}_X} \mathcal{O}_X(m)
\longrightarrow
\mathcal{O}_X(n + m).
\end{equation}
These maps are not isomorphisms in general, see the example in
Remark \ref{remark-not-isomorphism}. The same example shows
that $\mathcal{O}_X(n)$ is {\it not} an invertible sheaf on $X$ in
general. Tensoring with an arbitrary $\mathcal{O}_X$-module $\mathcal{F}$
we get maps
\begin{equation}
\label{equation-multiply-on-sheaf}
\mathcal{O}_X(n) \otimes_{\mathcal{O}_X} \mathcal{F}(m)
\longrightarrow
\mathcal{F}(n + m).
\end{equation}
The maps (\ref{equation-multiply}) on global sections give a map of graded
rings
\begin{equation}
\label{equation-global-sections}
S \longrightarrow \bigoplus\nolimits_{n \geq 0} \Gamma(X, \mathcal{O}_X(n)).
\end{equation}
And for an arbitrary $\mathcal{O}_X$-module $\mathcal{F}$ the maps
(\ref{equation-multiply-on-sheaf}) give a graded module structure
\begin{equation}
\label{equation-global-sections-module}
\bigoplus\nolimits_{n \geq 0} \Gamma(X, \mathcal{O}_X(n))
\times
\bigoplus\nolimits_{m \in \mathbf{Z}} \Gamma(X, \mathcal{F}(m))
\longrightarrow
\bigoplus\nolimits_{m \in \mathbf{Z}} \Gamma(X, \mathcal{F}(m))
\end{equation}
and via (\ref{equation-global-sections}) also a $S$-module structure.
More generally, given any graded $S$-module
$M$ we have $M(n) = M \otimes_S S(n)$. Hence we get maps
\begin{equation}
\label{equation-multiply-more-generally}
\widetilde M(n)
=
\widetilde M
\otimes_{\mathcal{O}_X}
\mathcal{O}_X(n)
\longrightarrow
\widetilde{M(n)}.
\end{equation}
On global sections (\ref{equation-map-global-sections-degree-n})
defines a map of graded $S$-modules
\begin{equation}
\label{equation-global-sections-more-generally}
M \longrightarrow
\bigoplus\nolimits_{n \in \mathbf{Z}} \Gamma(X, \widetilde{M(n)}).
\end{equation}
Here is an important fact which follows basically immediately from the
definitions.
\begin{lemma}
\label{lemma-when-invertible}
Let $S$ be a graded ring. Set $X = \text{Proj}(S)$.
Let $f \in S$ be homogeneous of degree $d > 0$.
The sheaves $\mathcal{O}_X(nd)|_{D_{+}(f)}$ are invertible,
and in fact trivial for all $n \in \mathbf{Z}$
(see Modules, Definition \ref{modules-definition-invertible}).
The maps (\ref{equation-multiply}) restricted to $D_{+}(f)$
$$
\mathcal{O}_X(nd)|_{D_{+}(f)} \otimes_{\mathcal{O}_{D_{+}(f)}}
\mathcal{O}_X(m)|_{D_{+}(f)}
\longrightarrow
\mathcal{O}_X(nd + m)|_{D_{+}(f)},
$$
the maps (\ref{equation-multiply-on-sheaf}) restricted to $D_+(f)$
$$
\mathcal{O}_X(nd)|_{D_{+}(f)} \otimes_{\mathcal{O}_{D_{+}(f)}}
\mathcal{F}(m)|_{D_{+}(f)}
\longrightarrow
\mathcal{F}(nd + m)|_{D_{+}(f)},
$$
and the maps (\ref{equation-multiply-more-generally})
restricted to $D_{+}(f)$
$$
\widetilde M(nd)|_{D_{+}(f)}
=
\widetilde M|_{D_{+}(f)}
\otimes_{\mathcal{O}_{D_{+}(f)}}
\mathcal{O}_X(nd)|_{D_{+}(f)}
\longrightarrow
\widetilde{M(nd)}|_{D_{+}(f)}
$$
are isomorphisms for all $n, m \in \mathbf{Z}$.
\end{lemma}
\begin{proof}
The (not graded) $S$-module maps $S \to S(nd)$, and $M \to M(nd)$, given by
$x \mapsto f^n x$ become isomorphisms after inverting $f$. The first shows that
$S_{(f)} \cong S(nd)_{(f)}$ which gives an isomorphism
$\mathcal{O}_{D_{+}(f)} \cong \mathcal{O}_X(nd)|_{D_{+}(f)}$.
The second shows that the map
$S(nd)_{(f)} \otimes_{S_{(f)}} M_{(f)} \to M(nd)_{(f)}$
is an isomorphism. The case of the map (\ref{equation-multiply-on-sheaf})
is a consequence of the case of the map (\ref{equation-multiply}).
\end{proof}
\begin{lemma}
\label{lemma-apply-modules}
Let $S$ be a graded ring. Let $M$ be a graded $S$-module.
Set $X = \text{Proj}(S)$. Assume $X$ is covered by the standard
opens $D_+(f)$ with $f \in S_1$, e.g., if $S$ is generated by $S_1$
over $S_0$. Then the sheaves $\mathcal{O}_X(n)$
are invertible and the maps
(\ref{equation-multiply}), (\ref{equation-multiply-on-sheaf}), and
(\ref{equation-multiply-more-generally}) are isomorphisms.
In particular, these maps induce isomorphisms
$$
\mathcal{O}_X(1)^{\otimes n} \cong
\mathcal{O}_X(n)
\quad
\text{and}
\quad
\widetilde{M} \otimes_{\mathcal{O}_X} \mathcal{O}_X(n) =
\widetilde{M}(n) \cong \widetilde{M(n)}
$$
Thus (\ref{equation-map-global-sections-degree-n}) becomes a map
\begin{equation}
\label{equation-map-global-sections-degree-n-simplified}
M_n \longrightarrow \Gamma(X, \widetilde{M}(n))
\end{equation}
and (\ref{equation-global-sections-more-generally}) becomes a map
\begin{equation}
\label{equation-global-sections-more-generally-simplified}
M \longrightarrow
\bigoplus\nolimits_{n \in \mathbf{Z}} \Gamma(X, \widetilde{M}(n)).
\end{equation}
\end{lemma}
\begin{proof}
Under the assumptions of the lemma $X$ is covered by the
open subsets $D_{+}(f)$ with $f \in S_1$ and the
lemma is a consequence of Lemma \ref{lemma-when-invertible} above.
\end{proof}
\begin{lemma}
\label{lemma-where-invertible}
Let $S$ be a graded ring. Set $X = \text{Proj}(S)$. Fix $d \geq 1$ an
integer. The following open subsets of $X$ are equal:
\begin{enumerate}
\item The largest open subset $W = W_d \subset X$ such that
each $\mathcal{O}_X(dn)|_W$ is invertible and all the
multiplication maps
$\mathcal{O}_X(nd)|_W \otimes_{\mathcal{O}_W} \mathcal{O}_X(md)|_W
\to \mathcal{O}_X(nd + md)|_W$
(see \ref{equation-multiply}) are isomorphisms.
\item The union of the open subsets $D_{+}(fg)$ with
$f, g \in S$ homogeneous and $\deg(f) = \deg(g) + d$.
\end{enumerate}
Moreover, all the maps
$\widetilde M(nd)|_W = \widetilde M|_W \otimes_{\mathcal{O}_W}
\mathcal{O}_X(nd)|_W \to \widetilde{M(nd)}|_W$
(see \ref{equation-multiply-more-generally}) are isomorphisms.
\end{lemma}
\begin{proof}
If $x \in D_{+}(fg)$ with $\deg(f) = \deg(g) + d$ then
on $D_{+}(fg)$ the sheaves $\mathcal{O}_X(dn)$
are generated by the element $(f/g)^n = f^{2n}/(fg)^n$. This implies $x$
is in the open subset $W$ defined in (1) by arguing as in the
proof of Lemma \ref{lemma-when-invertible}.
\medskip\noindent
Conversely, suppose that $\mathcal{O}_X(d)$ is free of rank 1
in an open neighbourhood $V$ of $x \in X$ and all the
multiplication maps
$\mathcal{O}_X(nd)|_V \otimes_{\mathcal{O}_V} \mathcal{O}_X(md)|_V
\to \mathcal{O}_X(nd + md)|_V$ are isomorphisms.
We may choose $h \in S_{+}$ homogeneous such that $D_{+}(h) \subset V$.
By the definition of the twists of the structure sheaf we conclude there
exists an element $s$ of $(S_h)_d$ such that $s^n$ is a basis of $(S_h)_{nd}$
as a module over $S_{(h)}$ for all $n \in \mathbf{Z}$.
We may write
$s = f/h^m$ for some $m \geq 1$ and $f \in S_{d + m \deg(h)}$.
Set $g = h^m$ so $s = f/g$. Note that $x \in D(g)$ by construction.
Note that $g^d \in (S_h)_{-d\deg(g)}$.
By assumption we can write this as a multiple of
$s^{\deg(g)} = f^{\deg(g)}/g^{\deg(g)}$, say
$g^d = a/g^e \cdot f^{\deg(g)}/g^{\deg(g)}$.
Then we conclude that $g^{d + e + \deg(g)} = a f^{\deg(g)}$
and hence also $x \in D_{+}(f)$. So $x$ is an element of the set defined
in (2).
\medskip\noindent
The existence of the generating section $s = f/g$ over
the affine open $D_{+}(fg)$ whose
powers freely generate the sheaves of modules
$\mathcal{O}_X(nd)$ easily implies that the multiplication maps
$\widetilde M(nd)|_W = \widetilde M|_W \otimes_{\mathcal{O}_W}
\mathcal{O}_X(nd)|_W \to \widetilde{M(nd)}|_W$
(see \ref{equation-multiply-more-generally})
are isomorphisms. Compare with the proof of Lemma \ref{lemma-when-invertible}.
\end{proof}
\noindent
Recall from Modules, Lemma \ref{modules-lemma-s-open}
that given an invertible sheaf $\mathcal{L}$ on a locally ringed
space $X$, and given a global section $s$ of $\mathcal{L}$
the set $X_s = \{x \in X \mid s \not \in \mathfrak m_x\mathcal{L}_x\}$
is open.
\begin{lemma}
\label{lemma-principal-open}
Let $S$ be a graded ring. Set $X = \text{Proj}(S)$. Fix $d \geq 1$ an
integer. Let $W = W_d \subset X$ be the open subscheme defined in
Lemma \ref{lemma-where-invertible}. Let $n \geq 1$ and $f \in S_{nd}$.
Denote $s \in \Gamma(W, \mathcal{O}_W(nd))$ the section which is
the image of $f$ via (\ref{equation-global-sections}) restricted to $W$. Then
$$
W_s = D_{+}(f) \cap W.
$$
\end{lemma}
\begin{proof}
Let $D_{+}(ab) \subset W$ be a standard affine open with
$a, b \in S$ homogeneous and $\deg(a) = \deg(b) + d$.
Note that $D_{+}(ab) \cap D_{+}(f) = D_{+}(abf)$.
On the other hand the restriction of $s$ to $D_{+}(ab)$
corresponds to the element $f/1 = b^nf/a^n (a/b)^n \in (S_{ab})_{nd}$.
We have seen in the proof of Lemma \ref{lemma-where-invertible} that
$(a/b)^n$ is a generator for $\mathcal{O}_W(nd)$ over $D_{+}(ab)$.
We conclude that $W_s \cap D_{+}(ab)$ is the principal open
associated to $b^nf/a^n \in \mathcal{O}_X(D_{+}(ab))$.
Thus the result of the lemma is clear.
\end{proof}
\noindent
The following lemma states the properties that we will later use to
characterize schemes with an ample invertible sheaf.
\begin{lemma}
\label{lemma-ample-on-proj}
Let $S$ be a graded ring.
Let $X = \text{Proj}(S)$.
Let $Y \subset X$ be a quasi-compact open subscheme.
Denote $\mathcal{O}_Y(n)$ the restriction of
$\mathcal{O}_X(n)$ to $Y$.
There exists an integer $d \geq 1$ such that
\begin{enumerate}
\item the subscheme $Y$ is contained in the open $W_d$ defined
in Lemma \ref{lemma-where-invertible},
\item the sheaf $\mathcal{O}_Y(dn)$ is invertible for all $n \in \mathbf{Z}$,
\item all the maps
$\mathcal{O}_Y(nd) \otimes_{\mathcal{O}_Y} \mathcal{O}_Y(m)
\longrightarrow
\mathcal{O}_Y(nd + m)$
of Equation (\ref{equation-multiply}) are isomorphisms,
\item all the maps
$\widetilde M(nd)|_Y = \widetilde M|_Y \otimes_{\mathcal{O}_Y}
\mathcal{O}_X(nd)|_Y \to \widetilde{M(nd)}|_Y$
(see \ref{equation-multiply-more-generally}) are isomorphisms,
\item given $f \in S_{nd}$ denote $s \in \Gamma(Y, \mathcal{O}_Y(nd))$
the image of $f$ via (\ref{equation-global-sections})
restricted to $Y$, then $D_{+}(f) \cap Y = Y_s$,
\item a basis for the topology on $Y$ is given
by the collection of opens $Y_s$, where $s \in \Gamma(Y, \mathcal{O}_Y(nd))$,
$n \geq 1$, and
\item a basis for the topology of $Y$ is given
by those opens $Y_s \subset Y$, for
$s \in \Gamma(Y, \mathcal{O}_Y(nd))$, $n \geq 1$ which are affine.
\end{enumerate}
\end{lemma}
\begin{proof}
Since $Y$ is quasi-compact there exist finitely many homogeneous
$f_i \in S_{+}$, $i = 1, \ldots, n$ such that the standard opens
$D_{+}(f_i)$ give an open covering of $Y$. Let $d_i = \deg(f_i)$ and set
$d = d_1 \ldots d_n$. Note that $D_{+}(f_i) = D_{+}(f_i^{d/d_i})$
and hence we see immediately that $Y \subset W_d$, by characterization
(2) in Lemma \ref{lemma-where-invertible} or
by (1) using Lemma \ref{lemma-when-invertible}.
Note that (1) implies (2), (3) and (4) by Lemma \ref{lemma-where-invertible}.
(Note that (3) is a special case of (4).)
Assertion (5) follows from Lemma \ref{lemma-principal-open}.
Assertions (6) and (7) follow because the open subsets $D_{+}(f)$
form a basis for the topology of $X$ and are affine.
\end{proof}
\begin{lemma}
\label{lemma-comparison-proj-quasi-coherent}
Let $S$ be a graded ring. Set $X = \text{Proj}(S)$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Set $M = \bigoplus_{n \in \mathbf{Z}} \Gamma(X, \mathcal{F}(n))$ as
a graded $S$-module, using
(\ref{equation-global-sections-module}) and (\ref{equation-global-sections}).
Then there is a canonical $\mathcal{O}_X$-module map
$$
\widetilde{M} \longrightarrow \mathcal{F}
$$
functorial in $\mathcal{F}$ such that the induced map
$M_0 \to \Gamma(X, \mathcal{F})$ is the identity.
\end{lemma}
\begin{proof}
Let $f \in S$ be homogeneous of degree $d > 0$. Recall that
$\widetilde{M}|_{D_{+}(f)}$ corresponds to the
$S_{(f)}$-module $M_{(f)}$ by Lemma \ref{lemma-proj-sheaves}.
Thus we can define a canonical map
$$
M_{(f)} \longrightarrow \Gamma(D_+(f), \mathcal{F}),\quad
m/f^n \longmapsto m|_{D_+(f)} \otimes f|_{D_+(f)}^{-n}
$$
which makes sense because $f|_{D_+(f)}$ is a trivializing
section of the invertible sheaf $\mathcal{O}_X(d)|_{D_+(f)}$, see
Lemma \ref{lemma-when-invertible} and its proof.
Since $\widetilde{M}$ is quasi-coherent, this leads to a canonical
map
$$
\widetilde{M}|_{D_+(f)} \longrightarrow \mathcal{F}|_{D_+(f)}
$$
via Schemes, Lemma \ref{schemes-lemma-compare-constructions}.
We obtain a global map if we prove that the displayed maps glue on overlaps.
Proof of this is omitted. We also omit the proof of the final statement.
\end{proof}
\section{Functoriality of Proj}
\label{section-functoriality-proj}
\noindent
A graded ring map $\psi : A \to B$ does not always give rise to a morphism of
associated projective homogeneous spectra. The reason is that
the inverse image $\psi^{-1}(\mathfrak q)$
of a homogeneous prime $\mathfrak q \subset B$ may
contain the irrelevant prime $A_{+}$ even if $\mathfrak q$ does not
contain $B_{+}$.
The correct result is stated as follows.
\begin{lemma}
\label{lemma-morphism-proj}
Let $A$, $B$ be two graded rings.
Set $X = \text{Proj}(A)$ and $Y = \text{Proj}(B)$.
Let $\psi : A \to B$ be a graded ring map.
Set
$$
U(\psi)
=
\bigcup\nolimits_{f \in A_{+}\ \text{homogeneous}} D_{+}(\psi(f))
\subset Y.
$$
Then there is a canonical morphism of schemes
$$
r_\psi :
U(\psi)
\longrightarrow
X
$$
and a map of $\mathbf{Z}$-graded $\mathcal{O}_{U(\psi)}$-algebras
$$
\theta = \theta_\psi :
r_\psi^*\left(
\bigoplus\nolimits_{d \in \mathbf{Z}} \mathcal{O}_X(d)
\right)
\longrightarrow
\bigoplus\nolimits_{d \in \mathbf{Z}} \mathcal{O}_{U(\psi)}(d).
$$
The triple $(U(\psi), r_\psi, \theta)$ is
characterized by the following properties:
\begin{enumerate}
\item For every $d \geq 0$ the diagram
$$
\xymatrix{
A_d \ar[d] \ar[rr]_{\psi} & &
B_d \ar[d] \\
\Gamma(X, \mathcal{O}_X(d)) \ar[r]^-\theta &
\Gamma(U(\psi), \mathcal{O}_Y(d)) &
\Gamma(Y, \mathcal{O}_Y(d)) \ar[l]
}
$$
is commutative.
\item For any $f \in A_{+}$ homogeneous
we have $r_\psi^{-1}(D_{+}(f)) = D_{+}(\psi(f))$ and
the restriction of $r_\psi$ to $D_{+}(\psi(f))$
corresponds to the ring map
$A_{(f)} \to B_{(\psi(f))}$ induced by $\psi$.
\end{enumerate}
\end{lemma}
\begin{proof}
Clearly condition (2) uniquely determines the morphism of schemes
and the open subset $U(\psi)$. Pick $f \in A_d$ with $d \geq 1$.
Note that
$\mathcal{O}_X(n)|_{D_{+}(f)}$ corresponds to the
$A_{(f)}$-module $(A_f)_n$ and that
$\mathcal{O}_Y(n)|_{D_{+}(\psi(f))}$ corresponds to the
$B_{(\psi(f))}$-module $(B_{\psi(f)})_n$. In other words $\theta$
when restricted to $D_{+}(\psi(f))$ corresponds to a map of
$\mathbf{Z}$-graded $B_{(\psi(f))}$-algebras
$$
A_f \otimes_{A_{(f)}} B_{(\psi(f))}
\longrightarrow
B_{\psi(f)}
$$
Condition (1) determines the images of all elements of $A$.
Since $f$ is an invertible element which is mapped to $\psi(f)$
we see that $1/f^m$ is mapped to $1/\psi(f)^m$. It easily follows
from this that $\theta$ is uniquely determined, namely it is
given by the rule
$$
a/f^m \otimes b/\psi(f)^e \longmapsto \psi(a)b/\psi(f)^{m + e}.
$$
To show existence we remark that the proof of uniqueness above gave
a well defined prescription for the morphism $r$ and the map $\theta$
when restricted to every standard open of the form
$D_{+}(\psi(f)) \subset U(\psi)$ into $D_{+}(f)$.
Call these $r_f$ and $\theta_f$.
Hence we only need to verify that if $D_{+}(f) \subset D_{+}(g)$
for some $f, g \in A_{+}$ homogeneous, then the restriction of
$r_g$ to $D_{+}(\psi(f))$ matches $r_f$. This is clear from the
formulas given for $r$ and $\theta$ above.
\end{proof}
\begin{lemma}
\label{lemma-morphism-proj-transitive}
Let $A$, $B$, and $C$ be graded rings.
Set $X = \text{Proj}(A)$, $Y = \text{Proj}(B)$ and $Z = \text{Proj}(C)$.
Let $\varphi : A \to B$, $\psi : B \to C$ be graded ring maps.
Then we have
$$
U(\psi \circ \varphi) = r_\varphi^{-1}(U(\psi))
\quad
\text{and}
\quad
r_{\psi \circ \varphi}
=
r_\varphi \circ r_\psi|_{U(\psi \circ \varphi)}.
$$
In addition we have
$$
\theta_\psi \circ r_\psi^*\theta_\varphi
=
\theta_{\psi \circ \varphi}
$$
with obvious notation.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-surjective-graded-rings-map-proj}
With hypotheses and notation as in Lemma \ref{lemma-morphism-proj} above.
Assume $A_d \to B_d$ is surjective for all $d \gg 0$. Then
\begin{enumerate}
\item $U(\psi) = Y$,
\item $r_\psi : Y \to X$ is a closed immersion, and
\item the maps $\theta : r_\psi^*\mathcal{O}_X(n) \to \mathcal{O}_Y(n)$
are surjective but not isomorphisms in general (even if $A \to B$ is
surjective).
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) follows from the definition of $U(\psi)$ and the fact that
$D_{+}(f) = D_{+}(f^n)$ for any $n > 0$. For $f \in A_{+}$ homogeneous
we see that $A_{(f)} \to B_{(\psi(f))}$ is surjective because
any element of $B_{(\psi(f))}$ can be represented by a fraction
$b/\psi(f)^n$ with $n$ arbitrarily large (which forces the degree of
$b \in B$ to be large). This proves (2).
The same argument shows the map
$$
A_f \to B_{\psi(f)}
$$
is surjective which proves the surjectivity of $\theta$.
For an example where this map is not an isomorphism
consider the graded ring $A = k[x, y]$ where $k$ is a field
and $\deg(x) = 1$, $\deg(y) = 2$. Set $I = (x)$, so that
$B = k[y]$. Note that $\mathcal{O}_Y(1) = 0$ in this case.
But it is easy to see that $r_\psi^*\mathcal{O}_X(1)$
is not zero. (There are less silly examples.)
\end{proof}
\begin{lemma}
\label{lemma-eventual-iso-graded-rings-map-proj}
With hypotheses and notation as in Lemma \ref{lemma-morphism-proj} above.
Assume $A_d \to B_d$ is an isomorphism for all $d \gg 0$. Then
\begin{enumerate}
\item $U(\psi) = Y$,
\item $r_\psi : Y \to X$ is an isomorphism, and
\item the maps $\theta : r_\psi^*\mathcal{O}_X(n) \to \mathcal{O}_Y(n)$
are isomorphisms.
\end{enumerate}
\end{lemma}
\begin{proof}
We have (1) by Lemma \ref{lemma-surjective-graded-rings-map-proj}.
Let $f \in A_{+}$ be homogeneous. The assumption on $\psi$ implies that
$A_f \to B_f$ is an isomorphism (details omitted). Thus it is clear that
$r_\psi$ and $\theta$ restrict to isomorphisms over $D_{+}(f)$.
The lemma follows.
\end{proof}
\begin{lemma}
\label{lemma-surjective-graded-rings-generated-degree-1-map-proj}
With hypotheses and notation as in Lemma \ref{lemma-morphism-proj} above.
Assume $A_d \to B_d$ is surjective for $d \gg 0$ and that $A$ is generated
by $A_1$ over $A_0$. Then
\begin{enumerate}
\item $U(\psi) = Y$,
\item $r_\psi : Y \to X$ is a closed immersion, and
\item the maps $\theta : r_\psi^*\mathcal{O}_X(n) \to \mathcal{O}_Y(n)$
are isomorphisms.
\end{enumerate}
\end{lemma}
\begin{proof}
By Lemmas \ref{lemma-eventual-iso-graded-rings-map-proj} and
\ref{lemma-morphism-proj-transitive}
we may replace $B$ by the image of $A \to B$
without changing $X$ or the sheaves $\mathcal{O}_X(n)$.
Thus we may assume that $A \to B$ is surjective. By
Lemma \ref{lemma-surjective-graded-rings-map-proj} we get (1) and (2)
and surjectivity in (3).
By Lemma \ref{lemma-apply-modules} we see that both
$\mathcal{O}_X(n)$ and $\mathcal{O}_Y(n)$
are invertible. Hence $\theta$ is an isomorphism.
\end{proof}
\begin{lemma}
\label{lemma-base-change-map-proj}
With hypotheses and notation as in Lemma \ref{lemma-morphism-proj} above.
Assume there exists a ring map $R \to A_0$ and a ring map
$R \to R'$ such that $B = R' \otimes_R A$. Then
\begin{enumerate}
\item $U(\psi) = Y$,
\item the diagram
$$
\xymatrix{
Y = \text{Proj}(B) \ar[r]_{r_\psi} \ar[d] &
\text{Proj}(A) = X \ar[d] \\
\Spec(R') \ar[r] &
\Spec(R)
}
$$
is a fibre product square, and
\item the maps $\theta : r_\psi^*\mathcal{O}_X(n) \to \mathcal{O}_Y(n)$
are isomorphisms.
\end{enumerate}
\end{lemma}
\begin{proof}
This follows immediately by looking at what happens over the standard
opens $D_{+}(f)$ for $f \in A_{+}$.
\end{proof}
\begin{lemma}
\label{lemma-localization-map-proj}
With hypotheses and notation as in Lemma \ref{lemma-morphism-proj} above.
Assume there exists a $g \in A_0$ such that $\psi$ induces an
isomorphism $A_g \to B$. Then
$U(\psi) = Y$, $r_\psi : Y \to X$ is an open immersion
which induces an isomorphism of $Y$ with the inverse image
of $D(g) \subset \Spec(A_0)$. Moreover the map $\theta$
is an isomorphism.
\end{lemma}
\begin{proof}
This is a special case of Lemma \ref{lemma-base-change-map-proj} above.
\end{proof}
\begin{lemma}
\label{lemma-d-uple}
Let $S$ be a graded ring. Let $d \geq 1$. Set $S' = S^{(d)}$ with notation
as in Algebra, Section \ref{algebra-section-graded}. Set
$X = \text{Proj}(S)$ and $X' = \text{Proj}(S')$. There is a canonical
isomorphism $i : X \to X'$ of schemes such that
\begin{enumerate}
\item for any graded $S$-module $M$ setting $M' = M^{(d)}$,
we have a canonical isomorphism $\widetilde{M} \to i^*\widetilde{M'}$,
\item we have canonical isomorphisms
$\mathcal{O}_{X}(nd) \to i^*\mathcal{O}_{X'}(n)$
\end{enumerate}
and these isomorphisms are compatible with the multiplication maps
of Lemma \ref{lemma-widetilde-tensor} and hence with the maps
(\ref{equation-multiply}),
(\ref{equation-multiply-on-sheaf}),
(\ref{equation-global-sections}),
(\ref{equation-global-sections-module}),
(\ref{equation-multiply-more-generally}), and
(\ref{equation-global-sections-more-generally}) (see proof for precise
statements.
\end{lemma}
\begin{proof}
The injective ring map $S' \to S$ (which is not a homomorphism of graded rings
due to our conventions), induces a map $j : \Spec(S) \to \Spec(S')$.
Given a graded prime ideal $\mathfrak p \subset S$ we see that
$\mathfrak p' = j(\mathfrak p) = S' \cap \mathfrak p$
is a graded prime ideal of $S'$.
Moreover, if $f \in S_+$ is homogeneous and $f \not \in \mathfrak p$, then
$f^d \in S'_+$ and $f^d \not \in \mathfrak p'$. Conversely, if
$\mathfrak p' \subset S'$ is a graded prime ideal not containing some
homogeneous element $f \in S'_+$, then
$\mathfrak p = \{g \in S \mid g^d \in \mathfrak p'\}$ is a
graded prime ideal of $S$ not containing $f$ whose image under $j$
is $\mathfrak p'$. To see that $\mathfrak p$ is an ideal, note
that if $g, h \in \mathfrak p$, then
$(g + h)^{2d} \in \mathfrak p'$ by the binomial formula
and hence $g + h \in \mathfrak p'$ as $\mathfrak p'$ is a prime.
In this way we see that $j$ induces a homeomorphism $i : X \to X'$.
Moreover, given $f \in S_+$ homogeneous, then we have
$S_{(f)} \cong S'_{(f^d)}$. Since these isomorphisms are compatible
with the restrictions mappings of
Lemma \ref{lemma-standard-open}, we see that there exists an
isomorphism $i^\sharp : i^{-1}\mathcal{O}_{X'} \to \mathcal{O}_X$ of
structure sheaves on $X$ and $X'$, hence $i$ is an isomorphism
of schemes.
\medskip\noindent
Let $M$ be a graded $S$-module. Given $f \in S_+$ homogeneous, we have
$M_{(f)} \cong M'_{(f^d)}$, hence in exactly the same manner as above
we obtain the isomorphism in (1). The isomorphisms in (2) are a special
case of (1) for $M = S(nd)$ which gives $M' = S'(n)$. Let $M$ and $N$
be graded $S$-modules. Then we have
$$
M' \otimes_{S'} N' =
(M \otimes_S N)^{(d)} =
(M \otimes_S N)'
$$
as can be verified directly from the definitions. Having said this
the compatibility with the multiplication maps of
Lemma \ref{lemma-widetilde-tensor} is the commutativity of the diagram
$$
\xymatrix{
\widetilde M \otimes_{\mathcal{O}_X} \widetilde N
\ar[d]_{(1) \otimes (1)} \ar[r] &
\widetilde{M \otimes_S N} \ar[d]^{(1)} \\
i^*(\widetilde{M'} \otimes_{\mathcal{O}_{X'}} \widetilde{N'}) \ar[r] &
i^*(\widetilde{M' \otimes_{S'} N'})
}
$$
This can be seen by looking at the construction of the maps
over the open $D_+(f) = D_+(f^d)$ where the top horizontal
arrow is given by the map
$M_{(f)} \times N_{(f)} \to (M \otimes_S N)_{(f)}$
and the lower horizontal arrow by the map
$M'_{(f^d)} \times N'_{(f^d)} \to (M' \otimes_{S'} N')_{(f^d)}$.
Since these maps agree via the identifications
$M_{(f)} = M'_{(f^d)}$, etc, we get the desired compatibility.
We omit the proof of the other compatibilities.
\end{proof}
\section{Morphisms into Proj}
\label{section-morphisms-proj}
\noindent
Let $S$ be a graded ring.
Let $X = \text{Proj}(S)$ be the homogeneous spectrum of $S$.
Let $d \geq 1$ be an integer.
Consider the open subscheme
\begin{equation}
\label{equation-Ud}
U_d = \bigcup\nolimits_{f \in S_d} D_{+}(f)
\quad\subset\quad
X = \text{Proj}(S)
\end{equation}
Note that $d | d' \Rightarrow U_d \subset U_{d'}$ and
$X = \bigcup_d U_d$. Neither $X$ nor $U_d$ need
be quasi-compact, see Algebra, Lemma \ref{algebra-lemma-topology-proj}.
Let us write $\mathcal{O}_{U_d}(n) = \mathcal{O}_X(n)|_{U_d}$.
By Lemma \ref{lemma-when-invertible}
we know that $\mathcal{O}_{U_d}(nd)$, $n \in \mathbf{Z}$
is an invertible $\mathcal{O}_{U_d}$-module and
that all the multiplication maps
$\mathcal{O}_{U_d}(nd) \otimes_{\mathcal{O}_{U_d}} \mathcal{O}_{U_d}(m)
\to \mathcal{O}_{U_d}(nd + m)$ of
(\ref{equation-multiply}) are isomorphisms. In particular we have
$\mathcal{O}_{U_d}(nd) \cong \mathcal{O}_{U_d}(d)^{\otimes n}$.
The graded ring map (\ref{equation-global-sections}) on global sections
combined with restriction to $U_d$ give a homomorphism of graded rings
\begin{equation}
\label{equation-psi-d}
\psi^d : S^{(d)} \longrightarrow \Gamma_*(U_d, \mathcal{O}_{U_d}(d)).
\end{equation}
For the notation $S^{(d)}$, see Algebra, Section \ref{algebra-section-graded}.
For the notation $\Gamma_*$ see
Modules, Definition \ref{modules-definition-gamma-star}.
Moreover, since $U_d$ is covered by the opens $D_{+}(f)$, $f \in S_d$
we see that $\mathcal{O}_{U_d}(d)$ is globally generated
by the sections in the image of
$\psi^d_1 : S^{(d)}_1 = S_d \to \Gamma(U_d, \mathcal{O}_{U_d}(d))$, see
Modules, Definition \ref{modules-definition-globally-generated}.
\medskip\noindent
Let $Y$ be a scheme, and let $\varphi : Y \to X$ be a morphism of schemes.
Assume the image $\varphi(Y)$ is contained in the open subscheme
$U_d$ of $X$.
By the discussion following
Modules, Definition \ref{modules-definition-gamma-star}
we obtain a homomorphism of graded rings
$$
\Gamma_*(U_d, \mathcal{O}_{U_d}(d))
\longrightarrow
\Gamma_*(Y, \varphi^*\mathcal{O}_X(d)).
$$
The composition of this and $\psi^d$ gives a graded ring
homomorphism
\begin{equation}
\label{equation-psi-phi-d}
\psi_\varphi^d :
S^{(d)}
\longrightarrow
\Gamma_*(Y, \varphi^*\mathcal{O}_X(d))
\end{equation}
which has the property that the invertible sheaf
$\varphi^*\mathcal{O}_X(d)$ is globally generated
by the sections in the image of
$(S^{(d)})_1 = S_d \to \Gamma(Y, \varphi^*\mathcal{O}_X(d))$.
\begin{lemma}
\label{lemma-converse-construction}
Let $S$ be a graded ring, and $X = \text{Proj}(S)$.
Let $d \geq 1$ and $U_d \subset X$ as above.
Let $Y$ be a scheme.
Let $\mathcal{L}$ be an invertible sheaf on $Y$.
Let $\psi : S^{(d)} \to \Gamma_*(Y, \mathcal{L})$ be
a graded ring homomorphism such that $\mathcal{L}$ is
generated by the sections in the image of
$\psi|_{S_d} : S_d \to \Gamma(Y, \mathcal{L})$.
Then there exist a morphism
$\varphi : Y \to X$ such that $\varphi(Y) \subset U_d$ and
an isomorphism $\alpha : \varphi^*\mathcal{O}_{U_d}(d) \to \mathcal{L}$
such that $\psi_\varphi^d$ agrees with $\psi$ via $\alpha$:
$$
\xymatrix{
\Gamma_*(Y, \mathcal{L}) &
\Gamma_*(Y, \varphi^*\mathcal{O}_{U_d}(d)) \ar[l]^-\alpha &
\Gamma_*(U_d, \mathcal{O}_{U_d}(d)) \ar[l]^-{\varphi^*} \\
S^{(d)} \ar[u]^\psi & &
S^{(d)} \ar[u]^{\psi^d} \ar[ul]^{\psi^d_\varphi} \ar[ll]_{\text{id}}
}
$$
commutes. Moreover, the pair $(\varphi, \alpha)$ is unique.
\end{lemma}
\begin{proof}
Pick $f \in S_d$. Denote $s = \psi(f) \in \Gamma(Y, \mathcal{L})$.
On the open set $Y_s$ where $s$ does not vanish multiplication
by $s$ induces an isomorphism $\mathcal{O}_{Y_s} \to \mathcal{L}|_{Y_s}$,
see Modules, Lemma \ref{modules-lemma-s-open}. We will denote
the inverse of this map $x \mapsto x/s$, and similarly for
powers of $\mathcal{L}$. Using this we
define a ring map $\psi_{(f)} : S_{(f)} \to \Gamma(Y_s, \mathcal{O})$
by mapping the fraction $a/f^n$ to $\psi(a)/s^n$.
By Schemes, Lemma \ref{schemes-lemma-morphism-into-affine}
this corresponds to a morphism
$\varphi_f : Y_s \to \Spec(S_{(f)}) = D_{+}(f)$.
We also introduce the isomorphism
$\alpha_f : \varphi_f^*\mathcal{O}_{D_{+}(f)}(d) \to \mathcal{L}|_{Y_s}$
which maps the pullback of the trivializing section
$f$ over $D_{+}(f)$ to the trivializing section $s$ over $Y_s$.
With this choice the commutativity of the diagram in the lemma
holds with $Y$ replaced by $Y_s$, $\varphi$ replaced by $\varphi_f$,
and $\alpha$ replaced by $\alpha_f$; verification omitted.
\medskip\noindent
Suppose that $f' \in S_d$ is a second element, and denote
$s' = \psi(f') \in \Gamma(Y, \mathcal{L})$. Then
$Y_s \cap Y_{s'} = Y_{ss'}$ and similarly
$D_{+}(f) \cap D_{+}(f') = D_{+}(ff')$.
In Lemma \ref{lemma-ample-on-proj} we saw that
$D_{+}(f') \cap D_{+}(f)$ is the same as the set
of points of $D_{+}(f)$ where the section of
$\mathcal{O}_X(d)$ defined by $f'$ does not vanish.
Hence
$\varphi_f^{-1}(D_{+}(f') \cap D_{+}(f)) = Y_s \cap Y_{s'}
= \varphi_{f'}^{-1}(D_{+}(f') \cap D_{+}(f))$.
On $D_{+}(f) \cap D_{+}(f')$ the fraction $f/f'$ is an
invertible section of the structure sheaf with inverse
$f'/f$. Note that $\psi_{(f')}(f/f') = \psi(f)/s' = s/s'$
and $\psi_{(f)}(f'/f) = \psi(f')/s = s'/s$. We claim there
is a unique ring map
$S_{(ff')} \to \Gamma(Y_{ss'}, \mathcal{O})$ making the
following diagram commute
$$
\xymatrix{
\Gamma(Y_s, \mathcal{O}) \ar[r] &
\Gamma(Y_{ss'}, \mathcal{O}) &
\Gamma(Y_{s, '} \mathcal{O}) \ar[l]\\
S_{(f)} \ar[r] \ar[u]^{\psi_{(f)}} &
S_{(ff')} \ar[u] &
S_{(f')} \ar[l] \ar[u]^{\psi_{(f')}}
}
$$
It exists because we may use the rule
$x/(ff')^n \mapsto \psi(x)/(ss')^n$, which ``works'' by the formulas
above. Uniqueness follows as $\text{Proj}(S)$ is separated, see
Lemma \ref{lemma-proj-separated} and its proof. This shows that the
morphisms $\varphi_f$ and $\varphi_{f'}$ agree over $Y_s \cap Y_{s'}$.
The restrictions of $\alpha_f$ and $\alpha_{f'}$ agree over
$Y_s \cap Y_{s'}$ because the regular functions $s/s'$ and
$\psi_{(f')}(f)$ agree. This proves that the morphisms $\psi_f$
glue to a global morphism from $Y$ into $U_d \subset X$, and
that the maps $\alpha_f$ glue to an isomorphism satisfying the
conditions of the lemma.
\medskip\noindent
We still have to show the pair $(\varphi, \alpha)$ is unique.
Suppose $(\varphi', \alpha')$ is a second such pair.
Let $f \in S_d$. By the commutativity of the diagrams in the lemma we have
that the inverse images of $D_{+}(f)$ under both $\varphi$ and $\varphi'$
are equal to $Y_{\psi(f)}$. Since the opens $D_{+}(f)$ are a basis
for the topology on $X$, and since $X$ is a sober topological
space (see Schemes, Lemma \ref{schemes-lemma-scheme-sober})
this means the maps $\varphi$ and $\varphi'$ are the same
on underlying topological spaces. Let us use $s = \psi(f)$ to
trivialize the invertible sheaf $\mathcal{L}$ over $Y_{\psi(f)}$.
By the commutativity of the diagrams we have that
$\alpha^{\otimes n}(\psi^d_{\varphi}(x)) =
\psi(x) = (\alpha')^{\otimes n}(\psi^d_{\varphi'}(x))$
for all $x \in S_{nd}$. By construction of $\psi^d_{\varphi}$
and $\psi^d_{\varphi'}$ we have
$\psi^d_{\varphi}(x) = \varphi^\sharp(x/f^n) \psi^d_{\varphi}(f^n)$
over $Y_{\psi(f)}$,
and similarly for $\psi^d_{\varphi'}$. By the commutativity of
the diagrams of the lemma we deduce that
$\varphi^\sharp(x/f^n) = (\varphi')^\sharp(x/f^n)$.
This proves that $\varphi$ and $\varphi'$ induce the same morphism
from $Y_{\psi(f)}$ into the affine scheme $D_{+}(f) = \Spec(S_{(f)})$.
Hence $\varphi$ and $\varphi'$ are the same as morphisms.
Finally, it remains to show that the commutativity of the
diagram of the lemma singles out, given $\varphi$, a unique
$\alpha$. We omit the verification.
\end{proof}
\noindent
We continue the discussion from above the lemma.
Let $S$ be a graded ring.
Let $Y$ be a scheme. We will consider {\it triples}
$(d, \mathcal{L}, \psi)$ where
\begin{enumerate}
\item $d \geq 1$ is an integer,
\item $\mathcal{L}$ is an invertible $\mathcal{O}_Y$-module, and
\item $\psi : S^{(d)} \to \Gamma_*(Y, \mathcal{L})$ is a graded
ring homomorphism such that $\mathcal{L}$ is generated by
the global sections $\psi(f)$, with $f \in S_d$.
\end{enumerate}
Given a morphism $h : Y' \to Y$ and a triple
$(d, \mathcal{L}, \psi)$ over $Y$ we can pull it back to the
triple $(d, h^*\mathcal{L}, h^* \circ \psi)$.
Given two triples $(d, \mathcal{L}, \psi)$ and
$(d, \mathcal{L}', \psi')$ with the same integer $d$
we say they are {\it strictly equivalent} if there exists
an isomorphism $\beta : \mathcal{L} \to \mathcal{L}'$
such that $\beta \circ \psi = \psi'$ as graded
ring maps $S^{(d)} \to \Gamma_*(Y, \mathcal{L}')$.
\medskip\noindent
For each integer $d \geq 1$ we define
\begin{eqnarray*}
F_d : \Sch^{opp} & \longrightarrow & \textit{Sets}, \\
Y & \longmapsto &
\{\text{strict equivalence classes of triples }
(d, \mathcal{L}, \psi)
\text{ as above}\}
\end{eqnarray*}
with pullbacks as defined above.
\begin{lemma}
\label{lemma-proj-functor-strict}
Let $S$ be a graded ring.
Let $X = \text{Proj}(S)$.
The open subscheme $U_d \subset X$ (\ref{equation-Ud}) represents the
functor $F_d$ and the triple $(d, \mathcal{O}_{U_d}(d), \psi^d)$
defined above is the universal family (see
Schemes, Section \ref{schemes-section-representable}).
\end{lemma}
\begin{proof}
This is a reformulation of Lemma \ref{lemma-converse-construction}
\end{proof}
\begin{lemma}
\label{lemma-apply}
Let $S$ be a graded ring generated as an $S_0$-algebra by
the elements of $S_1$. In this case the scheme $X = \text{Proj}(S)$
represents the functor which associates to a scheme
$Y$ the set of pairs $(\mathcal{L}, \psi)$, where
\begin{enumerate}
\item $\mathcal{L}$ is an invertible $\mathcal{O}_Y$-module, and
\item $\psi : S \to \Gamma_*(Y, \mathcal{L})$ is a graded
ring homomorphism such that $\mathcal{L}$ is generated by
the global sections $\psi(f)$, with $f \in S_1$
\end{enumerate}
up to strict equivalence as above.
\end{lemma}
\begin{proof}
Under the assumptions of the lemma we have $X = U_1$ and the
lemma is a reformulation of Lemma \ref{lemma-proj-functor-strict} above.
\end{proof}
\noindent
We end this section with a discussion of a functor corresponding
to $\text{Proj}(S)$ for a general graded ring $S$.
We advise the reader to skip the rest of this section.
\medskip\noindent
Fix an arbitrary graded ring $S$. Let $T$ be a scheme.
We will say two triples $(d, \mathcal{L}, \psi)$ and
$(d', \mathcal{L}', \psi')$ over $T$ with possibly different integers
$d$, $d'$ are {\it equivalent} if there exists
an isomorphism
$\beta : \mathcal{L}^{\otimes d'} \to (\mathcal{L}')^{\otimes d}$
of invertible sheaves over $T$
such that $\beta \circ \psi|_{S^{(dd')}}$ and $\psi'|_{S^{(dd')}}$ agree
as graded ring maps $S^{(dd')} \to \Gamma_*(Y, (\mathcal{L}')^{\otimes dd'})$.
\begin{lemma}
\label{lemma-equivalent}
Let $S$ be a graded ring. Set $X = \text{Proj}(S)$. Let $T$ be a scheme.
Let $(d, \mathcal{L}, \psi)$ and $(d', \mathcal{L}', \psi')$
be two triples over $T$. The following are equivalent:
\begin{enumerate}
\item Let $n = \text{lcm}(d, d')$. Write $n = ad = a'd'$. There exists
an isomorphism
$\beta : \mathcal{L}^{\otimes a} \to (\mathcal{L}')^{\otimes a'}$
with the property that
$\beta \circ \psi|_{S^{(n)}}$ and $\psi'|_{S^{(n)}}$ agree
as graded ring maps $S^{(n)} \to \Gamma_*(Y, (\mathcal{L}')^{\otimes n})$.
\item The triples $(d, \mathcal{L}, \psi)$ and $(d', \mathcal{L}', \psi')$
are equivalent.
\item For some positive integer $n = ad = a'd'$ there exists
an isomorphism
$\beta : \mathcal{L}^{\otimes a} \to (\mathcal{L}')^{\otimes a'}$
with the property that
$\beta \circ \psi|_{S^{(n)}}$ and $\psi'|_{S^{(n)}}$ agree
as graded ring maps $S^{(n)} \to \Gamma_*(Y, (\mathcal{L}')^{\otimes n})$.
\item The morphisms $\varphi : T \to X$ and $\varphi' : T \to X$
associated to $(d, \mathcal{L}, \psi)$ and $(d', \mathcal{L}', \psi')$
are equal.
\end{enumerate}
\end{lemma}
\begin{proof}
Clearly (1) implies (2) and (2) implies (3) by restricting to
more divisible degrees and powers of invertible sheaves.
Also (3) implies (4) by the uniqueness statement
in Lemma \ref{lemma-converse-construction}.
Thus we have to prove that (4) implies (1). Assume (4),
in other words $\varphi = \varphi'$.
Note that this implies that we may write
$\mathcal{L} = \varphi^*\mathcal{O}_X(d)$ and
$\mathcal{L}' = \varphi^*\mathcal{O}_X(d')$.
Moreover, via these identifications we have that the graded ring
maps $\psi$ and $\psi'$ correspond to the restriction of the canonical
graded ring map
$$
S \longrightarrow \bigoplus\nolimits_{n \geq 0} \Gamma(X, \mathcal{O}_X(n))
$$
to $S^{(d)}$ and $S^{(d')}$ composed with pullback by $\varphi$
(by Lemma \ref{lemma-converse-construction} again). Hence taking
$\beta$ to be the isomorphism
$$
(\varphi^*\mathcal{O}_X(d))^{\otimes a} =
\varphi^*\mathcal{O}_X(n) =
(\varphi^*\mathcal{O}_X(d'))^{\otimes a'}
$$
works.
\end{proof}
\noindent
Let $S$ be a graded ring.
Let $X = \text{Proj}(S)$.
Over the open subscheme scheme $U_d \subset X = \text{Proj}(S)$
(\ref{equation-Ud}) we have the triple
$(d, \mathcal{O}_{U_d}(d), \psi^d)$. Clearly, if $d | d'$ the triples
$(d, \mathcal{O}_{U_d}(d), \psi^d)$ and
$(d', \mathcal{O}_{U_{d'}}(d'), \psi^{d'})$ are equivalent
when restricted to the open $U_d$ (which is a subset of $U_{d'}$).
This, combined with Lemma \ref{lemma-converse-construction} shows
that morphisms $Y \to X$ correspond roughly to
equivalence classes of triples over $Y$. This is not quite true since if $Y$ is
not quasi-compact, then there may not be a single triple which works.
Thus we have to be slightly careful in defining the corresponding functor.
\medskip\noindent
Here is one possible way to do this. Suppose $d' = ad$.
Consider the transformation of functors $F_d \to F_{d'}$
which assigns to the triple $(d, \mathcal{L}, \psi)$ over
$T$ the triple $(d', \mathcal{L}^{\otimes a}, \psi|_{S^{(d')}})$.
One of the implications of Lemma \ref{lemma-equivalent} is that the
transformation $F_d \to F_{d'}$ is injective!
For a quasi-compact scheme $T$ we define
$$
F(T) = \bigcup\nolimits_{d \in \mathbf{N}} F_d(T)
$$
with transition maps as explained above. This clearly defines a
contravariant functor on the category of quasi-compact schemes
with values in sets. For a general scheme
$T$ we define
$$
F(T)
=
\lim_{V \subset T\text{ quasi-compact open}} F(V).
$$
In other words, an element $\xi$ of $F(T)$ corresponds to a compatible system
of choices of elements $\xi_V \in F(V)$ where $V$ ranges over the
quasi-compact opens of $T$.
We omit the definition of the pullback map $F(T) \to F(T')$
for a morphism $T' \to T$ of schemes.
Thus we have defined our functor
\begin{eqnarray*}
F : \Sch^{opp} & \longrightarrow & \textit{Sets}
\end{eqnarray*}
\begin{lemma}
\label{lemma-proj-functor}
Let $S$ be a graded ring.
Let $X = \text{Proj}(S)$.
The functor $F$ defined above is representable by the scheme $X$.
\end{lemma}
\begin{proof}
We have seen above that the functor $F_d$ corresponds to the
open subscheme $U_d \subset X$. Moreover the transformation
of functors $F_d \to F_{d'}$ (if $d | d'$) defined above
corresponds to the inclusion morphism $U_d \to U_{d'}$
(see discussion above). Hence to show that $F$ is represented
by $X$ it suffices to show that $T \to X$ for a quasi-compact
scheme $T$ ends up in some $U_d$, and that for a general scheme
$T$ we have
$$
\Mor(T, X)
=
\lim_{V \subset T\text{ quasi-compact open}} \Mor(V, X).
$$
These verifications are omitted.
\end{proof}
\section{Projective space}
\label{section-projective-space}
\noindent
Projective space is one of the fundamental objects studied in
algebraic geometry. In this section we just give its construction
as $\text{Proj}$ of a polynomial ring. Later we will discover many
of its beautiful properties.
\begin{lemma}
\label{lemma-projective-space}
Let $S = \mathbf{Z}[T_0, \ldots, T_n]$ with $\deg(T_i) = 1$.
The scheme
$$
\mathbf{P}^n_{\mathbf{Z}} = \text{Proj}(S)
$$
represents the functor which associates to a scheme $Y$ the pairs
$(\mathcal{L}, (s_0, \ldots, s_n))$ where
\begin{enumerate}
\item $\mathcal{L}$ is an invertible $\mathcal{O}_Y$-module, and
\item $s_0, \ldots, s_n$ are global sections of $\mathcal{L}$
which generate $\mathcal{L}$
\end{enumerate}
up to the following equivalence:
$(\mathcal{L}, (s_0, \ldots, s_n)) \sim
(\mathcal{N}, (t_0, \ldots, t_n))$ $\Leftrightarrow$ there exists
an isomorphism $\beta : \mathcal{L} \to \mathcal{N}$
with $\beta(s_i) = t_i$ for $i = 0, \ldots, n$.
\end{lemma}
\begin{proof}
This is a special case of Lemma \ref{lemma-apply} above.
Namely, for any graded ring $A$ we have
\begin{eqnarray*}
\Mor_{graded rings}(\mathbf{Z}[T_0, \ldots, T_n], A)
& = &
A_1 \times \ldots \times A_1 \\
\psi & \mapsto & (\psi(T_0), \ldots, \psi(T_n))
\end{eqnarray*}
and the degree $1$ part of $\Gamma_*(Y, \mathcal{L})$ is
just $\Gamma(Y, \mathcal{L})$.
\end{proof}
\begin{definition}
\label{definition-projective-space}
The scheme
$\mathbf{P}^n_{\mathbf{Z}} = \text{Proj}(\mathbf{Z}[T_0, \ldots, T_n])$
is called {\it projective $n$-space over $\mathbf{Z}$}.
Its base change $\mathbf{P}^n_S$ to a scheme $S$ is called
{\it projective $n$-space over $S$}. If $R$ is a ring the base change
to $\Spec(R)$ is denoted $\mathbf{P}^n_R$ and called
{\it projective $n$-space over $R$}.
\end{definition}
\noindent
Given a scheme $Y$ over $S$
and a pair $(\mathcal{L}, (s_0, \ldots, s_n))$ as in
Lemma \ref{lemma-projective-space}
the induced morphism to $\mathbf{P}^n_S$ is denoted
$$
\varphi_{(\mathcal{L}, (s_0, \ldots, s_n))} :
Y \longrightarrow \mathbf{P}^n_S
$$
This makes sense since the pair defines a morphism into
$\mathbf{P}^n_{\mathbf{Z}}$ and we already have the structure
morphism into $S$ so combined we get a morphism into
$\mathbf{P}^n_S = \mathbf{P}^n_{\mathbf{Z}} \times S$.
Note that this is the $S$-morphism characterized by
$$
\mathcal{L} =
\varphi_{(\mathcal{L}, (s_0, \ldots, s_n))}^*\mathcal{O}_{\mathbf{P}^n_R}(1)
\quad
\text{and}
\quad
s_i = \varphi_{(\mathcal{L}, (s_0, \ldots, s_n))}^*T_i
$$
where we think of $T_i$ as a global section of
$\mathcal{O}_{\mathbf{P}^n_S}(1)$ via (\ref{equation-global-sections}).
\begin{lemma}
\label{lemma-standard-covering-projective-space}
Projective $n$-space over $\mathbf{Z}$ is covered by
$n + 1$ standard opens
$$
\mathbf{P}^n_{\mathbf{Z}} =
\bigcup\nolimits_{i = 0, \ldots, n} D_{+}(T_i)
$$
where each $D_{+}(T_i)$ is isomorphic to $\mathbf{A}^n_{\mathbf{Z}}$
affine $n$-space over $\mathbf{Z}$.
\end{lemma}
\begin{proof}
This is true because
$\mathbf{Z}[T_0, \ldots, T_n]_{+} = (T_0, \ldots, T_n)$ and
since
$$
\Spec
\left(
\mathbf{Z}
\left[\frac{T_0}{T_i}, \ldots, \frac{T_n}{T_i}
\right]
\right)
\cong
\mathbf{A}^n_{\mathbf{Z}}
$$
in an obvious way.
\end{proof}
\begin{lemma}
\label{lemma-projective-space-separated}
Let $S$ be a scheme.
The structure morphism $\mathbf{P}^n_S \to S$ is
\begin{enumerate}
\item separated,
\item quasi-compact,
\item satisfies the existence and uniqueness parts of the valuative criterion,
and
\item universally closed.
\end{enumerate}
\end{lemma}
\begin{proof}
All these properties are stable under base change (this is clear for the
last two and for the other two see
Schemes, Lemmas
\ref{schemes-lemma-separated-permanence} and
\ref{schemes-lemma-quasi-compact-preserved-base-change}).
Hence it suffices to prove them for the morphism
$\mathbf{P}^n_{\mathbf{Z}} \to \Spec(\mathbf{Z})$.
Separatedness is Lemma \ref{lemma-proj-separated}. Quasi-compactness follows
from Lemma \ref{lemma-standard-covering-projective-space}.
Existence and uniqueness of the valuative criterion follow from
Lemma \ref{lemma-proj-valuative-criterion}.
Universally closed follows from the above and
Schemes, Proposition \ref{schemes-proposition-characterize-universally-closed}.
\end{proof}
\begin{remark}
\label{remark-missing-finite-type}
What's missing in the list of properties above? Well to be sure the property
of being of finite type. The reason we do not list this here is that we have
not yet defined the notion of finite type at this point. (Another property
which is missing is ``smoothness''. And I'm sure there are many more you can
think of.)
\end{remark}
\begin{lemma}[Segre embedding]
\label{lemma-segre-embedding}
Let $S$ be a scheme. There exists a closed immersion
$$
\mathbf{P}^n_S \times_S \mathbf{P}^m_S
\longrightarrow
\mathbf{P}^{nm + n + m}_S
$$
called the {\it Segre embedding}.
\end{lemma}
\begin{proof}
It suffices to prove this when $S = \Spec(\mathbf{Z})$.
Hence we will drop the index $S$ and work in the absolute setting.
Write $\mathbf{P}^n = \text{Proj}(\mathbf{Z}[X_0, \ldots, X_n])$,
$\mathbf{P}^m = \text{Proj}(\mathbf{Z}[Y_0, \ldots, Y_m])$,
and
$\mathbf{P}^{nm + n + m} =
\text{Proj}(\mathbf{Z}[Z_0, \ldots, Z_{nm + n + m}])$.
In order to map into $\mathbf{P}^{nm + n + m}$ we have to
write down an invertible sheaf $\mathcal{L}$ on the left hand
side and $(n + 1)(m + 1)$ sections $s_i$ which generate it.
See Lemma \ref{lemma-projective-space}.
The invertible sheaf we take is
$$
\mathcal{L} =
\text{pr}_1^*\mathcal{O}_{\mathbf{P}^n}(1)
\otimes
\text{pr}_2^*\mathcal{O}_{\mathbf{P}^m}(1)
$$
The sections we take are
$$
s_0 = X_0Y_0, \ s_1 = X_1Y_0, \ldots, \ s_n = X_nY_0,
\ s_{n + 1} = X_0Y_1, \ldots, \ s_{nm + n + m} = X_nY_m.
$$
These generate $\mathcal{L}$ since the sections $X_i$ generate
$\mathcal{O}_{\mathbf{P}^n}(1)$ and the sections $Y_j$ generate
$\mathcal{O}_{\mathbf{P}^m}(1)$. The induced morphism
$\varphi$ has the property that
$$
\varphi^{-1}(D_{+}(Z_{i + (n + 1)j})) = D_{+}(X_i) \times D_{+}(Y_j).
$$
Hence it is an affine morphism. The corresponding ring map in case
$(i, j) = (0, 0)$ is the map
$$
\mathbf{Z}[Z_1/Z_0, \ldots, Z_{nm + n + m}/Z_0]
\longrightarrow
\mathbf{Z}[X_1/X_0, \ldots, X_n/X_0, Y_1/Y_0, \ldots, Y_n/Y_0]
$$
which maps $Z_i/Z_0$ to the element $X_i/X_0$ for $i \leq n$ and
the element $Z_{(n + 1)j}/Z_0$ to the element $Y_j/Y_0$. Hence it
is surjective. A similar argument works for the other affine
open subsets. Hence the morphism $\varphi$ is a closed immersion
(see Schemes, Lemma \ref{schemes-lemma-closed-local-target} and
Example \ref{schemes-example-closed-immersion-affines}.)
\end{proof}
\noindent
The following two lemmas are special cases of more general results later, but
perhaps it makes sense to prove these directly here now.
\begin{lemma}
\label{lemma-closed-in-projective-space}
Let $R$ be a ring. Let $Z \subset \mathbf{P}^n_R$ be a closed subscheme.
Let
$$
I_d = \Ker\left(
R[T_0, \ldots, T_n]_d
\longrightarrow
\Gamma(Z, \mathcal{O}_{\mathbf{P}^n_R}(d)|_Z)\right)
$$
Then $I = \bigoplus I_d \subset R[T_0, \ldots, T_n]$ is
a graded ideal and $Z = \text{Proj}(R[T_0, \ldots, T_n]/I)$.
\end{lemma}
\begin{proof}
It is clear that $I$ is a graded ideal.
Set $Z' = \text{Proj}(R[T_0, \ldots, T_n]/I)$.
By Lemma \ref{lemma-surjective-graded-rings-generated-degree-1-map-proj}
we see that $Z'$ is a closed subscheme of $\mathbf{P}^n_R$.
To see the equality $Z = Z'$
it suffices to check on an standard affine open
$D_{+}(T_i)$. By renumbering the homogeneous coordinates we
may assume $i = 0$. Say $Z \cap D_{+}(T_0)$, resp.\ $Z' \cap D_{+}(T_0)$
is cut out by the ideal $J$, resp.\ $J'$ of $R[T_1/T_0, \ldots, T_n/T_0]$.
Then $J'$ is the ideal generated by the elements $F/T_0^{\deg(F)}$ where
$F \in I$ is homogeneous.
Suppose the degree of $F \in I$ is $d$. Since $F$ vanishes as a section
of $\mathcal{O}_{\mathbf{P}^n_R}(d)$ restricted to $Z$ we see that
$F/T_0^d$ is an element of $J$. Thus $J' \subset J$.
\medskip\noindent
Conversely, suppose that $f \in J$. If $f$ has total degree
$d$ in $T_1/T_0, \ldots, T_n/T_0$, then we can write
$f = F/T_0^d$ for some $F \in R[T_0, \ldots, T_n]_d$.
Pick $i \in \{1, \ldots, n\}$. Then $Z \cap D_{+}(T_i)$ is
cut out by some ideal $J_i \subset R[T_0/T_i, \ldots, T_n/T_i]$.
Moreover,
$$
J \cdot
R\left[
\frac{T_1}{T_0}, \ldots, \frac{T_n}{T_0},
\frac{T_0}{T_i}, \ldots, \frac{T_n}{T_i}
\right]
=
J_i \cdot
R\left[
\frac{T_1}{T_0}, \ldots, \frac{T_n}{T_0},
\frac{T_0}{T_i}, \ldots, \frac{T_n}{T_i}
\right]
$$
The left hand side is the localization of $J$ with respect to the
element $T_i/T_0$ and the right hand side is the localization of $J_i$
with respect to the element $T_0/T_i$. It follows that
$T_0^{d_i}F/T_i^{d + d_i}$ is an element of $J_i$ for some $d_i$
sufficiently large. This proves that $T_0^{\max(d_i)}F$ is an
element of $I$, because its restriction to each standard affine
open $D_{+}(T_i)$ vanishes on the closed subscheme
$Z \cap D_{+}(T_i)$. Hence $f \in J'$ and we conclude $J \subset J'$
as desired.
\end{proof}
\noindent
The following lemma is a special case of the more general
Properties, Lemmas \ref{properties-lemma-ample-quasi-coherent} or
\ref{properties-lemma-proj-quasi-coherent}.
\begin{lemma}
\label{lemma-quasi-coherent-projective-space}
Let $R$ be a ring.
Let $\mathcal{F}$ be a quasi-coherent sheaf on $\mathbf{P}^n_R$.
For $d \geq 0$ set
$$
M_d
=
\Gamma(\mathbf{P}^n_R,
\mathcal{F} \otimes_{\mathcal{O}_{\mathbf{P}^n_R}}
\mathcal{O}_{\mathbf{P}^n_R}(d))
=
\Gamma(\mathbf{P}^n_R, \mathcal{F}(d))
$$
Then $M = \bigoplus_{d \geq 0} M_d$ is a graded $R[T_0, \ldots, R_n]$-module
and there is a canonical isomorphism $\mathcal{F} = \widetilde{M}$.
\end{lemma}
\begin{proof}
The multiplication maps
$$
R[T_0, \ldots, R_n]_e \times M_d \longrightarrow M_{d + e}
$$
come from the natural isomorphisms
$$
\mathcal{O}_{\mathbf{P}^n_R}(e)
\otimes_{\mathcal{O}_{\mathbf{P}^n_R}}
\mathcal{F}(d)
\longrightarrow
\mathcal{F}(e + d)
$$
see Equation (\ref{equation-global-sections-module}). Let us construct the
map $c : \widetilde{M} \to \mathcal{F}$. On each of the standard affines
$U_i = D_{+}(T_i)$ we see that $\Gamma(U_i, \widetilde{M}) = (M[1/T_i])_0$
where the subscript ${}_0$ means degree $0$ part. An element of this
can be written as $m/T_i^d$ with $m \in M_d$. Since $T_i$ is a generator
of $\mathcal{O}(1)$ over $U_i$ we can always write
$m|_{U_i} = m_i \otimes T_i^d$ where $m_i \in \Gamma(U_i, \mathcal{F})$
is a unique section. Thus a natural guess is $c(m/T_i^d) = m_i$.
A small argument, which is omitted here, shows that this gives a
well defined map $c : \widetilde{M} \to \mathcal{F}$ if we can
show that
$$
(T_i/T_j)^d m_i|_{U_i \cap U_j} = m_j|_{U_i \cap U_j}
$$
in $M[1/T_iT_j]$.
But this is clear since on the overlap the generators $T_i$ and
$T_j$ of $\mathcal{O}(1)$ differ by the invertible function $T_i/T_j$.
\medskip\noindent
Injectivity of $c$. We may check for injectivity over the affine opens
$U_i$. Let $i \in \{0, \ldots, n\}$
and let $s$ be an element $s = m/T_i^d \in \Gamma(U_i, \widetilde{M})$
such that $c(m/T_i^d) = 0$. By the description of $c$ above this means that
$m_i = 0$, hence $m|_{U_i} = 0$. Hence $T_i^em = 0$ in $M$ for some
$e$. Hence $s = m/T_i^d = T_i^e/T_i^{e + d} = 0$ as desired.
\medskip\noindent
Surjectivity of $c$. We may check for surjectivity over the affine opens
$U_i$. By renumbering it suffices to check it over $U_0$.
Let $s \in \mathcal{F}(U_0)$.
Let us write $\mathcal{F}|_{U_i} = \widetilde{N_i}$ for some
$R[T_0/T_i, \ldots, T_0/T_i]$-module $N_i$, which is possible because
$\mathcal{F}$ is quasi-coherent. So $s$ corresponds to an element
$x \in N_0$. Then we have that
$$
(N_i)_{T_j/T_i} \cong (N_j)_{T_i/T_j}
$$
(where the subscripts mean ``principal localization at'')
as modules over the ring
$$
R\left[
\frac{T_0}{T_i}, \ldots, \frac{T_n}{T_i},
\frac{T_0}{T_j}, \ldots, \frac{T_n}{T_j}
\right].
$$
This means that for some large integer $d$ there exist elements
$s_i \in N_i$, $i = 1, \ldots, n$ such that
$$
s = (T_i/T_0)^d s_i
$$
on $U_0 \cap U_i$. Next, we look at the difference
$$
t_{ij} = s_i - (T_j/T_i)^d s_j
$$
on $U_i \cap U_j$, $0 < i < j$. By our choice of $s_i$ we know that
$t_{ij}|_{U_0 \cap U_i \cap U_j} = 0$. Hence there exists a large integer
$e$ such that $(T_0/T_i)^et_{ij} = 0$. Set $s_i' = (T_0/T_i)^es_i$,
and $s_0' = s$. Then we will have
$$
s_a' = (T_b/T_a)^{e + d} s_b'
$$
on $U_a \cap U_b$ for all $a, b$. This is exactly the condition that the
elements $s'_a$ glue to a global section
$m \in \Gamma(\mathbf{P}^n_R, \mathcal{F}(e + d))$.
And moreover $c(m/T_0^{e + d}) = s$ by construction. Hence $c$ is
surjective and we win.
\end{proof}
\begin{lemma}
\label{lemma-globally-generated-omega-twist-1}
Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible sheaf
and let $s_0, \ldots, s_n$ be global sections of $\mathcal{L}$
which generate it. Let $\mathcal{F}$ be the kernel of the induced
map $\mathcal{O}_X^{\oplus n + 1} \to \mathcal{L}$.
Then $\mathcal{F} \otimes \mathcal{L}$ is globally generated.
\end{lemma}
\begin{proof}
In fact the result is true if $X$ is any locally ringed space.
The sheaf $\mathcal{F}$ is a finite locally free $\mathcal{O}_X$-module
of rank $n$. The elements
$$
s_{ij} = (0, \ldots, 0, s_j, 0, \ldots, 0, -s_i, 0, \ldots, 0)
\in \Gamma(X, \mathcal{L}^{\oplus n + 1})
$$
with $s_j$ in the $i$th spot and $-s_i$ in the $j$th spot map to zero
in $\mathcal{L}^{\otimes 2}$. Hence
$s_{ij} \in \Gamma(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L})$.
A local computation shows that these sections generate
$\mathcal{F} \otimes \mathcal{L}$.
\medskip\noindent
Alternative proof. Consider the morphism
$\varphi : X \to \mathbf{P}^n_\mathbf{Z}$ associated to
the pair $(\mathcal{L}, (s_0, \ldots, s_n))$. Since the pullback
of $\mathcal{O}(1)$ is $\mathcal{L}$ and since the pullback
of $T_i$ is $s_i$, it suffices to prove the lemma in the
case of $\mathbf{P}^n_\mathbf{Z}$. In this case the sheaf
$\mathcal{F}$ corresponds to the graded $S = \mathbf{Z}[T_0, \ldots, T_n]$
module $M$ which fits into the short exact sequence
$$
0 \to M \to S^{\oplus n + 1} \to S(1) \to 0
$$
where the second map is given by $T_0, \ldots, T_n$. In this
case the statement above translates into the statement that
the elements
$$
T_{ij} = (0, \ldots, 0, T_j, 0, \ldots, 0, -T_i, 0, \ldots, 0)
\in M(1)_0
$$
generate the graded module $M(1)$ over $S$. We omit the details.
\end{proof}
\section{Invertible sheaves and morphisms into Proj}
\label{section-invertible-proj}
\noindent
Let $T$ be a scheme and let $\mathcal{L}$ be an invertible sheaf
on $T$. For a section $s \in \Gamma(T, \mathcal{L})$ we denote
$T_s$ the open subset of points where $s$ does not vanish. See
Modules, Lemma \ref{modules-lemma-s-open}. We can view the following
lemma as a slight generalization of Lemma \ref{lemma-apply}.
It also is a generalization of Lemma \ref{lemma-morphism-proj}.
\begin{lemma}
\label{lemma-invertible-map-into-proj}
Let $A$ be a graded ring.
Set $X = \text{Proj}(A)$.
Let $T$ be a scheme.
Let $\mathcal{L}$ be an invertible $\mathcal{O}_T$-module.
Let $\psi : A \to \Gamma_*(T, \mathcal{L})$ be a homomorphism
of graded rings. Set
$$
U(\psi) = \bigcup\nolimits_{f \in A_{+}\text{ homogeneous}} T_{\psi(f)}
$$
The morphism $\psi$ induces a canonical morphism of schemes
$$
r_{\mathcal{L}, \psi} :
U(\psi) \longrightarrow X
$$
together with a map of $\mathbf{Z}$-graded $\mathcal{O}_T$-algebras
$$
\theta :
r_{\mathcal{L}, \psi}^*\left(
\bigoplus\nolimits_{d \in \mathbf{Z}} \mathcal{O}_X(d)
\right)
\longrightarrow
\bigoplus\nolimits_{d \in \mathbf{Z}} \mathcal{L}^{\otimes d}|_{U(\psi)}.
$$
The triple $(U(\psi), r_{\mathcal{L}, \psi}, \theta)$ is
characterized by the following properties:
\begin{enumerate}
\item For $f \in A_{+}$ homogeneous we have
$r_{\mathcal{L}, \psi}^{-1}(D_{+}(f)) = T_{\psi(f)}$.
\item For every $d \geq 0$ the diagram
$$
\xymatrix{
A_d \ar[d]_{(\ref{equation-global-sections})} \ar[r]_{\psi} &
\Gamma(T, \mathcal{L}^{\otimes d}) \ar[d]^{restrict} \\
\Gamma(X, \mathcal{O}_X(d)) \ar[r]^{\theta} &
\Gamma(U(\psi), \mathcal{L}^{\otimes d})
}
$$
is commutative.
\end{enumerate}
Moreover, for any $d \geq 1$ and any open subscheme $V \subset T$
such that the sections in $\psi(A_d)$ generate $\mathcal{L}^{\otimes d}|_V$
the morphism $r_{\mathcal{L}, \psi}|_V$ agrees with the morphism
$\varphi : V \to \text{Proj}(A)$ and the map $\theta|_V$ agrees with the map
$\alpha : \varphi^*\mathcal{O}_X(d) \to \mathcal{L}^{\otimes d}|_V$
where $(\varphi, \alpha)$ is the pair
of Lemma \ref{lemma-converse-construction}
associated to
$\psi|_{A^{(d)}} : A^{(d)} \to \Gamma_*(V, \mathcal{L}^{\otimes d})$.
\end{lemma}
\begin{proof}
Suppose that we have two triples $(U, r : U \to X, \theta)$
and $(U', r' : U' \to X, \theta')$ satisfying (1) and (2).
Property (1) implies that $U = U' = U(\psi)$ and that
$r = r'$ as maps of underlying topological
spaces, since the opens $D_{+}(f)$ form a basis for the topology
on $X$, and since $X$ is a sober topological space (see
Algebra, Section \ref{algebra-section-proj}
and
Schemes, Lemma \ref{schemes-lemma-scheme-sober}).
Let $f \in A_{+}$ be homogeneous. Note that
$\Gamma(D_{+}(f), \bigoplus_{n \in \mathbf{Z}} \mathcal{O}_X(n)) = A_f$
as a $\mathbf{Z}$-graded algebra. Consider the two
$\mathbf{Z}$-graded ring maps
$$
\theta, \theta' :
A_f
\longrightarrow
\Gamma(T_{\psi(f)}, \bigoplus \mathcal{L}^{\otimes n}).
$$
We know that multiplication by $f$ (resp.\ $\psi(f)$)
is an isomorphism on the left (resp.\ right) hand side.
We also know that $\theta(x/1) = \theta'(x/1) = \psi(x)|_{T_{\psi(f)}}$
by (2) for all $x \in A$. Hence we deduce easily that $\theta = \theta'$
as desired. Considering the degree $0$ parts we deduce that
$r^\sharp = (r')^\sharp$, i.e., that $r = r'$ as morphisms of schemes.
This proves the uniqueness.
\medskip\noindent
Now we come to existence. By the uniqueness just proved, it is enough to
construct the pair $(r, \theta)$ locally on $T$. Hence we may assume
that $T = \Spec(R)$ is affine, that $\mathcal{L} = \mathcal{O}_T$
and that for some $f \in A_{+}$ homogeneous we have
$\psi(f)$ generates $\mathcal{O}_T = \mathcal{O}_T^{\otimes \deg(f)}$.
In other words, $\psi(f) = u \in R^*$ is a unit. In this case the map
$\psi$ is a graded ring map
$$
A \longrightarrow R[x] = \Gamma_*(T, \mathcal{O}_T)
$$
which maps $f$ to $ux^{\deg(f)}$. Clearly this extends (uniquely) to
a $\mathbf{Z}$-graded ring map $\theta : A_f \to R[x, x^{-1}]$ by
mapping $1/f$ to $u^{-1}x^{-\deg(f)}$. This map in degree zero gives
the ring map $A_{(f)} \to R$ which gives the morphism
$r : T = \Spec(R) \to \Spec(A_{(f)}) = D_{+}(f) \subset X$.
Hence we have constructed $(r, \theta)$ in this special case.
\medskip\noindent
Let us show the last statement of the lemma.
According to Lemma \ref{lemma-converse-construction}
the morphism constructed there is the unique one such that
the displayed diagram in its statement commutes.
The commutativity of the diagram in the lemma implies the
commutativity when restricted to $V$ and $A^{(d)}$.
Whence the result.
\end{proof}
\begin{remark}
\label{remark-not-in-invertible-locus}
Assumptions as in Lemma \ref{lemma-invertible-map-into-proj} above.
The image of the morphism $r_{\mathcal{L}, \psi}$ need not be
contained in the locus where the sheaf $\mathcal{O}_X(1)$
is invertible.
Here is an example.
Let $k$ be a field.
Let $S = k[A, B, C]$ graded by $\deg(A) = 1$, $\deg(B) = 2$, $\deg(C) = 3$.
Set $X = \text{Proj}(S)$.
Let $T = \mathbf{P}^2_k = \text{Proj}(k[X_0, X_1, X_2])$.
Recall that $\mathcal{L} = \mathcal{O}_T(1)$ is invertible
and that $\mathcal{O}_T(n) = \mathcal{L}^{\otimes n}$.
Consider the composition $\psi$ of the maps
$$
S \to k[X_0, X_1, X_2] \to \Gamma_*(T, \mathcal{L}).
$$
Here the first map is $A \mapsto X_0$, $B \mapsto X_1^2$,
$C \mapsto X_2^3$ and the second map is (\ref{equation-global-sections}).
By the lemma this corresponds to a morphism
$r_{\mathcal{L}, \psi} : T \to X = \text{Proj}(S)$
which is easily seen to be surjective. On the other hand, in
Remark \ref{remark-not-isomorphism} we showed that the sheaf
$\mathcal{O}_X(1)$ is not invertible at all points of $X$.
\end{remark}
\section{Relative Proj via glueing}
\label{section-relative-proj-via-glueing}
\begin{situation}
\label{situation-relative-proj}
Here $S$ is a scheme, and $\mathcal{A}$
is a quasi-coherent graded $\mathcal{O}_S$-algebra.
\end{situation}
\noindent
In this section we outline how to construct a morphism
of schemes
$$
\underline{\text{Proj}}_S(\mathcal{A}) \longrightarrow S
$$
by glueing the homogeneous spectra $\text{Proj}(\Gamma(U, \mathcal{A}))$
where $U$ ranges over the affine opens of $S$. We first show that the
homogeneous spectra of the values of $\mathcal{A}$ over affines form a
suitable collection of schemes, as in Lemma \ref{lemma-relative-glueing}.
\begin{lemma}
\label{lemma-proj-inclusion}
In Situation \ref{situation-relative-proj}.
Suppose $U \subset U' \subset S$ are affine opens.
Let $A = \mathcal{A}(U)$ and $A' = \mathcal{A}(U')$.
The map of graded rings $A' \to A$ induces a morphism
$r : \text{Proj}(A) \to \text{Proj}(A')$, and the diagram
$$
\xymatrix{
\text{Proj}(A) \ar[r] \ar[d] &
\text{Proj}(A') \ar[d] \\
U \ar[r] &
U'
}
$$
is cartesian. Moreover there are canonical isomorphisms
$\theta : r^*\mathcal{O}_{\text{Proj}(A')}(n) \to
\mathcal{O}_{\text{Proj}(A)}(n)$ compatible with multiplication maps.
\end{lemma}
\begin{proof}
Let $R = \mathcal{O}_S(U)$ and $R' = \mathcal{O}_S(U')$.
Note that the map $R \otimes_{R'} A' \to A$ is an isomorphism as
$\mathcal{A}$ is quasi-coherent
(see Schemes, Lemma \ref{schemes-lemma-widetilde-pullback} for example).
Hence the lemma follows from
Lemma \ref{lemma-base-change-map-proj}.
\end{proof}
\noindent
In particular the morphism $\text{Proj}(A) \to \text{Proj}(A')$
of the lemma is an open immersion.
\begin{lemma}
\label{lemma-transitive-proj}
In Situation \ref{situation-relative-proj}.
Suppose $U \subset U' \subset U'' \subset S$ are affine opens.
Let $A = \mathcal{A}(U)$, $A' = \mathcal{A}(U')$ and $A'' = \mathcal{A}(U'')$.
The composition of the morphisms
$r : \text{Proj}(A) \to \text{Proj}(A')$, and
$r' : \text{Proj}(A') \to \text{Proj}(A'')$ of
Lemma \ref{lemma-proj-inclusion} gives the
morphism $r'' : \text{Proj}(A) \to \text{Proj}(A'')$
of Lemma \ref{lemma-proj-inclusion}. A similar statement
holds for the isomorphisms $\theta$.
\end{lemma}
\begin{proof}
This follows from Lemma \ref{lemma-morphism-proj-transitive} since
the map $A'' \to A$ is the composition of $A'' \to A'$ and
$A' \to A$.
\end{proof}
\begin{lemma}
\label{lemma-glue-relative-proj}
In Situation \ref{situation-relative-proj}.
There exists a morphism of schemes
$$
\pi : \underline{\text{Proj}}_S(\mathcal{A}) \longrightarrow S
$$
with the following properties:
\begin{enumerate}
\item for every affine open $U \subset S$ there exists an isomorphism
$i_U : \pi^{-1}(U) \to \text{Proj}(A)$ with $A = \mathcal{A}(U)$, and
\item for $U \subset U' \subset S$ affine open the composition
$$
\xymatrix{
\text{Proj}(A) \ar[r]^{i_U^{-1}} &
\pi^{-1}(U) \ar[rr]^{inclusion} & &
\pi^{-1}(U') \ar[r]^{i_{U'}} &
\text{Proj}(A')
}
$$
with $A = \mathcal{A}(U)$, $A' = \mathcal{A}(U')$
is the open immersion of Lemma \ref{lemma-proj-inclusion} above.
\end{enumerate}
\end{lemma}
\begin{proof}
Follows immediately from
Lemmas \ref{lemma-relative-glueing},
\ref{lemma-proj-inclusion}, and
\ref{lemma-transitive-proj}.
\end{proof}
\begin{lemma}
\label{lemma-glue-relative-proj-twists}
In Situation \ref{situation-relative-proj}.
The morphism $\pi : \underline{\text{Proj}}_S(\mathcal{A}) \to S$
of Lemma \ref{lemma-glue-relative-proj} comes with the following
additional structure.
There exists a quasi-coherent $\mathbf{Z}$-graded sheaf
of $\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}$-algebras
$\bigoplus\nolimits_{n \in \mathbf{Z}}
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(n)$,
and a morphism of graded $\mathcal{O}_S$-algebras
$$
\psi :
\mathcal{A}
\longrightarrow
\bigoplus\nolimits_{n \geq 0}
\pi_*\left(\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(n)\right)
$$
uniquely determined by the following property:
For every affine open $U \subset S$ with $A = \mathcal{A}(U)$
there is an isomorphism
$$
\theta_U :
i_U^*\left(
\bigoplus\nolimits_{n \in \mathbf{Z}} \mathcal{O}_{\text{Proj}(A)}(n)
\right)
\longrightarrow
\left(
\bigoplus\nolimits_{n \in \mathbf{Z}}
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(n)
\right)|_{\pi^{-1}(U)}
$$
of $\mathbf{Z}$-graded $\mathcal{O}_{\pi^{-1}(U)}$-algebras
such that
$$
\xymatrix{
A_n
\ar[rr]_\psi
\ar[dr]_-{(\ref{equation-global-sections})}
& &
\Gamma(\pi^{-1}(U),
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(n)) \\
&
\Gamma(\text{Proj}(A),
\mathcal{O}_{\text{Proj}(A)}(n))
\ar[ru]_-{\theta_U}
&
}
$$
is commutative.
\end{lemma}
\begin{proof}
We are going to use Lemma \ref{lemma-relative-glueing-sheaves}
to glue the sheaves of $\mathbf{Z}$-graded algebras
$\bigoplus_{n \in \mathbf{Z}} \mathcal{O}_{\text{Proj}(A)}(n)$
for $A = \mathcal{A}(U)$, $U \subset S$ affine open
over the scheme $\underline{\text{Proj}}_S(\mathcal{A})$.
We have constructed the data necessary for this in
Lemma \ref{lemma-proj-inclusion} and we have checked condition (d) of
Lemma \ref{lemma-relative-glueing-sheaves} in
Lemma \ref{lemma-transitive-proj}. Hence we get the
sheaf of $\mathbf{Z}$-graded
$\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}$-algebras
$\bigoplus_{n \in \mathbf{Z}}
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(n)$
together with the isomorphisms $\theta_U$ for all
$U \subset S$ affine open and all $n \in \mathbf{Z}$.
For every affine open $U \subset S$ with $A = \mathcal{A}(U)$ we have a map
$A \to \Gamma(\text{Proj}(A),
\bigoplus_{n \geq 0} \mathcal{O}_{\text{Proj}(A)}(n))$.
Hence the map $\psi$ exists by functoriality
of relative glueing, see Remark \ref{remark-relative-glueing-functorial}.
The diagram of the lemma commutes by construction.
This characterizes the sheaf of $\mathbf{Z}$-graded
$\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}$-algebras
$\bigoplus \mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(n)$
because the proof of Lemma \ref{lemma-morphism-proj} shows that
having these diagrams commute uniquely determines the maps $\theta_U$.
Some details omitted.
\end{proof}
\section{Relative Proj as a functor}
\label{section-relative-proj}
\noindent
We place ourselves in Situation \ref{situation-relative-proj}.
So $S$ is a scheme and $\mathcal{A} = \bigoplus_{d \geq 0} \mathcal{A}_d$
is a quasi-coherent graded $\mathcal{O}_S$-algebra.
In this section we relativize the construction of
$\text{Proj}$ by constructing a functor which the relative
homogeneous spectrum will represent.
As a result we will construct a morphism of schemes
$$
\underline{\text{Proj}}_S(\mathcal{A}) \longrightarrow S
$$
which above affine opens of $S$ will look like the homogeneous spectrum
of a graded ring. The discussion will be modeled after our
discussion of the relative spectrum in Section \ref{section-spec}.
The easier method using glueing schemes of the form
$\text{Proj}(A)$, $A = \Gamma(U, \mathcal{A})$, $U \subset S$
affine open, is explained in Section \ref{section-relative-proj-via-glueing},
and the result in this section will be shown to be isomorphic to that one.
\medskip\noindent
Fix for the moment an integer $d \geq 1$.
We denote $\mathcal{A}^{(d)} = \bigoplus_{n \geq 0} \mathcal{A}_{nd}$
similarly to the notation in Algebra, Section \ref{algebra-section-graded}.
Let $T$ be a scheme.
Let us consider {\it quadruples $(d, f : T \to S, \mathcal{L}, \psi)$
over $T$} where
\begin{enumerate}
\item $d$ is the integer we fixed above,
\item $f : T \to S$ is a morphism of schemes,
\item $\mathcal{L}$ is an invertible $\mathcal{O}_T$-module, and
\item
$\psi : f^*\mathcal{A}^{(d)} \to \bigoplus_{n \geq 0}\mathcal{L}^{\otimes n}$
is a homomorphism of graded $\mathcal{O}_T$-algebras
such that $f^*\mathcal{A}_d \to \mathcal{L}$ is surjective.
\end{enumerate}
Given a morphism $h : T' \to T$ and a quadruple
$(d, f, \mathcal{L}, \psi)$ over $T$ we can pull it back to the
quadruple $(d, f \circ h, h^*\mathcal{L}, h^*\psi)$ over $T'$.
Given two quadruples $(d, f, \mathcal{L}, \psi)$ and
$(d, f', \mathcal{L}', \psi')$ over $T$ with the same integer $d$
we say they are {\it strictly equivalent} if $f = f'$ and there exists
an isomorphism $\beta : \mathcal{L} \to \mathcal{L}'$
such that $\beta \circ \psi = \psi'$ as graded $\mathcal{O}_T$-algebra maps
$f^*\mathcal{A}^{(d)} \to \bigoplus_{n \geq 0} (\mathcal{L}')^{\otimes n}$.
\medskip\noindent
For each integer $d \geq 1$ we define
\begin{eqnarray*}
F_d : \Sch^{opp} & \longrightarrow & \textit{Sets}, \\
T & \longmapsto &
\{\text{strict equivalence classes of }
(d, f : T \to S, \mathcal{L}, \psi)
\text{ as above}\}
\end{eqnarray*}
with pullbacks as defined above.
\begin{lemma}
\label{lemma-proj-base-change}
In Situation \ref{situation-relative-proj}. Let $d \geq 1$.
Let $F_d$ be the functor
associated to $(S, \mathcal{A})$ above.
Let $g : S' \to S$ be a morphism of schemes.
Set $\mathcal{A}' = g^*\mathcal{A}$. Let $F_d'$ be the
functor associated to $(S', \mathcal{A}')$ above.
Then there is a canonical isomorphism
$$
F'_d \cong h_{S'} \times_{h_S} F_d
$$
of functors.
\end{lemma}
\begin{proof}
A quadruple
$(d, f' : T \to S', \mathcal{L}',
\psi' : (f')^*(\mathcal{A}')^{(d)} \to
\bigoplus_{n \geq 0} (\mathcal{L}')^{\otimes n})$
is the same as a quadruple
$(d, f, \mathcal{L},
\psi : f^*\mathcal{A}^{(d)} \to
\bigoplus_{n \geq 0} \mathcal{L}^{\otimes n})$
together with a factorization of $f$ as $f = g \circ f'$. Namely,
the correspondence is $f = g \circ f'$, $\mathcal{L} = \mathcal{L}'$
and $\psi = \psi'$ via the identifications
$(f')^*(\mathcal{A}')^{(d)} = (f')^*g^*(\mathcal{A}^{(d)}) =
f^*\mathcal{A}^{(d)}$. Hence the lemma.
\end{proof}
\begin{lemma}
\label{lemma-relative-proj-affine}
In Situation \ref{situation-relative-proj}. Let $F_d$ be the functor
associated to $(d, S, \mathcal{A})$ above.
If $S$ is affine, then $F_d$ is representable by the open subscheme
$U_d$ (\ref{equation-Ud})
of the scheme $\text{Proj}(\Gamma(S, \mathcal{A}))$.
\end{lemma}
\begin{proof}
Write $S = \Spec(R)$ and $A = \Gamma(S, \mathcal{A})$.
Then $A$ is a graded $R$-algebra and $\mathcal{A} = \widetilde A$.
To prove the lemma we have to identify the functor $F_d$
with the functor $F_d^{triples}$ of triples defined in Section
\ref{section-morphisms-proj}.
\medskip\noindent
Let $(d, f : T \to S, \mathcal{L}, \psi)$ be a quadruple.
We may think of $\psi$ as a $\mathcal{O}_S$-module map
$\mathcal{A}^{(d)} \to \bigoplus_{n \geq 0} f_*\mathcal{L}^{\otimes n}$.
Since $\mathcal{A}^{(d)}$ is quasi-coherent this is the same
thing as an $R$-linear homomorphism of graded rings
$A^{(d)} \to \Gamma(S, \bigoplus_{n \geq 0} f_*\mathcal{L}^{\otimes n})$.
Clearly, $\Gamma(S, \bigoplus_{n \geq 0} f_*\mathcal{L}^{\otimes n}) =
\Gamma_*(T, \mathcal{L})$. Thus we may associate to
the quadruple the triple $(d, \mathcal{L}, \psi)$.
\medskip\noindent
Conversely, let $(d, \mathcal{L}, \psi)$ be a triple.
The composition $R \to A_0 \to \Gamma(T, \mathcal{O}_T)$
determines a morphism $f : T \to S = \Spec(R)$, see
Schemes, Lemma \ref{schemes-lemma-morphism-into-affine}.
With this choice of $f$ the map
$A^{(d)} \to \Gamma(S, \bigoplus_{n \geq 0} f_*\mathcal{L}^{\otimes n})$
is $R$-linear, and hence corresponds to a $\psi$ which we
can use for a quadruple $(d, f : T \to S, \mathcal{L}, \psi)$.
We omit the verification that this establishes an isomorphism
of functors $F_d = F_d^{triples}$.
\end{proof}
\begin{lemma}
\label{lemma-relative-proj-d}
In Situation \ref{situation-relative-proj}.
The functor $F_d$ is representable by a scheme.
\end{lemma}
\begin{proof}
We are going to use Schemes, Lemma \ref{schemes-lemma-glue-functors}.
\medskip\noindent
First we check that $F_d$ satisfies the sheaf property for the
Zariski topology. Namely, suppose that $T$ is a scheme,
that $T = \bigcup_{i \in I} U_i$ is an open covering,
and that $(d, f_i, \mathcal{L}_i, \psi_i) \in F_d(U_i)$ such that
$(d, f_i, \mathcal{L}_i, \psi_i)|_{U_i \cap U_j}$ and
$(d, f_j, \mathcal{L}_j, \psi_j)|_{U_i \cap U_j}$ are strictly
equivalent. This implies that the morphisms $f_i : U_i \to S$
glue to a morphism of schemes $f : T \to S$ such that
$f|_{I_i} = f_i$, see Schemes, Section \ref{schemes-section-glueing-schemes}.
Thus $f_i^*\mathcal{A}^{(d)} = f^*\mathcal{A}^{(d)}|_{U_i}$.
It also implies there exist isomorphisms
$\beta_{ij} : \mathcal{L}_i|_{U_i \cap U_j} \to \mathcal{L}_j|_{U_i \cap U_j}$
such that $\beta_{ij} \circ \psi_i = \psi_j$ on $U_i \cap U_j$.
Note that the isomorphisms $\beta_{ij}$ are uniquely determined
by this requirement because the maps $f_i^*\mathcal{A}_d \to \mathcal{L}_i$
are surjective. In particular we see that
$\beta_{jk} \circ \beta_{ij} = \beta_{ik}$ on $U_i \cap U_j \cap U_k$.
Hence by Sheaves,
Section \ref{sheaves-section-glueing-sheaves} the invertible sheaves
$\mathcal{L}_i$ glue to an invertible $\mathcal{O}_T$-module
$\mathcal{L}$ and the morphisms $\psi_i$ glue to
morphism of $\mathcal{O}_T$-algebras
$\psi : f^*\mathcal{A}^{(d)} \to \bigoplus_{n \geq 0} \mathcal{L}^{\otimes n}$.
This proves that $F_d$ satisfies the sheaf condition with respect to
the Zariski topology.
\medskip\noindent
Let $S = \bigcup_{i \in I} U_i$ be an affine open covering.
Let $F_{d, i} \subset F_d$ be the subfunctor consisting of
those pairs $(f : T \to S, \varphi)$ such that
$f(T) \subset U_i$.
\medskip\noindent
We have to show each $F_{d, i}$ is representable.
This is the case because $F_{d, i}$ is identified with
the functor associated to $U_i$ equipped with
the quasi-coherent graded $\mathcal{O}_{U_i}$-algebra
$\mathcal{A}|_{U_i}$ by Lemma \ref{lemma-proj-base-change}.
Thus the result follows from Lemma \ref{lemma-relative-proj-affine}.
\medskip\noindent
Next we show that $F_{d, i} \subset F_d$ is representable by open immersions.
Let $(f : T \to S, \varphi) \in F_d(T)$. Consider $V_i = f^{-1}(U_i)$.
It follows from the definition of $F_{d, i}$ that given $a : T' \to T$
we gave $a^*(f, \varphi) \in F_{d, i}(T')$ if and only if $a(T') \subset V_i$.
This is what we were required to show.
\medskip\noindent
Finally, we have to show that the collection $(F_{d, i})_{i \in I}$
covers $F_d$. Let $(f : T \to S, \varphi) \in F_d(T)$.
Consider $V_i = f^{-1}(U_i)$. Since $S = \bigcup_{i \in I} U_i$
is an open covering of $S$ we see that $T = \bigcup_{i \in I} V_i$
is an open covering of $T$. Moreover $(f, \varphi)|_{V_i} \in F_{d, i}(V_i)$.
This finishes the proof of the lemma.
\end{proof}
\noindent
At this point we can redo the material at the end of
Section \ref{section-morphisms-proj} in the current
relative setting and define a functor
which is representable by
$\underline{\text{Proj}}_S(\mathcal{A})$. To do this we introduce the
notion of equivalence between two
quadruples $(d, f : T \to S, \mathcal{L}, \psi)$ and
$(d', f' : T \to S, \mathcal{L}', \psi')$ with possibly different
values of the integers $d, d'$. Namely, we say these
are {\it equivalent} if $f = f'$, and there exists an
isomorphism $\beta : \mathcal{L}^{\otimes d'} \to (\mathcal{L}')^{\otimes d}$
such that
$\beta \circ \psi|_{f^*\mathcal{A}^{(dd')}} = \psi'|_{f^*\mathcal{A}^{(dd')}}$.
The following lemma implies that this defines an equivalence relation.
(This is not a complete triviality.)
\begin{lemma}
\label{lemma-equivalent-relative}
In Situation \ref{situation-relative-proj}.
Let $T$ be a scheme.
Let $(d, f, \mathcal{L}, \psi)$, $(d', f', \mathcal{L}', \psi')$
be two quadruples over $T$. The following are equivalent:
\begin{enumerate}
\item Let $m = \text{lcm}(d, d')$. Write $m = ad = a'd'$.
We have $f = f'$ and there exists
an isomorphism
$\beta : \mathcal{L}^{\otimes a} \to (\mathcal{L}')^{\otimes a'}$
with the property that $\beta \circ \psi|_{f^*\mathcal{A}^{(m)}}$
and $\psi'|_{f^*\mathcal{A}^{(m)}}$ agree
as graded ring maps
$f^*\mathcal{A}^{(m)} \to \bigoplus_{n \geq 0} (\mathcal{L}')^{\otimes mn}$.
\item The quadruples $(d, f, \mathcal{L}, \psi)$ and
$(d', f', \mathcal{L}', \psi')$ are equivalent.
\item We have $f = f'$ and
for some positive integer $m = ad = a'd'$ there exists an isomorphism
$\beta : \mathcal{L}^{\otimes a} \to (\mathcal{L}')^{\otimes a'}$
with the property that $\beta \circ \psi|_{f^*\mathcal{A}^{(m)}}$
and $\psi'|_{f^*\mathcal{A}^{(m)}}$ agree
as graded ring maps
$f^*\mathcal{A}^{(m)} \to \bigoplus_{n \geq 0} (\mathcal{L}')^{\otimes mn}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Clearly (1) implies (2) and (2) implies (3) by restricting to
more divisible degrees and powers of invertible sheaves.
Assume (3) for some integer $m = ad = a'd'$. Let
$m_0 = \text{lcm}(d, d')$ and write it as $m_0 = a_0d = a'_0d'$.
We are given an isomorphism
$\beta : \mathcal{L}^{\otimes a} \to (\mathcal{L}')^{\otimes a'}$
with the property described in (3). We want to find an isomorphism
$\beta_0 : \mathcal{L}^{\otimes a_0} \to (\mathcal{L}')^{\otimes a'_0}$
having that property as well.
Since by assumption the maps $\psi : f^*\mathcal{A}_d \to \mathcal{L}$
and $\psi' : (f')^*\mathcal{A}_{d'} \to \mathcal{L}'$ are surjective the
same is true for the maps
$\psi : f^*\mathcal{A}_{m_0} \to \mathcal{L}^{\otimes a_0}$
and $\psi' : (f')^*\mathcal{A}_{m_0} \to (\mathcal{L}')^{\otimes a_0}$.
Hence if $\beta_0$ exists it is uniquely determined by the
condition that $\beta_0 \circ \psi = \psi'$. This means that
we may work locally on $T$. Hence we may assume that
$f = f' : T \to S$ maps into an affine open, in other words
we may assume that $S$ is affine. In this case the result follows
from the corresponding result for triples (see Lemma \ref{lemma-equivalent})
and the fact that triples and quadruples correspond in the
affine base case (see proof of Lemma \ref{lemma-relative-proj-affine}).
\end{proof}
\noindent
Suppose $d' = ad$. Consider the transformation of functors $F_d \to F_{d'}$
which assigns to the quadruple $(d, f, \mathcal{L}, \psi)$ over
$T$ the quadruple
$(d', f, \mathcal{L}^{\otimes a}, \psi|_{f^*\mathcal{A}^{(d')}})$.
One of the implications of Lemma \ref{lemma-equivalent-relative} is that the
transformation $F_d \to F_{d'}$ is injective!
For a quasi-compact scheme $T$ we define
$$
F(T) = \bigcup\nolimits_{d \in \mathbf{N}} F_d(T)
$$
with transition maps as explained above. This clearly defines a
contravariant functor on the category of quasi-compact schemes
with values in sets. For a general scheme
$T$ we define
$$
F(T)
=
\lim_{V \subset T\text{ quasi-compact open}} F(V).
$$
In other words, an element $\xi$ of $F(T)$ corresponds to a compatible system
of choices of elements $\xi_V \in F(V)$ where $V$ ranges over the
quasi-compact opens of $T$.
We omit the definition of the pullback map $F(T) \to F(T')$
for a morphism $T' \to T$ of schemes.
Thus we have defined our functor
\begin{equation}
\label{equation-proj}
F : \Sch^{opp} \longrightarrow \textit{Sets}
\end{equation}
\begin{lemma}
\label{lemma-relative-proj}
In Situation \ref{situation-relative-proj}.
The functor $F$ above is representable by a scheme.
\end{lemma}
\begin{proof}
Let $U_d \to S$ be the scheme representing the functor $F_d$
defined above. Let $\mathcal{L}_d$,
$\psi^d : \pi_d^*\mathcal{A}^{(d)} \to
\bigoplus_{n \geq 0} \mathcal{L}_d^{\otimes n}$ be the universal object.
If $d | d'$, then we may consider the quadruple
$(d', \pi_d, \mathcal{L}_d^{\otimes d'/d}, \psi^d|_{\mathcal{A}^{(d')}})$
which determines a canonical morphism $U_d \to U_{d'}$ over $S$.
By construction this morphism corresponds to the transformation
of functors $F_d \to F_{d'}$ defined above.
\medskip\noindent
For every affine open $\Spec(R) = V \subset S$
setting $A = \Gamma(V, \mathcal{A})$ we have a canonical
identification of the base change $U_{d, V}$ with the corresponding open
subscheme of $\text{Proj}(A)$, see Lemma \ref{lemma-relative-proj-affine}.
Moreover, the morphisms $U_{d, V} \to U_{d', V}$ constructed above
correspond to the inclusions of opens in $\text{Proj}(A)$.
Thus we conclude that $U_d \to U_{d'}$ is an open immersion.
\medskip\noindent
This allows us to construct $X$
by glueing the schemes $U_d$ along the open immersions $U_d \to U_{d'}$.
Technically, it is convenient to choose a sequence
$d_1 | d_2 | d_3 | \ldots$ such that every positive integer
divides one of the $d_i$ and to simply take
$X = \bigcup U_{d_i}$ using the open immersions above.
It is then a simple matter to prove that $X$ represents the
functor $F$.
\end{proof}
\begin{lemma}
\label{lemma-glueing-gives-functor-proj}
In Situation \ref{situation-relative-proj}.
The scheme $\pi : \underline{\text{Proj}}_S(\mathcal{A}) \to S$
constructed in Lemma \ref{lemma-glue-relative-proj}
and the scheme representing the functor $F$
are canonically isomorphic as schemes over $S$.
\end{lemma}
\begin{proof}
Let $X$ be the scheme representing the functor $F$.
Note that $X$ is a scheme over $S$ since the functor $F$
comes equipped with a natural transformation $F \to h_S$.
Write $Y = \underline{\text{Proj}}_S(\mathcal{A})$.
We have to show that $X \cong Y$ as $S$-schemes.
We give two arguments.
\medskip\noindent
The first argument uses the construction of $X$ as the union
of the schemes $U_d$ representing $F_d$ in the
proof of Lemma \ref{lemma-relative-proj}.
Over each affine open of $S$ we can identify $X$ with the homogeneous spectrum
of the sections of $\mathcal{A}$ over that open, since this was
true for the opens $U_d$. Moreover, these identifications
are compatible with further restrictions to smaller affine opens.
On the other hand, $Y$ was constructed by glueing these
homogeneous spectra.
Hence we can glue these isomorphisms to an isomorphism
between $X$ and $\underline{\text{Proj}}_S(\mathcal{A})$ as
desired. Details omitted.
\medskip\noindent
Here is the second argument.
Lemma \ref{lemma-glue-relative-proj-twists}
shows that there exists a morphism of graded algebras
$$
\psi : \pi^*\mathcal{A}
\longrightarrow
\bigoplus\nolimits_{n \geq 0} \mathcal{O}_Y(n)
$$
over $Y$ which on sections over affine opens of $S$ agrees with
(\ref{equation-global-sections}). Hence for every $y \in Y$
there exists an open neighbourhood $V \subset Y$ of $y$
and an integer $d \geq 1$ such that for $d | n$ the sheaf
$\mathcal{O}_Y(n)|_V$ is invertible and the multiplication maps
$\mathcal{O}_Y(n)|_V \otimes_{\mathcal{O}_V} \mathcal{O}_Y(m)|_V
\to \mathcal{O}_Y(n + m)|_V$ are isomorphisms. Thus
$\psi$ restricted to the sheaf $\pi^*\mathcal{A}^{(d)}|_V$
gives an element of $F_d(V)$. Since the opens $V$ cover $Y$
we see ``$\psi$'' gives rise to an element of $F(Y)$.
Hence a canonical morphism $Y \to X$ over $S$.
Because this construction is completely canonical to see
that it is an isomorphism we may work locally on $S$.
Hence we reduce to the case $S$ affine where the result is clear.
\end{proof}
\begin{definition}
\label{definition-relative-proj}
Let $S$ be a scheme. Let $\mathcal{A}$ be a quasi-coherent sheaf of
graded $\mathcal{O}_S$-algebras. The
{\it relative homogeneous spectrum of $\mathcal{A}$ over $S$},
or the {\it homogeneous spectrum of $\mathcal{A}$ over $S$}, or the
{\it relative Proj of $\mathcal{A}$ over $S$} is the scheme
constructed in Lemma \ref{lemma-glue-relative-proj} which represents the
functor $F$ (\ref{equation-proj}), see
Lemma \ref{lemma-glueing-gives-functor-proj}.
We denote it $\pi : \underline{\text{Proj}}_S(\mathcal{A}) \to S$.
\end{definition}
\noindent
The relative Proj comes equipped with a quasi-coherent
sheaf of $\mathbf{Z}$-graded algebras
$\bigoplus_{n \in \mathbf{Z}}
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(n)$
(the twists of the structure sheaf) and
a ``universal'' homomorphism of graded algebras
$$
\psi_{univ} :
\mathcal{A}
\longrightarrow
\pi_*\left(
\bigoplus\nolimits_{n \geq 0}
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(n)
\right)
$$
see Lemma \ref{lemma-glue-relative-proj-twists}. We may also think of this
as a homomorphism
$$
\psi_{univ} :
\pi^*\mathcal{A}
\longrightarrow
\bigoplus\nolimits_{n \geq 0}
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(n)
$$
if we like. The following lemma is a formulation of the
universality of this object.
\begin{lemma}
\label{lemma-tie-up-psi}
In Situation \ref{situation-relative-proj}.
Let $(f : T \to S, d, \mathcal{L}, \psi)$
be a quadruple. Let
$r_{d, \mathcal{L}, \psi} : T \to \underline{\text{Proj}}_S(\mathcal{A})$
be the associated $S$-morphism.
There exists an isomorphism
of $\mathbf{Z}$-graded $\mathcal{O}_T$-algebras
$$
\theta :
r_{d, \mathcal{L}, \psi}^*\left(
\bigoplus\nolimits_{n \in \mathbf{Z}}
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(nd)
\right)
\longrightarrow
\bigoplus\nolimits_{n \in \mathbf{Z}} \mathcal{L}^{\otimes n}
$$
such that the following diagram commutes
$$
\xymatrix{
\mathcal{A}^{(d)} \ar[rr]_-{\psi}
\ar[rd]_-{\psi_{univ}} & &
f_*\left(
\bigoplus\nolimits_{n \in \mathbf{Z}}
\mathcal{L}^{\otimes n}
\right) \\
&
\pi_*\left(
\bigoplus\nolimits_{n \geq 0}
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(nd)
\right) \ar[ru]_\theta
}
$$
The commutativity of this diagram uniquely determines $\theta$.
\end{lemma}
\begin{proof}
Note that the quadruple $(f : T \to S, d, \mathcal{L}, \psi)$
defines an element of $F_d(T)$. Let
$U_d \subset \underline{\text{Proj}}_S(\mathcal{A})$
be the locus
where the sheaf $\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(d)$
is invertible and generated by the image of
$\psi_{univ} : \pi^*\mathcal{A}_d \to
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(d)$.
Recall that $U_d$ represents the functor $F_d$, see the proof
of Lemma \ref{lemma-relative-proj}. Hence the result will follow
if we can show the quadruple
$(U_d \to S, d, \mathcal{O}_{U_d}(d), \psi_{univ}|_{\mathcal{A}^{(d)}})$
is the universal family, i.e., the representing object in $F_d(U_d)$.
We may do this after restricting to an affine open of $S$ because
(a) the formation of the functors $F_d$ commutes with base change
(see Lemma \ref{lemma-proj-base-change}), and (b) the pair
$(\bigoplus_{n \in \mathbf{Z}}
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(n),
\psi_{univ})$
is constructed by glueing over affine opens in $S$
(see Lemma \ref{lemma-glue-relative-proj-twists}).
Hence we may assume that $S$ is affine. In this case the functor
of quadruples $F_d$ and the functor of triples $F_d$ agree
(see proof of Lemma \ref{lemma-relative-proj-affine}) and moreover
Lemma \ref{lemma-proj-functor-strict}
shows that $(d, \mathcal{O}_{U_d}(d), \psi^d)$
is the universal triple over $U_d$.
Going backwards through the identifications in the proof of
Lemma \ref{lemma-relative-proj-affine} shows that
$(U_d \to S, d, \mathcal{O}_{U_d}(d), \psi_{univ}|_{\mathcal{A}^{(d)}})$
is the universal quadruple as desired.
\end{proof}
\begin{lemma}
\label{lemma-relative-proj-separated}
Let $S$ be a scheme and $\mathcal{A}$ be a quasi-coherent sheaf
of graded $\mathcal{O}_S$-algebras. The morphism
$\pi : \underline{\text{Proj}}_S(\mathcal{A}) \to S$
is separated.
\end{lemma}
\begin{proof}
To prove a morphism is separated we may work locally on the base,
see Schemes, Section \ref{schemes-section-separation-axioms}.
By construction $\underline{\text{Proj}}_S(\mathcal{A})$ is
over any affine $U \subset S$ isomorphic to
$\text{Proj}(A)$ with $A = \mathcal{A}(U)$. By
Lemma \ref{lemma-proj-separated} we see that $\text{Proj}(A)$ is separated.
Hence $\text{Proj}(A) \to U$ is separated (see
Schemes, Lemma \ref{schemes-lemma-compose-after-separated}) as desired.
\end{proof}
\begin{lemma}
\label{lemma-relative-proj-base-change}
Let $S$ be a scheme and $\mathcal{A}$ be a quasi-coherent sheaf
of graded $\mathcal{O}_S$-algebras. Let $g : S' \to S$ be any morphism
of schemes. Then there is a canonical isomorphism
$$
r :
\underline{\text{Proj}}_{S'}(g^*\mathcal{A})
\longrightarrow
S' \times_S \underline{\text{Proj}}_S(\mathcal{A})
$$
as well as a corresponding isomorphism
$$
\theta :
r^*\text{pr}_2^*\left(\bigoplus\nolimits_{d \in \mathbf{Z}}
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(d)\right)
\longrightarrow
\bigoplus\nolimits_{d \in \mathbf{Z}}
\mathcal{O}_{\underline{\text{Proj}}_{S'}(g^*\mathcal{A})}(d)
$$
of $\mathbf{Z}$-graded
$\mathcal{O}_{\underline{\text{Proj}}_{S'}(g^*\mathcal{A})}$-algebras.
\end{lemma}
\begin{proof}
This follows from Lemma \ref{lemma-proj-base-change} and the construction
of $\underline{\text{Proj}}_S(\mathcal{A})$ in
Lemma \ref{lemma-relative-proj} as the union
of the schemes $U_d$ representing the functors $F_d$.
In terms of the construction of relative Proj via glueing
this isomorphism is given by the isomorphisms constructed
in Lemma \ref{lemma-base-change-map-proj} which provides us with
the isomorphism $\theta$. Some details omitted.
\end{proof}
\begin{lemma}
\label{lemma-apply-relative}
Let $S$ be a scheme.
Let $\mathcal{A}$ be a quasi-coherent sheaf of graded $\mathcal{O}_S$-modules
generated as an $\mathcal{A}_0$-algebra by $\mathcal{A}_1$.
In this case the scheme $X = \underline{\text{Proj}}_S(\mathcal{A})$
represents the functor $F_1$ which associates to a scheme
$f : T \to S$ over $S$ the set of pairs $(\mathcal{L}, \psi)$, where
\begin{enumerate}
\item $\mathcal{L}$ is an invertible $\mathcal{O}_T$-module, and
\item $\psi : f^*\mathcal{A} \to \bigoplus_{n \geq 0} \mathcal{L}^{\otimes n}$
is a graded $\mathcal{O}_T$-algebra homomorphism such that
$f^*\mathcal{A}_1 \to \mathcal{L}$ is surjective
\end{enumerate}
up to strict equivalence as above. Moreover, in this case all the
quasi-coherent sheaves
$\mathcal{O}_{\underline{\text{Proj}}(\mathcal{A})}(n)$
are invertible
$\mathcal{O}_{\underline{\text{Proj}}(\mathcal{A})}$-modules
and the multiplication maps induce isomorphisms
$
\mathcal{O}_{\underline{\text{Proj}}(\mathcal{A})}(n)
\otimes_{\mathcal{O}_{\underline{\text{Proj}}(\mathcal{A})}}
\mathcal{O}_{\underline{\text{Proj}}(\mathcal{A})}(m) =
\mathcal{O}_{\underline{\text{Proj}}(\mathcal{A})}(n + m)$.
\end{lemma}
\begin{proof}
Under the assumptions of the lemma the sheaves
$\mathcal{O}_{\underline{\text{Proj}}(\mathcal{A})}(n)$
are invertible and the multiplication maps isomorphisms
by Lemma \ref{lemma-relative-proj} and
Lemma \ref{lemma-apply}
over affine opens of $S$. Thus $X$ actually represents the
functor $F_1$, see proof of Lemma \ref{lemma-relative-proj}.
\end{proof}
\section{Quasi-coherent sheaves on relative Proj}
\label{section-quasi-coherent-relative-proj}
\noindent
We briefly discuss how to deal with graded modules in the relative
setting.
\medskip\noindent
We place ourselves in Situation \ref{situation-relative-proj}.
So $S$ is a scheme, and
$\mathcal{A}$ is a quasi-coherent graded $\mathcal{O}_S$-algebra.
Let $\mathcal{M} = \bigoplus_{n \in \mathbf{Z}} \mathcal{M}_n$
be a graded $\mathcal{A}$-module, quasi-coherent as an $\mathcal{O}_S$-module.
We are going to describe the associated quasi-coherent sheaf
of modules on $\underline{\text{Proj}}_S(\mathcal{A})$.
We first describe the value of this sheaf schemes $T$ mapping
into the relative Proj.
\medskip\noindent
Let $T$ be a scheme. Let $(d, f : T \to S, \mathcal{L}, \psi)$
be a quadruple over $T$, as in Section \ref{section-relative-proj}.
We define a quasi-coherent sheaf
$\widetilde{\mathcal{M}}_T$ of $\mathcal{O}_T$-modules
as follows
\begin{equation}
\label{equation-widetilde-M}
\widetilde{\mathcal{M}}_T =
\left(
f^*\mathcal{M}^{(d)}
\otimes_{f^*\mathcal{A}^{(d)}}
\left(\bigoplus\nolimits_{n \in \mathbf{Z}} \mathcal{L}^{\otimes n}\right)
\right)_0
\end{equation}
So $\widetilde{\mathcal{M}}_T$ is the degree $0$ part
of the tensor product of the graded $f^*\mathcal{A}^{(d)}$-modules
$\mathcal{M}^{(d)}$ and
$\bigoplus\nolimits_{n \in \mathbf{Z}} \mathcal{L}^{\otimes n}$.
Note that the sheaf $\widetilde{\mathcal{M}}_T$ depends on the quadruple
even though we suppressed this in the notation.
This construction has the pleasing property that
given any morphism $g : T' \to T$ we have
$\widetilde{\mathcal{M}}_{T'} = g^*\widetilde{\mathcal{M}}_T$
where $\widetilde{\mathcal{M}}_{T'}$ denotes the quasi-coherent
sheaf associated to the pullback quadruple
$(d, f \circ g, g^*\mathcal{L}, g^*\psi)$.
\medskip\noindent
Since all sheaves in (\ref{equation-widetilde-M}) are quasi-coherent
we can spell out the construction
over an affine open $\Spec(C) = V \subset T$
which maps into an affine open $\Spec(R) = U \subset S$.
Namely, suppose that $\mathcal{A}|_U$ corresponds
to the graded $R$-algebra $A$, that $\mathcal{M}|_U$ corresponds to the
graded $A$-module $M$, and that $\mathcal{L}|_V$ corresponds to the
invertible $C$-module $L$. The map $\psi$ gives
rise to a graded $R$-algebra map
$\gamma : A^{(d)} \to \bigoplus_{n \geq 0} L^{\otimes n}$.
(Tensor powers of $L$ over $C$.)
Then $(\widetilde{\mathcal{M}}_T)|_V$
is the quasi-coherent sheaf associated to the $C$-module
$$
N_{R, C, A, M, \gamma} =
\left(
M^{(d)} \otimes_{A^{(d)}, \gamma}
\left(\bigoplus\nolimits_{n \in \mathbf{Z}} L^{\otimes n}\right)
\right)_0
$$
By assumption we may even cover $T$ by affine opens
$V$ such that there exists some $a \in A_d$ such that
$\gamma(a) \in L$ is a $C$-basis for the module $L$.
In that case any element of $N_{R, C, A, M, \gamma}$ is a sum
of pure tensors $\sum m_i \otimes \gamma(a)^{-n_i}$ with $m \in M_{n_id}$.
In fact we may multiply each $m_i$ with a suitable positive power
of $a$ and collect terms to see that each element of $N_{R, C, A, M, \gamma}$
can be written as $m \otimes \gamma(a)^{-n}$ with $m \in M_{nd}$ and
$n \gg 0$. In other words we see that in this case
$$
N_{R, C, A, M, \gamma} = M_{(a)} \otimes_{A_{(a)}} C
$$
where the map $A_{(a)} \to C$ is the map
$x/a^n \mapsto \gamma(x)/\gamma(a)^n$. In other words, this is
the value of $\widetilde{M}$ on $D_{+}(a) \subset \text{Proj}(A)$
pulled back to $\Spec(C)$ via the morphism
$\Spec(C) \to D_{+}(a)$ coming from $\gamma$.
\begin{lemma}
\label{lemma-relative-proj-modules}
In Situation \ref{situation-relative-proj}.
For any quasi-coherent sheaf of graded $\mathcal{A}$-modules
$\mathcal{M}$ on $S$, there exists a canonical associated sheaf
of $\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}$-modules
$\widetilde{\mathcal{M}}$ with the following properties:
\begin{enumerate}
\item Given a scheme $T$ and a quadruple
$(T \to S, d, \mathcal{L}, \psi)$ over $T$
corresponding to a morphism
$h : T \to \underline{\text{Proj}}_S(\mathcal{A})$ there is
a canonical isomorphism
$\widetilde{\mathcal{M}}_T = h^*\widetilde{\mathcal{M}}$
where $\widetilde{\mathcal{M}}_T$ is defined by (\ref{equation-widetilde-M}).
\item The isomorphisms of (1) are compatible with pullbacks.
\item There is a canonical map
$$
\pi^*\mathcal{M}_0 \longrightarrow \widetilde{\mathcal{M}}.
$$
\item The construction $\mathcal{M} \mapsto \widetilde{\mathcal{M}}$
is functorial in $\mathcal{M}$.
\item The construction $\mathcal{M} \mapsto \widetilde{\mathcal{M}}$
is exact.
\item There are canonical maps
$$
\widetilde{\mathcal{M}}
\otimes_{\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}}
\widetilde{\mathcal{N}}
\longrightarrow
\widetilde{\mathcal{M} \otimes_\mathcal{A} \mathcal{N}}
$$
as in
Lemma \ref{lemma-widetilde-tensor}.
\item There exist canonical maps
$$
\pi^*\mathcal{M}
\longrightarrow
\bigoplus\nolimits_{n \in \mathbf{Z}}
\widetilde{\mathcal{M}(n)}
$$
generalizing (\ref{equation-global-sections-more-generally}).
\item The formation of $\widetilde{\mathcal{M}}$ commutes with base change.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted. We should split this lemma into parts and prove the parts separately.
\end{proof}
\section{Functoriality of relative Proj}
\label{section-functoriality-relative-proj}
\noindent
This section is the analogue of Section \ref{section-functoriality-proj}
for the relative Proj. Let $S$ be a scheme. A graded $\mathcal{O}_S$-algebra
map $\psi : \mathcal{A} \to \mathcal{B}$ does not always give rise to a
morphism of associated relative Proj. The correct result is stated as follows.
\begin{lemma}
\label{lemma-morphism-relative-proj}
Let $S$ be a scheme. Let $\mathcal{A}$, $\mathcal{B}$ be two graded
quasi-coherent $\mathcal{O}_S$-algebras. Set
$p : X = \underline{\text{Proj}}_S(\mathcal{A}) \to S$ and
$q : Y = \underline{\text{Proj}}_S(\mathcal{B}) \to S$. Let
$\psi : \mathcal{A} \to \mathcal{B}$ be a homomorphism of
graded $\mathcal{O}_S$-algebras. There is a canonical open
$U(\psi) \subset Y$ and a canonical morphism of schemes
$$
r_\psi :
U(\psi)
\longrightarrow
X
$$
over $S$ and a map of $\mathbf{Z}$-graded $\mathcal{O}_{U(\psi)}$-algebras
$$
\theta = \theta_\psi :
r_\psi^*\left(
\bigoplus\nolimits_{d \in \mathbf{Z}} \mathcal{O}_X(d)
\right)
\longrightarrow
\bigoplus\nolimits_{d \in \mathbf{Z}} \mathcal{O}_{U(\psi)}(d).
$$
The triple $(U(\psi), r_\psi, \theta)$ is characterized by the property
that for any affine open $W \subset S$ the triple
$$
(U(\psi) \cap p^{-1}W,\quad
r_\psi|_{U(\psi) \cap p^{-1}W} : U(\psi) \cap p^{-1}W \to q^{-1}W,\quad
\theta|_{U(\psi) \cap p^{-1}W})
$$
is equal to the triple associated to
$\psi : \mathcal{A}(W) \to \mathcal{B}(W)$ in
Lemma \ref{lemma-morphism-proj} via the identifications
$p^{-1}W = \text{Proj}(\mathcal{A}(W))$ and
$q^{-1}W = \text{Proj}(\mathcal{B}(W))$ of
Section \ref{section-relative-proj-via-glueing}.
\end{lemma}
\begin{proof}
This lemma proves itself by glueing the local triples.
\end{proof}
\begin{lemma}
\label{lemma-morphism-relative-proj-transitive}
Let $S$ be a scheme. Let $\mathcal{A}$, $\mathcal{B}$, and $\mathcal{C}$ be
quasi-coherent graded $\mathcal{O}_S$-algebras.
Set $X = \underline{\text{Proj}}_S(\mathcal{A})$,
$Y = \underline{\text{Proj}}_S(\mathcal{B})$ and
$Z = \underline{\text{Proj}}_S(\mathcal{C})$.
Let $\varphi : \mathcal{A} \to \mathcal{B}$,
$\psi : \mathcal{B} \to \mathcal{C}$ be graded $\mathcal{O}_S$-algebra maps.
Then we have
$$
U(\psi \circ \varphi) = r_\varphi^{-1}(U(\psi))
\quad
\text{and}
\quad
r_{\psi \circ \varphi}
=
r_\varphi \circ r_\psi|_{U(\psi \circ \varphi)}.
$$
In addition we have
$$
\theta_\psi \circ r_\psi^*\theta_\varphi
=
\theta_{\psi \circ \varphi}
$$
with obvious notation.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-surjective-graded-rings-map-relative-proj}
With hypotheses and notation as in Lemma \ref{lemma-morphism-relative-proj}
above. Assume $\mathcal{A}_d \to \mathcal{B}_d$ is surjective for
$d \gg 0$. Then
\begin{enumerate}
\item $U(\psi) = Y$,
\item $r_\psi : Y \to X$ is a closed immersion, and
\item the maps $\theta : r_\psi^*\mathcal{O}_X(n) \to \mathcal{O}_Y(n)$
are surjective but not isomorphisms in general (even if
$\mathcal{A} \to \mathcal{B}$ is surjective).
\end{enumerate}
\end{lemma}
\begin{proof}
Follows on combining
Lemma \ref{lemma-morphism-relative-proj}
with
Lemma \ref{lemma-surjective-graded-rings-map-proj}.
\end{proof}
\begin{lemma}
\label{lemma-eventual-iso-graded-rings-map-relative-proj}
With hypotheses and notation as in Lemma \ref{lemma-morphism-relative-proj}
above. Assume $\mathcal{A}_d \to \mathcal{B}_d$ is an isomorphism for all
$d \gg 0$. Then
\begin{enumerate}
\item $U(\psi) = Y$,
\item $r_\psi : Y \to X$ is an isomorphism, and
\item the maps $\theta : r_\psi^*\mathcal{O}_X(n) \to \mathcal{O}_Y(n)$
are isomorphisms.
\end{enumerate}
\end{lemma}
\begin{proof}
Follows on combining
Lemma \ref{lemma-morphism-relative-proj}
with
Lemma \ref{lemma-eventual-iso-graded-rings-map-proj}.
\end{proof}
\begin{lemma}
\label{lemma-surjective-generated-degree-1-map-relative-proj}
With hypotheses and notation as in Lemma \ref{lemma-morphism-relative-proj}
above. Assume $\mathcal{A}_d \to \mathcal{B}_d$ is surjective for $d \gg 0$
and that $\mathcal{A}$ is generated by $\mathcal{A}_1$ over $\mathcal{A}_0$.
Then
\begin{enumerate}
\item $U(\psi) = Y$,
\item $r_\psi : Y \to X$ is a closed immersion, and
\item the maps $\theta : r_\psi^*\mathcal{O}_X(n) \to \mathcal{O}_Y(n)$
are isomorphisms.
\end{enumerate}
\end{lemma}
\begin{proof}
Follows on combining
Lemma \ref{lemma-morphism-relative-proj}
with
Lemma \ref{lemma-surjective-graded-rings-generated-degree-1-map-proj}.
\end{proof}
\section{Invertible sheaves and morphisms into relative Proj}
\label{section-invertible-relative-proj}
\noindent
It seems that we may need the following lemma somewhere.
The situation is the following:
\begin{enumerate}
\item Let $S$ be a scheme.
\item Let $\mathcal{A}$ be a quasi-coherent graded $\mathcal{O}_S$-algebra.
\item Denote $\pi : \underline{\text{Proj}}_S(\mathcal{A}) \to S$ the relative
homogeneous spectrum over $S$.
\item Let $f : X \to S$ be a morphism of schemes.
\item Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
\item Let $\psi : f^*\mathcal{A} \to
\bigoplus_{d \geq 0} \mathcal{L}^{\otimes d}$
be a homomorphism of graded $\mathcal{O}_X$-algebras.
\end{enumerate}
Given this data set
$$
U(\psi) = \bigcup\nolimits_{(U, V, a)} U_{\psi(a)}
$$
where $(U, V, a)$ satisfies:
\begin{enumerate}
\item $V \subset S$ affine open,
\item $U = f^{-1}(V)$, and
\item $a \in \mathcal{A}(V)_{+}$ is homogeneous.
\end{enumerate}
Namely, then $\psi(a) \in \Gamma(U, \mathcal{L}^{\otimes \deg(a)})$
and $U_{\psi(a)}$ is the corresponding open (see
Modules, Lemma \ref{modules-lemma-s-open}).
\begin{lemma}
\label{lemma-invertible-map-into-relative-proj}
With assumptions and notation as above. The morphism
$\psi$ induces a canonical morphism of schemes over $S$
$$
r_{\mathcal{L}, \psi} :
U(\psi) \longrightarrow \underline{\text{Proj}}_S(\mathcal{A})
$$
together with a map of graded $\mathcal{O}_{U(\psi)}$-algebras
$$
\theta :
r_{\mathcal{L}, \psi}^*\left(
\bigoplus\nolimits_{d \geq 0}
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(d)
\right)
\longrightarrow
\bigoplus\nolimits_{d \geq 0} \mathcal{L}^{\otimes d}|_{U(\psi)}
$$
characterized by the following properties:
\begin{enumerate}
\item For every open $V \subset S$ and every $d \geq 0$ the diagram
$$
\xymatrix{
\mathcal{A}_d(V) \ar[d]_{\psi} \ar[r]_{\psi} &
\Gamma(f^{-1}(V), \mathcal{L}^{\otimes d}) \ar[d]^{restrict} \\
\Gamma(\pi^{-1}(V),
\mathcal{O}_{\underline{\text{Proj}}_S(\mathcal{A})}(d)) \ar[r]^{\theta} &
\Gamma(f^{-1}(V) \cap U(\psi), \mathcal{L}^{\otimes d})
}
$$
is commutative.
\item For any $d \geq 1$ and any open subscheme $W \subset X$
such that $\psi|_W : f^*\mathcal{A}_d|_W \to \mathcal{L}^{\otimes d}|_W$
is surjective the restriction of the morphism $r_{\mathcal{L}, \psi}$
agrees with the morphism $W \to \underline{\text{Proj}}_S(\mathcal{A})$
which exists by the construction of the relative homogeneous spectrum,
see Definition \ref{definition-relative-proj}.
\item For any affine open $V \subset S$, the restriction
$$
(U(\psi) \cap f^{-1}(V), r_{\mathcal{L}, \psi}|_{U(\psi) \cap f^{-1}(V)},
\theta|_{U(\psi) \cap f^{-1}(V)})
$$
agrees via $i_V$ (see Lemma \ref{lemma-glue-relative-proj}) with the triple
$(U(\psi'), r_{\mathcal{L}, \psi'}, \theta')$
of Lemma \ref{lemma-invertible-map-into-proj} associated to the map
$\psi' : A = \mathcal{A}(V) \to \Gamma_*(f^{-1}(V), \mathcal{L}|_{f^{-1}(V)})$
induced by $\psi$.
\end{enumerate}
\end{lemma}
\begin{proof}
Use characterization (3) to construct the morphism $r_{\mathcal{L}, \psi}$
and $\theta$ locally over $S$. Use the uniqueness of
Lemma \ref{lemma-invertible-map-into-proj}
to show that the construction glues. Details omitted.
\end{proof}
\section{Twisting by invertible sheaves and relative Proj}
\label{section-twisting-and-proj}
\noindent
Let $S$ be a scheme.
Let $\mathcal{A} = \bigoplus_{d \geq 0} \mathcal{A}_d$ be a
quasi-coherent graded $\mathcal{O}_S$-algebra.
Let $\mathcal{L}$ be an invertible sheaf on $S$.
In this situation we obtain another quasi-coherent graded
$\mathcal{O}_S$-algebra, namely
$$
\mathcal{B}
=
\bigoplus\nolimits_{d \geq 0}
\mathcal{A}_d \otimes_{\mathcal{O}_S} \mathcal{L}^{\otimes d}
$$
It turns out that $\mathcal{A}$ and $\mathcal{B}$ have
isomorphic relative homogeneous spectra.
\begin{lemma}
\label{lemma-twisting-and-proj}
With notation $S$, $\mathcal{A}$, $\mathcal{L}$ and $\mathcal{B}$ as
above. There is a canonical isomorphism
$$
\xymatrix{
P = \underline{\text{Proj}}_S(\mathcal{A})
\ar[rr]_g \ar[rd]_\pi & &
\underline{\text{Proj}}_S(\mathcal{B}) = P'
\ar[ld]^{\pi'} \\
& S &
}
$$
with the following properties
\begin{enumerate}
\item There are isomorphisms
$\theta_n : g^*\mathcal{O}_{P'}(n)
\to
\mathcal{O}_P(n) \otimes \pi^*\mathcal{L}^{\otimes n}$
which fit together to give an isomorphism of $\mathbf{Z}$-graded
algebras
$$
\theta :
g^*\left(
\bigoplus\nolimits_{n \in \mathbf{Z}} \mathcal{O}_{P'}(n)
\right)
\longrightarrow
\bigoplus\nolimits_{n \in \mathbf{Z}} \mathcal{O}_P(n)
\otimes \pi^*\mathcal{L}^{\otimes n}
$$
\item For every open $V \subset S$ the diagrams
$$
\xymatrix{
\mathcal{A}_n(V) \otimes \mathcal{L}^{\otimes n}(V)
\ar[r]_{multiply} \ar[d]^{\psi \otimes \pi^*}
&
\mathcal{B}_n(V) \ar[dd]^\psi \\
\Gamma(\pi^{-1}V, \mathcal{O}_P(n)) \otimes
\Gamma(\pi^{-1}V, \pi^*\mathcal{L}^{\otimes n})
\ar[d]^{multiply} \\
\Gamma(\pi^{-1}V, \mathcal{O}_P(n) \otimes \pi^*\mathcal{L}^{\otimes n})
&
\Gamma(\pi'^{-1}V, \mathcal{O}_{P'}(n)) \ar[l]_-{\theta_n}
}
$$
are commutative.
\item Add more here as necessary.
\end{enumerate}
\end{lemma}
\begin{proof}
This is the identity map when $\mathcal{L} \cong \mathcal{O}_S$.
In general choose an open covering of $S$ such that $\mathcal{L}$
is trivialized over the pieces and glue the corresponding maps.
Details omitted.
\end{proof}
\section{Projective bundles}
\label{section-projective-bundle}
\noindent
Let $S$ be a scheme.
Let $\mathcal{E}$ be a quasi-coherent sheaf of $\mathcal{O}_S$-modules.
By Modules, Lemma \ref{modules-lemma-whole-tensor-algebra-permanence}
the symmetric algebra $\text{Sym}(\mathcal{E})$ of
$\mathcal{E}$ over $\mathcal{O}_S$
is a quasi-coherent sheaf of $\mathcal{O}_S$-algebras.
Note that it is generated in degree $1$ over $\mathcal{O}_S$.
Hence it makes sense to apply the construction of the
previous section to it, specifically Lemmas
\ref{lemma-relative-proj} and \ref{lemma-apply-relative}.
\begin{definition}
\label{definition-projective-bundle}
Let $S$ be a scheme. Let $\mathcal{E}$ be a quasi-coherent
$\mathcal{O}_S$-module\footnote{The reader may expect here
the condition that $\mathcal{E}$ is finite locally free. We do not
do so in order to be consistent with
\cite[II, Definition 4.1.1]{EGA}.}.
We denote
$$
\pi :
\mathbf{P}(\mathcal{E}) = \underline{\text{Proj}}_S(\text{Sym}(\mathcal{E}))
\longrightarrow
S
$$
and we call it the {\it projective bundle associated to $\mathcal{E}$}.
The symbol $\mathcal{O}_{\mathbf{P}(\mathcal{E})}(n)$
indicates the invertible $\mathcal{O}_{\mathbf{P}(\mathcal{E})}$-module
of Lemma \ref{lemma-apply-relative} and is called the $n$th
{\it twist of the structure sheaf}.
\end{definition}
\noindent
According to Lemma \ref{lemma-glue-relative-proj-twists} there are
canonical $\mathcal{O}_S$-module homomorphisms
$$
\text{Sym}^n(\mathcal{E})
\longrightarrow
\pi_*\mathcal{O}_{\mathbf{P}(\mathcal{E})}(n)
\quad\text{equivalently}\quad
\pi^*\text{Sym}^n(\mathcal{E})
\longrightarrow
\mathcal{O}_{\mathbf{P}(\mathcal{E})}(n)
$$
for all $n \geq 0$. In particular, for $n = 1$ we have
$$
\mathcal{E}
\longrightarrow
\pi_*\mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)
\quad\text{equivalently}\quad
\pi^*\mathcal{E}
\longrightarrow
\mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)
$$
and the map $\pi^*\mathcal{E} \to \mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)$
is a surjection by Lemma \ref{lemma-apply-relative}.
This is a good way to remember how we have normalized
our construction of $\mathbf{P}(\mathcal{E})$.
\medskip\noindent
Warning: In some references the scheme $\mathbf{P}(\mathcal{E})$
is only defined for $\mathcal{E}$ finite locally free on $S$.
Moreover sometimes $\mathbf{P}(\mathcal{E})$ is actually defined as our
$\mathbf{P}(\mathcal{E}^\vee)$ where $\mathcal{E}^\vee$
is the dual of $\mathcal{E}$ (and this is done only when $\mathcal{E}$ is
finite locally free).
\medskip\noindent
Let $S$, $\mathcal{E}$, $\mathbf{P}(\mathcal{E}) \to S$ be as in
Definition \ref{definition-projective-bundle}. Let $f : T \to S$
be a scheme over $S$. Let $\psi : f^*\mathcal{E} \to \mathcal{L}$
be a surjection where $\mathcal{L}$ is an invertible $\mathcal{O}_T$-module.
The induced graded $\mathcal{O}_T$-algebra map
$$
f^*\text{Sym}(\mathcal{E}) = \text{Sym}(f^*\mathcal{E}) \to
\text{Sym}(\mathcal{L}) = \bigoplus\nolimits_{n \geq 0} \mathcal{L}^{\otimes n}
$$
corresponds to a morphism
$$
\varphi_{\mathcal{L}, \psi} : T \longrightarrow \mathbf{P}(\mathcal{E})
$$
over $S$ by our construction of the relative Proj as the scheme representing
the functor $F$ in Section \ref{section-relative-proj}. On the other hand,
given a morphism $\varphi : T \to \mathbf{P}(\mathcal{E})$ over $S$
we can set $\mathcal{L} = \varphi^*\mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)$
and $\psi : f^*\mathcal{E} \to \mathcal{L}$ equal to the pullback
by $\varphi$ of the canonical surjection
$\pi^*\mathcal{E} \to \mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)$.
By Lemma \ref{lemma-apply-relative} these constructions
are inverse bijections between the set of isomorphism classes of pairs
$(\mathcal{L}, \psi)$ and the set of morphisms
$\varphi : T \to \mathbf{P}(\mathcal{E})$ over $S$.
Thus we see that $\mathbf{P}(\mathcal{E})$ represents the functor
which associates to $f : T \to S$ the set of $\mathcal{O}_T$-module
quotients of $f^*\mathcal{E}$ which are locally free of rank $1$.
\begin{example}[Projective space of a vector space]
\label{example-projective-space}
Let $k$ be a field. Let $V$ be a $k$-vector space. The corresponding
{\it projective space} is the $k$-scheme
$$
\mathbf{P}(V) = \text{Proj}(\text{Sym}(V))
$$
where $\text{Sym}(V)$ is the symmetric algebra on $V$ over $k$.
Of course we have $\mathbf{P}(V) \cong \mathbf{P}^n_k$ if $\dim(V) = n + 1$
because then the symmetric algebra on $V$ is isomorphic to a polynomial
ring in $n + 1$ variables. If we
think of $V$ as a quasi-coherent module on $\Spec(k)$, then $\mathbf{P}(V)$
is the corresponding projective space bundle over $\Spec(k)$. By the
discussion above a $k$-valued point $p$ of $\mathbf{P}(V)$ corresponds to
a surjection of $k$-vector spaces $V \to L_p$ with $\dim(L_p) = 1$.
More generally, let $X$ be a scheme over $k$, let $\mathcal{L}$ be an
invertible $\mathcal{O}_X$-module, and let
$\psi : V \to \Gamma(X, \mathcal{L})$ be a $k$-linear map
such that $\mathcal{L}$ is generated as an $\mathcal{O}_X$-module
by the sections in the image of $\psi$. Then the discussion above
gives a canonical morphism
$$
\varphi_{\mathcal{L}, \psi} : X \longrightarrow \mathbf{P}(V)
$$
of schemes over $k$ such that there is an isomorphism
$\theta : \varphi_{\mathcal{L}, \psi}^*\mathcal{O}_{\mathbf{P}(V)}(1)
\to \mathcal{L}$ and such that $\psi$ agrees with the composition
$$
V \to
\Gamma(\mathbf{P}(V), \mathcal{O}_{\mathbf{P}(V)}(1))
\to
\Gamma(X, \varphi_{\mathcal{L}, \psi}^*\mathcal{O}_{\mathbf{P}(V)}(1))
\to
\Gamma(X, \mathcal{L})
$$
See Lemma \ref{lemma-invertible-map-into-proj}. If
$V \subset \Gamma(X, \mathcal{L})$ is a subspace, then we will
denote the morphism constructed above simply as
$\varphi_{\mathcal{L}, V}$.
If $\dim(V) = n + 1$ and we choose a basis $v_0, \ldots, v_n$ of $V$
then the diagram
$$
\xymatrix{
X \ar@{=}[d] \ar[rr]_{\varphi_{\mathcal{L}, \psi}} & &
\mathbf{P}(V) \ar[d]^{\cong} \\
X \ar[rr]^{\varphi_{(\mathcal{L}, (s_0, \ldots, s_n))}} & &
\mathbf{P}^n_k
}
$$
is commutative, where $s_i = \psi(v_i) \in \Gamma(X, \mathcal{L})$, where
$\varphi_{(\mathcal{L}, (s_0, \ldots, s_n))}$
is as in Section \ref{section-projective-space},
and where the right vertical arrow corresponds
to the isomorphism $k[T_0, \ldots, T_n] \to \text{Sym}(V)$ sending
$T_i$ to $v_i$.
\end{example}
\begin{example}
\label{example-projective-bundle}
The map $\text{Sym}^n(\mathcal{E}) \to
\pi_*(\mathcal{O}_{\mathbf{P}(\mathcal{E})}(n))$
is an isomorphism if $\mathcal{E}$ is locally free, but in general
need not be an isomorphism. In fact we will give an example where
this map is not injective for $n = 1$. Set $S = \Spec(A)$ with
$$
A = k[u, v, s_1, s_2, t_1, t_2]/I
$$
where $k$ is a field and
$$
I = (-us_1 + vt_1 + ut_2, vs_1 + us_2 - vt_2, vs_2, ut_1).
$$
Denote $\overline{u}$ the class of $u$ in $A$ and similarly for
the other variables.
Let $M = (Ax \oplus Ay)/A(\overline{u}x + \overline{v}y)$ so that
$$
\text{Sym}(M) = A[x, y]/(\overline{u}x + \overline{v}y)
= k[x, y, u, v, s_1, s_2, t_1, t_2]/J
$$
where
$$
J = (-us_1 + vt_1 + ut_2, vs_1 + us_2 - vt_2, vs_2, ut_1, ux + vy).
$$
In this case the projective bundle associated to the quasi-coherent
sheaf $\mathcal{E} = \widetilde{M}$ on $S = \Spec(A)$ is the scheme
$$
P =
\text{Proj}(\text{Sym}(M)).
$$
Note that this scheme as an affine open covering
$P = D_{+}(x) \cup D_{+}(y)$.
Consider the element
$m \in M$ which is the image of the element
$us_1x + vt_2y$. Note that
$$
x(us_1x + vt_2y) = (s_1x + s_2y)(ux + vy) \bmod I
$$
and
$$
y(us_1x + vt_2y) = (t_1x + t_2y)(ux + vy) \bmod I.
$$
The first equation implies that $m$ maps to zero as a
section of $\mathcal{O}_P(1)$ on $D_{+}(x)$ and the second
that it maps to zero as a section of $\mathcal{O}_P(1)$ on $D_{+}(y)$.
This shows that $m$ maps to zero in $\Gamma(P, \mathcal{O}_P(1))$.
On the other hand we claim that $m \not = 0$, so that $m$ gives
an example of a nonzero global section of $\mathcal{E}$ mapping to zero
in $\Gamma(P, \mathcal{O}_P(1))$. Assume $m = 0$
to get a contradiction. In this case there exists
an element $f \in k[u, v, s_1, s_2, t_1, t_2]$ such that
$$
us_1x + vt_2y = f(ux + vy) \bmod I
$$
Since $I$ is generated by homogeneous polynomials of degree $2$ we
may decompose $f$ into its homogeneous components and take the
degree 1 component. In other words we may assume that
$$
f = au + bv + \alpha_1s_1 + \alpha_2s_2 + \beta_1t_1 + \beta_2t_2
$$
for some $a, b, \alpha_1, \alpha_2, \beta_1, \beta_2 \in k$.
The resulting conditions are that
$$
\begin{matrix}
us_1 - u(au + bv + \alpha_1s_1 + \alpha_2s_2 + \beta_1t_1 + \beta_2t_2)
\in I \\
vt_2 - v(au + bv + \alpha_1s_1 + \alpha_2s_2 + \beta_1t_1 + \beta_2t_2)
\in I
\end{matrix}
$$
There are no terms $u^2, uv, v^2$ in the generators of $I$ and
hence we see $a = b = 0$. Thus we get the relations
$$
\begin{matrix}
us_1 - u(\alpha_1s_1 + \alpha_2s_2 + \beta_1t_1 + \beta_2t_2)
\in I \\
vt_2 - v(\alpha_1s_1 + \alpha_2s_2 + \beta_1t_1 + \beta_2t_2)
\in I
\end{matrix}
$$
We may use the first generator of $I$ to replace any occurrence of
$us_1$ by $vt_1 + ut_2$, the second generator of $I$ to replace any
occurrence of $vs_1$ by $-us_2 + vt_2$, the third generator
to remove occurrences of $vs_2$ and the third to remove occurrences
of $ut_1$. Then we get the relations
$$
\begin{matrix}
(1 - \alpha_1)vt_1 + (1 - \alpha_1)ut_2 - \alpha_2us_2 - \beta_2ut_2 = 0 \\
(1 - \alpha_1)vt_2 + \alpha_1us_2 - \beta_1vt_1 - \beta_2vt_2 = 0
\end{matrix}
$$
This implies that $\alpha_1$ should be both $0$ and $1$ which is
a contradiction as desired.
\end{example}
\begin{lemma}
\label{lemma-projective-bundle-separated}
Let $S$ be a scheme.
The structure morphism $\mathbf{P}(\mathcal{E}) \to S$ of a
projective bundle over $S$ is separated.
\end{lemma}
\begin{proof}
Immediate from Lemma \ref{lemma-relative-proj-separated}.
\end{proof}
\begin{lemma}
\label{lemma-projective-space-bundle}
Let $S$ be a scheme. Let $n \geq 0$. Then
$\mathbf{P}^n_S$ is a projective bundle over $S$.
\end{lemma}
\begin{proof}
Note that
$$
\mathbf{P}^n_{\mathbf{Z}} =
\text{Proj}(\mathbf{Z}[T_0, \ldots, T_n]) =
\underline{\text{Proj}}_{\Spec(\mathbf{Z})}
\left(\widetilde{\mathbf{Z}[T_0, \ldots, T_n]}\right)
$$
where the grading on the ring $\mathbf{Z}[T_0, \ldots, T_n]$ is given by
$\deg(T_i) = 1$ and the elements of $\mathbf{Z}$ are in degree $0$.
Recall that $\mathbf{P}^n_S$ is defined as
$\mathbf{P}^n_{\mathbf{Z}} \times_{\Spec(\mathbf{Z})} S$.
Moreover, forming the relative homogeneous spectrum commutes with base change,
see Lemma \ref{lemma-relative-proj-base-change}.
For any scheme $g : S \to \Spec(\mathbf{Z})$ we have
$g^*\mathcal{O}_{\Spec(\mathbf{Z})}[T_0, \ldots, T_n]
= \mathcal{O}_S[T_0, \ldots, T_n]$.
Combining the above we see that
$$
\mathbf{P}^n_S = \underline{\text{Proj}}_S(\mathcal{O}_S[T_0, \ldots, T_n]).
$$
Finally, note that
$\mathcal{O}_S[T_0, \ldots, T_n] = \text{Sym}(\mathcal{O}_S^{\oplus n + 1})$.
Hence we see that $\mathbf{P}^n_S$ is a projective bundle over $S$.
\end{proof}
\section{Grassmannians}
\label{section-grassmannian}
\noindent
In this section we introduce the standard Grassmannian functors and
we show that they are represented by schemes. Pick integers $k$, $n$
with $0 < k < n$. We will construct a functor
\begin{equation}
\label{equation-gkn}
G(k, n) : \Sch \longrightarrow \textit{Sets}
\end{equation}
which will loosely speaking parametrize $k$-dimensional subspaces
of $n$-space. However, for technical reasons it is more convenient
to parametrize $(n - k)$-dimensional quotients and this is what we will
do.
\medskip\noindent
More precisely, $G(k, n)$ associates to a scheme $S$ the set $G(k, n)(S)$
of isomorphism classes of surjections
$$
q : \mathcal{O}_S^{\oplus n} \longrightarrow \mathcal{Q}
$$
where $\mathcal{Q}$ is a finite locally free $\mathcal{O}_S$-module
of rank $n - k$. Note that this is indeed a set, for example by
Modules, Lemma \ref{modules-lemma-set-isomorphism-classes-finite-type-modules}
or by the observation that the isomorphism class of the surjection $q$
is determined by the kernel of $q$ (and given a sheaf there is a set
of subsheaves). Given a morphism of schemes $f : T \to S$ we let
$G(k, n)(f) : G(k, n)(S) \to G(k, n)(T)$ which sends the
isomorphism class of $q : \mathcal{O}_S^{\oplus n} \longrightarrow \mathcal{Q}$
to the isomorphism class of
$f^*q : \mathcal{O}_T^{\oplus n} \longrightarrow f^*\mathcal{Q}$.
This makes sense since (1) $f^*\mathcal{O}_S = \mathcal{O}_T$,
(2) $f^*$ is additive, (3) $f^*$ preserves locally free modules
(Modules, Lemma \ref{modules-lemma-pullback-locally-free}),
and (4) $f^*$ is right exact
(Modules, Lemma \ref{modules-lemma-exactness-pushforward-pullback}).
\begin{lemma}
\label{lemma-gkn-representable}
Let $0 < k < n$.
The functor $G(k, n)$ of (\ref{equation-gkn}) is representable by a scheme.
\end{lemma}
\begin{proof}
Set $F = G(k, n)$. To prove the lemma we will use the criterion of
Schemes, Lemma \ref{schemes-lemma-glue-functors}.
The reason $F$ satisfies the sheaf property for the
Zariski topology is that we can glue sheaves, see Sheaves,
Section \ref{sheaves-section-glueing-sheaves} (some details omitted).
\medskip\noindent
The family of subfunctors $F_i$.
Let $I$ be the set of subsets of $\{1, \ldots, n\}$ of cardinality $n - k$.
Given a scheme $S$ and $j \in \{1, \ldots, n\}$ we denote $e_j$
the global section
$$
e_j = (0, \ldots, 0, 1, 0, \ldots, 0)\quad(1\text{ in }j\text{th spot})
$$
of $\mathcal{O}_S^{\oplus n}$. Of course these sections freely generate
$\mathcal{O}_S^{\oplus n}$. Similarly, for $j \in \{1, \ldots, n - k\}$
we denote $f_j$ the global section of $\mathcal{O}_S^{\oplus n - k}$
which is zero in all summands except the $j$th where we put a $1$.
For $i \in I$ we let
$$
s_i : \mathcal{O}_S^{\oplus n - k} \longrightarrow \mathcal{O}_S^{\oplus n}
$$
which is the direct sum of the coprojections
$\mathcal{O}_S \to \mathcal{O}_S^{\oplus n}$ corresponding to elements of $i$.
More precisely, if $i = \{i_1, \ldots, i_{n - k}\}$ with
$i_1 < i_2 < \ldots < i_{n - k}$
then $s_i$ maps $f_j$ to $e_{i_j}$ for $j \in \{1, \ldots, n - k\}$.
With this notation we can set
$$
F_i(S) = \{q : \mathcal{O}_S^{\oplus n} \to \mathcal{Q} \in F(S) \mid
q \circ s_i \text{ is surjective}\}
\subset F(S)
$$
Given a morphism $f : T \to S$ of schemes the pullback $f^*s_i$
is the corresponding map over $T$. Since $f^*$ is right exact
(Modules, Lemma \ref{modules-lemma-exactness-pushforward-pullback})
we conclude that $F_i$ is a subfunctor of $F$.
\medskip\noindent
Representability of $F_i$. To prove this we may assume (after renumbering)
that $i = \{1, \ldots, n - k\}$. This means $s_i$ is the inclusion of
the first $n - k$ summands. Observe that if $q \circ s_i$ is surjective,
then $q \circ s_i$ is an isomorphism as a surjective map between finite
locally free modules of the same rank
(Modules, Lemma \ref{modules-lemma-map-finite-locally-free}).
Thus if $q : \mathcal{O}_S^{\oplus n} \to \mathcal{Q}$ is an element of
$F_i(S)$, then we can use $q \circ s_i$ to identify $\mathcal{Q}$ with
$\mathcal{O}_S^{\oplus n - k}$. After doing so we obtain
$$
q : \mathcal{O}_S^{\oplus n} \longrightarrow \mathcal{O}_S^{\oplus n - k}
$$
mapping $e_j$ to $f_j$ (notation as above) for $j = 1, \ldots, n - k$.
To determine $q$ completely we have to fix the images
$q(e_{n - k + 1}), \ldots, q(e_n)$ in
$\Gamma(S, \mathcal{O}_S^{\oplus n - k})$.
It follows that $F_i$ is isomorphic to the functor
$$
S \longmapsto
\prod\nolimits_{j = n - k + 1, \ldots, n}
\Gamma(S, \mathcal{O}_S^{\oplus n - k})
$$
This functor is isomorphic to the $k(n - k)$-fold self product of the functor
$S \mapsto \Gamma(S, \mathcal{O}_S)$. By
Schemes, Example \ref{schemes-example-global-sections}
the latter is representable by $\mathbf{A}^1_\mathbf{Z}$. It follows $F_i$
is representable by $\mathbf{A}^{k(n - k)}_\mathbf{Z}$ since fibred product
over $\Spec(\mathbf{Z})$ is the product in the category of schemes.
\medskip\noindent
The inclusion $F_i \subset F$ is representable by open immersions.
Let $S$ be a scheme and let
$q : \mathcal{O}_S^{\oplus n} \to \mathcal{Q}$ be an element of
$F(S)$. By
Modules, Lemma \ref{modules-lemma-finite-type-surjective-on-stalk}.
the set $U_i = \{s \in S \mid (q \circ s_i)_s\text{ surjective}\}$
is open in $S$. Since $\mathcal{O}_{S, s}$ is a local ring
and $\mathcal{Q}_s$ a finite $\mathcal{O}_{S, s}$-module
by Nakayama's lemma (Algebra, Lemma \ref{algebra-lemma-NAK}) we have
$$
s \in U_i \Leftrightarrow
\left(
\text{the map }
\kappa(s)^{\oplus n - k} \to \mathcal{Q}_s/\mathfrak m_s\mathcal{Q}_s
\text{ induced by }
(q \circ s_i)_s
\text{ is surjective}
\right)
$$
Let $f : T \to S$ be a morphism of schemes and let $t \in T$ be a point
mapping to $s \in S$. We have
$(f^*\mathcal{Q})_t =
\mathcal{Q}_s \otimes_{\mathcal{O}_{S, s}} \mathcal{O}_{T, t}$
(Sheaves, Lemma \ref{sheaves-lemma-stalk-pullback-modules})
and so on. Thus the map
$$
\kappa(t)^{\oplus n - k} \to (f^*\mathcal{Q})_t/\mathfrak m_t(f^*\mathcal{Q})_t
$$
induced by $(f^*q \circ f^*s_i)_t$ is the base change of the map
$\kappa(s)^{\oplus n - k} \to \mathcal{Q}_s/\mathfrak m_s\mathcal{Q}_s$
above by the field extension $\kappa(t)/\kappa(s)$. It follows
that $s \in U_i$ if and only if $t$ is in the corresponding open
for $f^*q$. In particular $T \to S$ factors through $U_i$ if
and only if $f^*q \in F_i(T)$ as desired.
\medskip\noindent
The collection $F_i$, $i \in I$ covers $F$. Let
$q : \mathcal{O}_S^{\oplus n} \to \mathcal{Q}$ be an element of
$F(S)$. We have to show that for every point $s$ of $S$ there exists
an $i \in I$ such that $s_i$ is surjective in a neighbourhood of $s$.
Thus we have to show that one of the compositions
$$
\kappa(s)^{\oplus n - k} \xrightarrow{s_i}
\kappa(s)^{\oplus n} \rightarrow
\mathcal{Q}_s/\mathfrak m_s\mathcal{Q}_s
$$
is surjective (see previous paragraph). As
$\mathcal{Q}_s/\mathfrak m_s\mathcal{Q}_s$ is a vector space of
dimension $n - k$ this follows from the theory of vector spaces.
\end{proof}
\begin{definition}
\label{definition-grassmannian}
Let $0 < k < n$. The scheme $\mathbf{G}(k, n)$ representing the functor
$G(k, n)$ is called {\it Grassmannian over $\mathbf{Z}$}.
Its base change $\mathbf{G}(k, n)_S$ to a scheme $S$ is called
{\it Grassmannian over $S$}. If $R$ is a ring the base change
to $\Spec(R)$ is denoted $\mathbf{G}(k, n)_R$ and called
{\it Grassmannian over $R$}.
\end{definition}
\noindent
The definition makes sense as we've shown in
Lemma \ref{lemma-gkn-representable}
that these functors are indeed representable.
\begin{lemma}
\label{lemma-projective-space-grassmannian}
Let $n \geq 1$. There is a canonical isomorphism
$\mathbf{G}(n, n + 1) = \mathbf{P}^n_\mathbf{Z}$.
\end{lemma}
\begin{proof}
According to Lemma \ref{lemma-projective-space} the scheme
$\mathbf{P}^n_\mathbf{Z}$ represents the functor
which assigns to a scheme $S$ the set of isomorphisms classes
of pairs $(\mathcal{L}, (s_0, \ldots, s_n))$ consisting of
an invertible module $\mathcal{L}$ and an $(n + 1)$-tuple
of global sections generating $\mathcal{L}$.
Given such a pair we obtain a quotient
$$
\mathcal{O}_S^{\oplus n + 1} \longrightarrow \mathcal{L},\quad
(h_0, \ldots, h_n) \longmapsto \sum h_i s_i.
$$
Conversely, given an element
$q : \mathcal{O}_S^{\oplus n + 1} \to \mathcal{Q}$ of $G(n, n + 1)(S)$
we obtain such a pair, namely $(\mathcal{Q}, (q(e_1), \ldots, q(e_{n + 1})))$.
Here $e_i$, $i = 1, \ldots, n + 1$ are the standard generating sections
of the free module $\mathcal{O}_S^{\oplus n + 1}$.
We omit the verification that these constructions define mutually
inverse transformations of functors.
\end{proof}
\input{chapters}
\bibliography{my}
\bibliographystyle{amsalpha}
\end{document}
|