Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 18,562 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
\chapter{Characters}
Characters are basically the best thing ever.
To every representation $V$ of $A$ we will attach a
so-called character $\chi_V : A \to k$.
It will turn out that the characters of irreps of $V$
will determine the representation $V$ completely.
Thus an irrep is just specified by a set of $\dim A$ numbers.
\section{Definitions}
\begin{definition}
Let $V = (V, \rho)$ be a finite-dimensional representation of $A$.
The \vocab{character} $\chi_V : A \to k$ attached to
$A$ is defined by $\chi_V = \Tr \circ \rho$, i.e.\
\[ \chi_V(a) \defeq \Tr\left( \rho(a) : V \to V \right). \]
\end{definition}
Since $\Tr$ and $\rho$ are additive, this is a $k$-linear map
(but it is not multiplicative).
Note also that $\chi_{V \oplus W} = \chi_V + \chi_W$
for any representations $V$ and $W$.
We are especially interested in the case $A = k[G]$, of course.
As usual, we just have to specify $\chi_V(g)$ for each
$g \in S_3$ to get the whole map $k[G] \to k$.
Thus we often think of $\chi_V$ as a function $G \to k$,
called a character of the group $G$.
Here is the case $G = S_3$:
\begin{example}
[Character table of $S_3$]
Let's consider the three irreps of $G = S_3$ from before.
For $\CC_{\text{triv}}$ all traces are $1$;
for $\CC_{\text{sign}}$ the traces are $\pm 1$ depending on sign
(obviously, for one-dimensional maps $k \to k$ the trace ``is''
just the map itself).
For $\refl_0$ we take a basis $(1,0,-1)$ and $(0,1,-1)$, say,
and compute the traces directly in this basis.
\[
\begin{array}{|r|rrrrrr|}
\hline
\chi_V(g) & \id & (1\;2) & (2\;3) & (3\;1)
& (1\;2\;3) & (3\;2\;1) \\ \hline
\Ctriv & 1 & 1 & 1 & 1 & 1 & 1 \\
\CC_{\mathrm{sign}} & 1 & -1 & -1 & -1 & 1 & 1 \\
\refl_0 & 2 & 0 & 0 & 0 & -1 & -1 \\ \hline
\end{array}
\]
\end{example}
The above table is called the \vocab{character table} of the group $G$.
The table above has certain mysterious properties,
which we will prove as the chapter progresses.
\begin{enumerate}[(I)]
\ii The value of $\chi_V(g)$ only depends on the conjugacy class of $g$.
\ii The number of rows equals the number of conjugacy classes.
\ii The sum of the squares of any row is $6$ again!
\ii The ``dot product'' of any two rows is zero.
\end{enumerate}
\begin{abuse}
The name ``character'' for $\chi_V : G \to k$ is a bit of a misnomer.
This $\chi_V$ is not multiplicative in any way,
as the above example shows: one can almost think of it as
an element of $k^{\oplus |G|}$.
\end{abuse}
\begin{ques}
Show that $\chi_V(1_A) = \dim V$,
so one can read the dimensions of the representations
from the leftmost column of a character table.
\end{ques}
\section{The dual space modulo the commutator}
For any algebra, we first observe that since $\Tr(TS) = \Tr(ST)$,
we have for any $V$ that
\[ \chi_V(ab) = \chi_V(ba). \]
This explains observation (I) from earlier:
\begin{ques}
Deduce that if $g$ and $h$ are in the same conjugacy class of a
group $G$, and $V$ is a representation of $\CC[G]$,
then $\chi(g) = \chi(h)$.
\end{ques}
Now, given our algebra $A$ we define the \vocab{commutator} $[A,A]$
to be the $k$-vector subspace spanned by $xy-yx$ for $x,y \in A$.
Thus $[A,A]$ is contained in the kernel of each $\chi_V$.
\begin{definition}
The space $A\ab \coloneqq A / [A,A]$ is called the \vocab{abelianization} of $A$.
Each character of $A$ can be viewed as a map $A\ab \to k$, i.e.\ an element of $(A\ab)^\vee$.
\end{definition}
\begin{example}
[Examples of abelianizations]
\listhack
\begin{enumerate}[(a)]
\ii If $A$ is commutative, then $[A,A] = \{0\}$
and $A\ab = A$.
\ii If $A = \Mat_k(d)$, then $[A,A]$ consists exactly
of the $d \times d$ matrices of trace zero.
(Proof: harmless exercise.)
Consequently, $A\ab$ is one-dimensional.
\ii Suppose $A = k[G]$.
Then in $A\ab$, we identify $gh$ and $hg$ for each $g,h \in G$;
equivalently $ghg\inv = h$.
So in other words, $A\ab$ is isomorphic to the space of
$k$-linear combinations of the \emph{conjugacy classes} of $G$.
\end{enumerate}
\end{example}
\begin{theorem}
[Character of representations of algebras]
Let $A$ be an algebra over an algebraically closed field. Then
\begin{enumerate}[(a)]
\ii Characters of pairwise non-isomorphic irreps are
linearly independent in $(A\ab)^\vee$.
\ii If $A$ is finite-dimensional and semisimple,
then the characters attached to irreps
form a basis of $(A\ab)^\vee$.
\end{enumerate}
In particular, in (b) the number of irreps of $A$ equals $\dim A\ab$.
\end{theorem}
\begin{proof}
Part (a) is more or less obvious by the density theorem:
suppose there is a linear dependence, so that for every $a$ we have
\[ c_1 \chi_{V_1}(a) + c_2 \chi_{V_2}(a) + \dots + c_r \chi_{V_r} (a) = 0\]
for some integer $r$.
\begin{ques}
Deduce that $c_1 = \dots = c_r = 0$ from the density theorem.
\end{ques}
For part (b), assume there are $r$ irreps.
We may assume that \[ A = \bigoplus_{i=1}^r \Mat(V_i) \]
where $V_1$, \dots, $V_r$ are the irreps of $A$.
Since we have already showed the characters are linearly independent
we need only show that $\dim ( A / [A,A] ) = r$,
which follows from the observation earlier that each $\Mat(V_i)$
has a one-dimensional abelianization.
\end{proof}
Since $G$ has $\dim \CC[G]\ab$ conjugacy classes,
this completes the proof of (II).
\section{Orthogonality of characters}
Now we specialize to the case of finite groups $G$, represented over $\CC$.
\begin{definition}
Let $\Classes(G)$ denote the set conjugacy classes of $G$.
\end{definition}
If $G$ has $r$ conjugacy classes, then it has $r$ irreps.
Each (finite-dimensional) representation $V$, irreducible or not, gives a
character $\chi_V$.
\begin{abuse}
From now on, we will often regard $\chi_V$ as a function $G \to \CC$
or as a function $\Classes(G) \to \CC$.
So for example, we will write both $\chi_V(g)$ (for $g \in G$)
and $\chi_V(C)$ (for a conjugacy class $C$);
the latter just means $\chi_V(g_C)$ for any representative $g_C \in C$.
\end{abuse}
\begin{definition}
Let $\FunCl(G)$ denote the set of functions $\Classes(G) \to \CC$
viewed as a vector space over $\CC$.
We endow it with the inner form
\[
\left< f_1, f_2 \right> =
\frac{1}{|G|}
\sum_{g \in G} f_1(g) \ol{f_2(g)}.
\]
\end{definition}
This is the same ``dot product'' that we mentioned at the beginning,
when we looked at the character table of $S_3$.
We now aim to prove the following orthogonality theorem,
which will imply (III) and (IV) from earlier.
\begin{theorem}[Orthogonality]
For any finite-dimensional complex representations $V$ and $W$
of $G$ we have
\[ \left< \chi_V, \chi_W \right> = \dim \Homrep(W, V). \]
In particular, if $V$ and $W$ are irreps then
\[ \left< \chi_V, \chi_W \right>
=
\begin{cases}
1 & V \cong W \\
0 & \text{otherwise}.
\end{cases}
\]
\end{theorem}
\begin{corollary}[Irreps give an orthonormal basis]
The characters associated to irreps
form an \emph{orthonormal} basis of $\FunCl(G)$.
\end{corollary}
In order to prove this theorem, we have to define
the dual representation and the tensor representation,
which give a natural way to deal with the quantity $\chi_V(g)\ol{\chi_W(g)}$.
\begin{definition}
Let $V = (V, \rho)$ be a representation of $G$.
The \vocab{dual representation} $V^\vee$ is the representation on $V^\vee$
with the action of $G$ given as follows: for each $\xi \in V^\vee$,
the action of $g$ gives a $g \cdot \xi \in V^\vee$ specified by
\[ v \xmapsto{g \cdot \xi} \xi\left( \rho(g\inv)(v) \right). \]
\end{definition}
\begin{definition}
Let $V = (V, \rho_V)$ and $W = (W, \rho_W)$
be \emph{group} representations of $G$.
The \vocab{tensor product} of $V$ and $W$ is the group representation
on $V \otimes W$ with the action of $G$ given on pure tensors by
\[
g \cdot (v \otimes w)
=
(\rho_V(g)(v)) \otimes (\rho_W(g)(w)) \]
which extends linearly to define the action of $G$ on all of $V \otimes W$.
\end{definition}
\begin{remark}
Warning: the definition for tensors does \emph{not} extend to algebras.
We might hope that $a \cdot (v \otimes w) = (a \cdot v) \otimes (a \cdot w)$
would work, but this is not even linear in $a \in A$
(what happens if we take $a=2$, for example?).
\end{remark}
\begin{theorem}
[Character traces]
If $V$ and $W$ are finite-dimensional representations of $G$,
then for any $g \in G$.
\begin{enumerate}[(a)]
\ii $\chi_{V \oplus W}(g) = \chi_V(g) + \chi_W(g)$.
\ii $\chi_{V \otimes W}(g) = \chi_V(g) \cdot \chi_W(g)$.
\ii $\chi_{V^\vee}(g) = \ol{\chi_V(g)}$.
\end{enumerate}
\end{theorem}
\begin{proof}
Parts (a) and (b) follow from the identities
$\Tr(S \oplus T) = \Tr(S) + \Tr(T)$
and $\Tr(S \otimes T) = \Tr(S) \Tr(T)$.
However, part (c) is trickier.
As $(\rho(g))^{|G|} = \rho(g^{|G|}) = \rho(1_G) = \id_V$
by Lagrange's theorem, we can diagonalize $\rho(g)$,
say with eigenvalues $\lambda_1$, \dots, $\lambda_n$
which are $|G|$th roots of unity,
corresponding to eigenvectors $e_1$, \dots, $e_n$.
Then we see that in the basis $e_1^\vee$, \dots, $e_n^\vee$,
the action of $g$ on $V^\vee$ has eigenvalues
$\lambda_1\inv$, $\lambda_2\inv$, \dots, $\lambda_n\inv$.
So
\[
\chi_V(g) = \sum_{i=1}^n \lambda_i \quad\text{and}\quad
\chi_{V^\vee}(g) = \sum_{i=1}^n \lambda_i\inv = \sum_{i=1}^n \ol{\lambda_i}
\]
where the last step follows from the identity $|z|=1 \iff z\inv = \ol z$.
\end{proof}
\begin{remark}
[Warning]
The identities (b) and (c) do not extend linearly to $\CC[G]$,
i.e.\ it is not true for example that $\chi_V(a) = \ol{\chi_V(a)}$
if we think of $\chi_V$ as a map $\CC[G] \to \CC$.
\end{remark}
\begin{proof}
[Proof of orthogonality relation]
The key point is that we can now reduce
the sums of products to just a single character by
\[ \chi_V(g) \ol{\chi_W(g)} = \chi_{V \otimes W^\vee} (g). \]
So we can rewrite the sum in question as just
\[
\left< \chi_V, \chi_W \right>
= \frac{1}{|G|} \sum_{g \in G} \chi_{V \otimes W^\vee} (g)
= \chi_{V \otimes W^\vee}
\left( \frac{1}{|G|} \sum_{g \in G} g \right).
\]
Let $P : V \otimes W^\vee \to V \otimes W^\vee$ be the
action of $\frac{1}{|G|} \sum_{g \in G} g$,
so we wish to find $\Tr P$.
\begin{exercise}
Show that $P$ is idempotent.
(Compute $P \circ P$ directly.)
\end{exercise}
Hence $V \otimes W^\vee = \ker P \oplus \img P$ (by \Cref{prob:idempotent})
and $\img P$ is the subspace of elements which are fixed under $G$.
From this we deduce that
\[ \Tr P = \dim \img P =
\dim \left\{ x \in V \otimes W^\vee
\mid g \cdot x = x \; \forall g \in G \right\}.
\]
Now, consider the natural isomorphism $V \otimes W^\vee \to \Hom(W, V)$.
\begin{exercise}
Let $g \in G$.
Show that under this isomorphism, $T \in \Hom(W, V)$
satisfies $g \cdot T = T$ if and only if
$T(g \cdot w) = g \cdot T(w)$ for each $w \in W$.
(This is just unwinding three or four definitions.)
\end{exercise}
Consequently, $\chi_{V \otimes W^\vee}(P) = \Tr P = \dim \Homrep(W,V)$
as desired.
\end{proof}
The orthogonality relation gives us a fast and mechanical way to check
whether a finite-dimensional representation $V$ is irreducible.
Namely, compute the traces $\chi_V(g)$ for each $g \in G$,
and then check whether $\left< \chi_V, \chi_V \right> = 1$.
So, for example, we could have seen the three representations of
$S_3$ that we found were irreps directly from the character table.
Thus, we can now efficiently verify any time we have
a complete set of irreps.
\section{Examples of character tables}
\begin{example}
[Dihedral group on $10$ elements]
Let $D_{10} = \left< r,s \mid r^5 = s^2 = 1, rs = sr\inv \right>$.
Let $\omega = \exp(\frac{2\pi i}{5})$.
We write four representations of $D_{10}$:
\begin{itemize}
\ii $\Ctriv$, all elements of $D_{10}$ act as the identity.
\ii $\Csign$, $r$ acts as the identity while $s$ acts by negation.
\ii $V_1$, which is two-dimensional and given by
$r \mapsto \begin{bmatrix} \omega & 0 \\ 0 & \omega^4 \end{bmatrix}$
and $s \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
\ii $V_2$, which is two-dimensional and given by
$r \mapsto \begin{bmatrix} \omega^2 & 0 \\ 0 & \omega^3 \end{bmatrix}$
and $s \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
\end{itemize}
We claim that these four representations are irreducible
and pairwise non-isomorphic.
We do so by writing the character table:
\[
\begin{array}{|c|rccr|}
\hline
D_{10} & 1 & r, r^4 & r^2, r^3 & sr^k \\ \hline
\Ctriv & 1 & 1 & 1 & 1 \\
\Csign & 1 & 1 & 1 & -1 \\
V_1 & 2 & \omega+\omega^4 & \omega^2+\omega^3 & 0 \\
V_2 & 2 & \omega^2+\omega^3 & \omega+\omega^4 & 0 \\ \hline
\end{array}
\]
Then a direct computation shows the orthogonality relations,
hence we indeed have an orthonormal basis.
For example, $\left< \Ctriv, \Csign \right> = 1 + 2 \cdot 1 + 2 \cdot 1 + 5 \cdot (-1) = 0$.
\end{example}
\begin{example}
[Character table of $S_4$]
We now have enough machinery to to compute the character
table of $S_4$, which has five conjugacy classes
(corresponding to cycle types $\id$, $2$, $3$, $4$ and $2+2$).
First of all, we note that it has two one-dimensional representations,
$\Ctriv$ and $\Csign$, and these are the only ones
(because there are only two homomorphisms $S_4 \to \CC^\times$).
So thus far we have the table
\[
\begin{array}{|c|rrrrr|}
\hline
S_4 & 1 & (\bullet\;\bullet) & (\bullet\;\bullet\;\bullet)
& (\bullet\;\bullet\;\bullet\;\bullet)
& (\bullet\;\bullet)(\bullet\;\bullet)
\\ \hline
\Ctriv & 1 & 1 & 1 & 1 & 1 \\
\Csign & 1 & -1 & 1 & -1 & 1 \\
\vdots & \multicolumn{5}{|c|}{\vdots}
\end{array}
\]
Note the columns represent $1+6+8+6+3=24$ elements.
Now, the remaining three representations have dimensions
$d_1$, $d_2$, $d_3$ with
\[ d_1^2 + d_2^2 + d_3^2 = 4! - 2 = 22 \]
which has only $(d_1, d_2, d_3) = (2,3,3)$ and permutations.
Now, we can take the $\refl_0$ representation
\[ \left\{ (w,x,y,z) \mid w+x+y+z=0 \right\} \]
with basis $(1,0,0,-1)$, $(0,1,0,-1)$ and $(0,0,1,-1)$.
This can be geometrically checked to be irreducible,
but we can also do this numerically by computing the
character directly (this is tedious):
it comes out to have $3$, $1$, $0$, $-1$, $-1$
which indeed gives norm
\[
\left< \chi_{\refl_0}, \chi_{\refl_0} \right>
=
\frac{1}{4!}
\left(
\underbrace{3^2}_{\id}
+ \underbrace{6\cdot(1)^2}_{(\bullet\;\bullet)}
+ \underbrace{8\cdot(0)^2}_{(\bullet\;\bullet\;\bullet)}
+ \underbrace{6\cdot(-1)^2}_{(\bullet\;\bullet\;\bullet\;\bullet)}
+ \underbrace{3\cdot(-1)^2}_{(\bullet\;\bullet)(\bullet\;\bullet)}
\right)
= 1.
\]
Note that we can also tensor this with the sign representation,
to get another irreducible representation
(since $\Csign$ has all traces $\pm 1$, the norm doesn't change).
Finally, we recover the final row using orthogonality
(which we name $\CC^2$, for lack of a better name);
hence the completed table is as follows.
\[
\begin{array}{|c|rrrrr|}
\hline
S_4 & 1 & (\bullet\;\bullet) & (\bullet\;\bullet\;\bullet)
& (\bullet\;\bullet\;\bullet\;\bullet)
& (\bullet\;\bullet)(\bullet\;\bullet)
\\ \hline
\Ctriv & 1 & 1 & 1 & 1 & 1 \\
\Csign & 1 & -1 & 1 & -1 & 1 \\
\CC^2 & 2 & 0 & -1 & 0 & 2 \\
\refl_0 & 3 & 1 & 0 & -1 & -1 \\
\refl_0 \otimes \Csign & 3 & -1 & 0 & 1 & -1 \\\hline
\end{array}
\]
\end{example}
\section\problemhead
\begin{dproblem}
[Reading decompositions from characters]
Let $W$ be a complex representation of a finite group $G$.
Let $V_1$, \dots, $V_r$ be the complex irreps of $G$
and set $n_i = \left< \chi_W, \chi_{V_i} \right>$.
Prove that each $n_i$ is a non-negative integer and
\[ W = \bigoplus_{i=1}^r V_i^{\oplus n_i}. \]
\begin{hint}
Obvious.
Let $W = \bigoplus V_i^{m_i}$ (possible since $\CC[G]$ semisimple)
thus $\chi_W = \sum_i m_i \chi_{V_i}$.
\end{hint}
\end{dproblem}
\begin{problem}
Consider complex representations of $G = S_4$.
The representation $\refl_0 \otimes \refl_0$
is $9$-dimensional, so it is clearly reducible.
Compute its decomposition in terms of the five
irreducible representations.
\begin{hint}
Use the previous problem, with $\chi_W = \chi_{\refl_0}^2$.
\end{hint}
\begin{sol}
$\Csign \oplus \CC^2 \oplus \refl_0 \oplus (\refl_0\otimes\Csign)$.
\end{sol}
\end{problem}
\begin{problem}
[Tensoring by one-dimensional irreps]
Let $V$ and $W$ be irreps of $G$, with $\dim W = 1$.
Show that $V \otimes W$ is irreducible.
\begin{hint}
Characters. Note that $|\chi_W| = 1$ everywhere.
\end{hint}
\begin{sol}
First, observe that $|\chi_W(g)|=1$ for all $g \in G$.
\begin{align*}
\left< \chi_{V \otimes W}, \chi_{V \otimes W} \right>
&= \left< \chi_V \chi_W, \chi_V \chi_W \right> \\
&= \frac{1}{|G|} \sum_{g \in G}
\left\lvert \chi_V(g) \right\rvert^2
\left\lvert \chi_W(g) \right\rvert^2 \\
&= \frac{1}{|G|} \sum_{g \in G}
\left\lvert \chi_V(g) \right\rvert^2 \\
&= \left< \chi_V, \chi_V \right> = 1.
\end{align*}
\end{sol}
\end{problem}
\begin{problem}
[Quaternions]
Compute the character table of the quaternion group $Q_8$.
\begin{hint}
There are five conjugacy classes, $1$, $-1$
and $\pm i$, $\pm j$, $\pm k$.
Given four of the representations, orthogonality
can give you the fifth one.
\end{hint}
\begin{sol}
The table is given by
\[
\begin{array}{|c|rrrrr|}
\hline
Q_8 & 1 & -1 & \pm i & \pm j & \pm k \\ \hline
\Ctriv & 1 & 1 & 1 & 1 & 1 \\
\CC_i & 1 & 1 & 1 & -1 & -1 \\
\CC_j & 1 & 1 & -1 & 1 & -1 \\
\CC_k & 1 & 1 & -1 & -1 & 1 \\
\CC^2 & 2 & -2 & 0 & 0 & 0 \\\hline
\end{array}
\]
The one-dimensional representations (first four rows)
follows by considering the homomorphism $Q_8 \to \CC^\times$.
The last row is two-dimensional and can be recovered
by using the orthogonality formula.
\end{sol}
\end{problem}
\begin{sproblem}
[Second orthogonality formula]
\label{prob:second_orthog}
\gim
Let $g$ and $h$ be elements of a finite group $G$,
and let $V_1$, \dots, $V_r$ be the irreps of $G$.
Prove that
\[
\sum_{i = 1}^r \chi_{V_i}(g) \ol{\chi_{V_i}(h)}
=
\begin{cases}
|C_G(g)| & \text{if $g$ and $h$ are conjugates} \\
0 & \text{otherwise}.
\end{cases}
\]
Here, $C_G(g) = \left\{ x \in G : xg = gx \right\}$
is the centralizer of $g$.
\begin{hint}
Write as
\[ \sum_{i=1}^r \chi_{V_i \otimes V_i^\vee} (gh\inv)
= \chi_{\bigoplus_i V_i \otimes V_i^\vee}(gh\inv)
= \chi_{\CC[G]}(gh\inv).
\]
Now look at the usual basis for $\CC[G]$.
\end{hint}
\end{sproblem}
|