Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 18,562 Bytes
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
\chapter{Characters}
Characters are basically the best thing ever.
To every representation $V$ of $A$ we will attach a
so-called character $\chi_V : A \to k$.
It will turn out that the characters of irreps of $V$
will determine the representation $V$ completely.
Thus an irrep is just specified by a set of $\dim A$ numbers.

\section{Definitions}
\begin{definition}
	Let $V = (V, \rho)$ be a finite-dimensional representation of $A$.
	The \vocab{character} $\chi_V : A \to k$ attached to
	$A$ is defined by $\chi_V = \Tr \circ \rho$, i.e.\
	\[ \chi_V(a) \defeq \Tr\left( \rho(a) : V \to V \right). \]
\end{definition}
Since $\Tr$ and $\rho$ are additive, this is a $k$-linear map
(but it is not multiplicative).
Note also that $\chi_{V \oplus W} = \chi_V + \chi_W$
for any representations $V$ and $W$.

We are especially interested in the case $A = k[G]$, of course.
As usual, we just have to specify $\chi_V(g)$ for each
$g \in S_3$ to get the whole map $k[G] \to k$.
Thus we often think of $\chi_V$ as a function $G \to k$,
called a character of the group $G$.
Here is the case $G = S_3$:
\begin{example}
	[Character table of $S_3$]
	Let's consider the three irreps of $G = S_3$ from before.
	For $\CC_{\text{triv}}$ all traces are $1$;
	for $\CC_{\text{sign}}$ the traces are $\pm 1$ depending on sign
	(obviously, for one-dimensional maps $k \to k$ the trace ``is''
	just the map itself).
	For $\refl_0$ we take a basis $(1,0,-1)$ and $(0,1,-1)$, say,
	and compute the traces directly in this basis.
	\[
		\begin{array}{|r|rrrrrr|}
			\hline
			\chi_V(g) & \id & (1\;2) & (2\;3) & (3\;1)
				& (1\;2\;3) & (3\;2\;1)  \\ \hline
			\Ctriv & 1 & 1 & 1 & 1 & 1 & 1 \\
			\CC_{\mathrm{sign}} & 1 & -1 & -1 & -1 & 1 & 1 \\
			\refl_0 & 2 & 0 & 0 & 0 & -1 & -1 \\ \hline
		\end{array}
	\]
\end{example}
The above table is called the \vocab{character table} of the group $G$.
The table above has certain mysterious properties,
which we will prove as the chapter progresses.
\begin{enumerate}[(I)]
	\ii The value of $\chi_V(g)$ only depends on the conjugacy class of $g$.
	\ii The number of rows equals the number of conjugacy classes.
	\ii The sum of the squares of any row is $6$ again!
	\ii The ``dot product'' of any two rows is zero.
\end{enumerate}

\begin{abuse}
	The name ``character'' for $\chi_V : G \to k$ is a bit of a misnomer.
	This $\chi_V$ is not multiplicative in any way,
	as the above example shows: one can almost think of it as
	an element of $k^{\oplus |G|}$.
\end{abuse}

\begin{ques}
	Show that $\chi_V(1_A) = \dim V$,
	so one can read the dimensions of the representations
	from the leftmost column of a character table.
\end{ques}

\section{The dual space modulo the commutator}
For any algebra, we first observe that since $\Tr(TS) = \Tr(ST)$,
we have for any $V$ that
\[ \chi_V(ab) = \chi_V(ba). \]
This explains observation (I) from earlier:
\begin{ques}
	Deduce that if $g$ and $h$ are in the same conjugacy class of a
	group $G$, and $V$ is a representation of $\CC[G]$,
	then $\chi(g) = \chi(h)$.
\end{ques}
Now, given our algebra $A$ we define the \vocab{commutator} $[A,A]$
to be the $k$-vector subspace spanned by $xy-yx$ for $x,y \in A$.
Thus $[A,A]$ is contained in the kernel of each $\chi_V$.
\begin{definition}
	The space $A\ab \coloneqq A / [A,A]$ is called the \vocab{abelianization} of $A$.
	Each character of $A$ can be viewed as a map $A\ab \to k$, i.e.\ an element of $(A\ab)^\vee$.
\end{definition}
\begin{example}
	[Examples of abelianizations]
	\listhack
	\begin{enumerate}[(a)]
		\ii If $A$ is commutative, then $[A,A] = \{0\}$
		and $A\ab = A$.
		\ii If $A = \Mat_k(d)$, then $[A,A]$ consists exactly
		of the $d \times d$ matrices of trace zero.
		(Proof: harmless exercise.)
		Consequently, $A\ab$ is one-dimensional.
		\ii Suppose $A = k[G]$.
		Then in $A\ab$, we identify $gh$ and $hg$ for each $g,h \in G$;
		equivalently $ghg\inv = h$.
		So in other words, $A\ab$ is isomorphic to the space of
		$k$-linear combinations of the \emph{conjugacy classes} of $G$.
	\end{enumerate}
\end{example}

\begin{theorem}
	[Character of representations of algebras]
	Let $A$ be an algebra over an algebraically closed field. Then
	\begin{enumerate}[(a)]
		\ii Characters of pairwise non-isomorphic irreps are
		linearly independent in $(A\ab)^\vee$.
		\ii If $A$ is finite-dimensional and semisimple,
		then the characters attached to irreps
		form a basis of $(A\ab)^\vee$.
	\end{enumerate}
	In particular, in (b) the number of irreps of $A$ equals $\dim A\ab$.
\end{theorem}
\begin{proof}
	Part (a) is more or less obvious by the density theorem:
	suppose there is a linear dependence, so that for every $a$ we have
	\[ c_1 \chi_{V_1}(a) + c_2 \chi_{V_2}(a) + \dots + c_r \chi_{V_r} (a) = 0\]
	for some integer $r$.
	\begin{ques}
		Deduce that $c_1 = \dots = c_r = 0$ from the density theorem.
	\end{ques}
	For part (b), assume there are $r$ irreps.
	We may assume that \[ A = \bigoplus_{i=1}^r \Mat(V_i) \]
	where $V_1$, \dots, $V_r$ are the irreps of $A$.
	Since we have already showed the characters are linearly independent
	we need only show that $\dim ( A / [A,A] ) = r$,
	which follows from the observation earlier that each $\Mat(V_i)$
	has a one-dimensional abelianization.
\end{proof}
Since $G$ has $\dim \CC[G]\ab$ conjugacy classes,
this completes the proof of (II).

\section{Orthogonality of characters}
Now we specialize to the case of finite groups $G$, represented over $\CC$.
\begin{definition}
	Let $\Classes(G)$ denote the set conjugacy classes of $G$.
\end{definition}
If $G$ has $r$ conjugacy classes, then it has $r$ irreps.
Each (finite-dimensional) representation $V$, irreducible or not, gives a
character $\chi_V$.
\begin{abuse}
	From now on, we will often regard $\chi_V$ as a function $G \to \CC$
	or as a function $\Classes(G) \to \CC$.
	So for example, we will write both $\chi_V(g)$ (for $g \in G$)
	and $\chi_V(C)$ (for a conjugacy class $C$);
	the latter just means $\chi_V(g_C)$ for any representative $g_C \in C$.
\end{abuse}
\begin{definition}
	Let $\FunCl(G)$ denote the set of functions $\Classes(G) \to \CC$
	viewed as a vector space over $\CC$.
	We endow it with the inner form
	\[
		\left< f_1, f_2 \right> =
		\frac{1}{|G|}
		\sum_{g \in G} f_1(g) \ol{f_2(g)}.
	\]
\end{definition}
This is the same ``dot product'' that we mentioned at the beginning,
when we looked at the character table of $S_3$.
We now aim to prove the following orthogonality theorem,
which will imply (III) and (IV) from earlier.
\begin{theorem}[Orthogonality]
	For any finite-dimensional complex representations $V$ and $W$
	of $G$ we have
	\[ \left< \chi_V, \chi_W \right> = \dim \Homrep(W, V). \]
	In particular, if $V$ and $W$ are irreps then
	\[ \left< \chi_V, \chi_W \right>
		=
		\begin{cases}
			1 & V  \cong W \\
			0 & \text{otherwise}.
		\end{cases}
	\]
\end{theorem}
\begin{corollary}[Irreps give an orthonormal basis]
	The characters associated to irreps
	form an \emph{orthonormal} basis of $\FunCl(G)$.
\end{corollary}

In order to prove this theorem, we have to define
the dual representation and the tensor representation,
which give a natural way to deal with the quantity $\chi_V(g)\ol{\chi_W(g)}$.
\begin{definition}
	Let $V = (V, \rho)$ be a representation of $G$.
	The \vocab{dual representation} $V^\vee$ is the representation on $V^\vee$
	with the action of $G$ given as follows: for each $\xi \in V^\vee$,
	the action of $g$ gives a $g \cdot \xi \in V^\vee$ specified by
	\[ v \xmapsto{g \cdot \xi} \xi\left( \rho(g\inv)(v) \right). \]
\end{definition}
\begin{definition}
	Let $V = (V, \rho_V)$ and $W = (W, \rho_W)$
	be \emph{group} representations of $G$.
	The \vocab{tensor product} of $V$ and $W$ is the group representation
	on $V \otimes W$ with the action of $G$ given on pure tensors by
	\[
		g \cdot (v \otimes w)
		=
		(\rho_V(g)(v)) \otimes (\rho_W(g)(w)) \]
	which extends linearly to define the action of $G$ on all of $V \otimes W$.
\end{definition}
\begin{remark}
	Warning: the definition for tensors does \emph{not} extend to algebras.
	We might hope that $a \cdot (v \otimes w) = (a \cdot v) \otimes (a \cdot w)$
	would work, but this is not even linear in $a \in A$
	(what happens if we take $a=2$, for example?).
\end{remark}

\begin{theorem}
	[Character traces]
	If $V$ and $W$ are finite-dimensional representations of $G$,
	then for any $g \in G$.
	\begin{enumerate}[(a)]
		\ii $\chi_{V \oplus W}(g) = \chi_V(g) + \chi_W(g)$.
		\ii $\chi_{V \otimes W}(g) = \chi_V(g) \cdot \chi_W(g)$.
		\ii $\chi_{V^\vee}(g) = \ol{\chi_V(g)}$.
	\end{enumerate}
\end{theorem}
\begin{proof}
	Parts (a) and (b) follow from the identities
	$\Tr(S \oplus T) = \Tr(S) + \Tr(T)$
	and $\Tr(S \otimes T) = \Tr(S) \Tr(T)$.
	However, part (c) is trickier.
	As $(\rho(g))^{|G|} = \rho(g^{|G|}) = \rho(1_G) = \id_V$
	by Lagrange's theorem, we can diagonalize $\rho(g)$,
	say with eigenvalues $\lambda_1$, \dots, $\lambda_n$
	which are $|G|$th roots of unity,
	corresponding to eigenvectors $e_1$, \dots, $e_n$.
	Then we see that in the basis $e_1^\vee$, \dots, $e_n^\vee$,
	the action of $g$ on $V^\vee$ has eigenvalues
	$\lambda_1\inv$, $\lambda_2\inv$, \dots, $\lambda_n\inv$.
	So
	\[
		\chi_V(g) = \sum_{i=1}^n \lambda_i \quad\text{and}\quad
		\chi_{V^\vee}(g) = \sum_{i=1}^n \lambda_i\inv = \sum_{i=1}^n \ol{\lambda_i}
	\]
	where the last step follows from the identity $|z|=1 \iff z\inv = \ol z$.
\end{proof}
\begin{remark}
	[Warning]
	The identities (b) and (c) do not extend linearly to $\CC[G]$,
	i.e.\ it is not true for example that $\chi_V(a) = \ol{\chi_V(a)}$
	if we think of $\chi_V$ as a map $\CC[G] \to \CC$.
\end{remark}
\begin{proof}
	[Proof of orthogonality relation]
	The key point is that we can now reduce
	the sums of products to just a single character by
	\[ \chi_V(g) \ol{\chi_W(g)} = \chi_{V \otimes W^\vee} (g). \]
	So we can rewrite the sum in question as just
	\[
		\left< \chi_V, \chi_W \right>
		= \frac{1}{|G|} \sum_{g \in G} \chi_{V \otimes W^\vee} (g)
		= \chi_{V \otimes W^\vee}
		\left( \frac{1}{|G|} \sum_{g \in G} g \right).
	\]
	Let $P : V \otimes W^\vee \to V \otimes W^\vee$ be the
	action of $\frac{1}{|G|} \sum_{g \in G} g$,
	so we wish to find $\Tr P$.
	\begin{exercise}
		Show that $P$ is idempotent.
		(Compute $P \circ P$ directly.)
	\end{exercise}
	Hence $V \otimes W^\vee = \ker P \oplus \img P$ (by \Cref{prob:idempotent})
	and $\img P$ is the subspace of elements which are fixed under $G$.
	From this we deduce that
	\[ \Tr P = \dim \img P =
		\dim \left\{ x \in V \otimes W^\vee
		\mid g \cdot x = x \; \forall g \in G  \right\}.
		\]
	Now, consider the natural isomorphism $V \otimes W^\vee \to \Hom(W, V)$.
	\begin{exercise}
		Let $g \in G$.
		Show that under this isomorphism, $T \in \Hom(W, V)$
		satisfies $g \cdot T = T$ if and only if
		$T(g \cdot w) = g \cdot T(w)$ for each $w \in W$.
		(This is just unwinding three or four definitions.)
	\end{exercise}
	Consequently, $\chi_{V \otimes W^\vee}(P) = \Tr P = \dim \Homrep(W,V)$
	as desired.
\end{proof}

The orthogonality relation gives us a fast and mechanical way to check
whether a finite-dimensional representation $V$ is irreducible.
Namely, compute the traces $\chi_V(g)$ for each $g \in G$,
and then check whether $\left< \chi_V, \chi_V \right> = 1$.
So, for example, we could have seen the three representations of
$S_3$ that we found were irreps directly from the character table.
Thus, we can now efficiently verify any time we have
a complete set of irreps.

\section{Examples of character tables}
\begin{example}
	[Dihedral group on $10$ elements]
	Let $D_{10} = \left< r,s \mid r^5 = s^2 = 1, rs = sr\inv \right>$.
	Let $\omega = \exp(\frac{2\pi i}{5})$.
	We write four representations of $D_{10}$:
	\begin{itemize}
		\ii $\Ctriv$, all elements of $D_{10}$ act as the identity.
		\ii $\Csign$, $r$ acts as the identity while $s$ acts by negation.
		\ii $V_1$, which is two-dimensional and given by
		$r \mapsto \begin{bmatrix} \omega & 0 \\ 0 & \omega^4 \end{bmatrix}$
		and $s \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
		\ii $V_2$, which is two-dimensional and given by
		$r \mapsto \begin{bmatrix} \omega^2 & 0 \\ 0 & \omega^3 \end{bmatrix}$
		and $s \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
	\end{itemize}
	We claim that these four representations are irreducible
	and pairwise non-isomorphic.
	We do so by writing the character table:
	\[
		\begin{array}{|c|rccr|}
			\hline
			D_{10} & 1 & r, r^4 & r^2, r^3 & sr^k \\ \hline
			\Ctriv & 1 & 1 & 1 & 1 \\
			\Csign & 1 & 1 & 1 & -1 \\
			V_1 & 2 & \omega+\omega^4 & \omega^2+\omega^3 & 0 \\
			V_2 & 2 & \omega^2+\omega^3 & \omega+\omega^4 & 0 \\ \hline
		\end{array}
	\]
	Then a direct computation shows the orthogonality relations,
	hence we indeed have an orthonormal basis.
	For example, $\left< \Ctriv, \Csign \right> = 1 + 2 \cdot 1 + 2 \cdot 1 + 5 \cdot (-1) = 0$.
\end{example}

\begin{example}
	[Character table of $S_4$]
	We now have enough machinery to to compute the character
	table of $S_4$, which has five conjugacy classes
	(corresponding to cycle types $\id$, $2$, $3$, $4$ and $2+2$).
	First of all, we note that it has two one-dimensional representations,
	$\Ctriv$ and $\Csign$, and these are the only ones
	(because there are only two homomorphisms $S_4 \to \CC^\times$).
	So thus far we have the table
	\[
		\begin{array}{|c|rrrrr|}
			\hline
			S_4 & 1 & (\bullet\;\bullet) & (\bullet\;\bullet\;\bullet)
				& (\bullet\;\bullet\;\bullet\;\bullet)
				& (\bullet\;\bullet)(\bullet\;\bullet)
				\\ \hline
			\Ctriv & 1 & 1 & 1 & 1 & 1 \\
			\Csign & 1 & -1 & 1 & -1 & 1 \\
			\vdots & \multicolumn{5}{|c|}{\vdots}
		\end{array}
	\]
	Note the columns represent $1+6+8+6+3=24$ elements.

	Now, the remaining three representations have dimensions
	$d_1$, $d_2$, $d_3$ with
	\[ d_1^2 + d_2^2 + d_3^2 = 4! - 2 = 22 \]
	which has only $(d_1, d_2, d_3) = (2,3,3)$ and permutations.
	Now, we can take the $\refl_0$ representation
	\[ \left\{ (w,x,y,z) \mid w+x+y+z=0 \right\} \]
	with basis $(1,0,0,-1)$, $(0,1,0,-1)$ and $(0,0,1,-1)$.
	This can be geometrically checked to be irreducible,
	but we can also do this numerically by computing the
	character directly (this is tedious):
	it comes out to have $3$, $1$, $0$, $-1$, $-1$
	which indeed gives norm
	\[
		\left< \chi_{\refl_0}, \chi_{\refl_0} \right>
		=
		\frac{1}{4!}
		\left(
			\underbrace{3^2}_{\id}
			+ \underbrace{6\cdot(1)^2}_{(\bullet\;\bullet)}
			+ \underbrace{8\cdot(0)^2}_{(\bullet\;\bullet\;\bullet)}
			+ \underbrace{6\cdot(-1)^2}_{(\bullet\;\bullet\;\bullet\;\bullet)}
			+ \underbrace{3\cdot(-1)^2}_{(\bullet\;\bullet)(\bullet\;\bullet)}
		\right)
		= 1.
	\]
	Note that we can also tensor this with the sign representation,
	to get another irreducible representation
	(since $\Csign$ has all traces $\pm 1$, the norm doesn't change).
	Finally, we recover the final row using orthogonality
	(which we name $\CC^2$, for lack of a better name);
	hence the completed table is as follows.
	\[
		\begin{array}{|c|rrrrr|}
			\hline
			S_4 & 1 & (\bullet\;\bullet) & (\bullet\;\bullet\;\bullet)
				& (\bullet\;\bullet\;\bullet\;\bullet)
				& (\bullet\;\bullet)(\bullet\;\bullet)
				\\ \hline
			\Ctriv & 1 & 1 & 1 & 1 & 1 \\
			\Csign & 1 & -1 & 1 & -1 & 1 \\
			\CC^2 & 2 & 0 & -1 & 0 & 2 \\
			\refl_0 & 3 & 1 & 0 & -1 & -1 \\
			\refl_0 \otimes \Csign & 3 & -1 & 0 & 1 & -1 \\\hline
		\end{array}
	\]
\end{example}

\section\problemhead

\begin{dproblem}
	[Reading decompositions from characters]
	Let $W$ be a complex representation of a finite group $G$.
	Let $V_1$, \dots, $V_r$ be the complex irreps of $G$
	and set $n_i = \left< \chi_W, \chi_{V_i} \right>$.
	Prove that each $n_i$ is a non-negative integer and
	\[ W = \bigoplus_{i=1}^r V_i^{\oplus n_i}. \]
	\begin{hint}
		Obvious.
		Let $W = \bigoplus V_i^{m_i}$ (possible since $\CC[G]$ semisimple)
		thus $\chi_W = \sum_i m_i \chi_{V_i}$.
	\end{hint}
\end{dproblem}

\begin{problem}
	Consider complex representations of $G = S_4$.
	The representation $\refl_0 \otimes \refl_0$
	is $9$-dimensional, so it is clearly reducible.
	Compute its decomposition in terms of the five
	irreducible representations.
	\begin{hint}
		Use the previous problem, with $\chi_W = \chi_{\refl_0}^2$.
	\end{hint}
	\begin{sol}
		$\Csign \oplus \CC^2 \oplus \refl_0 \oplus (\refl_0\otimes\Csign)$.
	\end{sol}
\end{problem}

\begin{problem}
	[Tensoring by one-dimensional irreps]
	Let $V$ and $W$ be irreps of $G$, with $\dim W = 1$.
	Show that $V \otimes W$ is irreducible.
	\begin{hint}
		Characters. Note that $|\chi_W| = 1$ everywhere.
	\end{hint}
	\begin{sol}
		First, observe that $|\chi_W(g)|=1$ for all $g \in G$.
		\begin{align*}
			\left< \chi_{V \otimes W}, \chi_{V \otimes W} \right>
			&= \left< \chi_V \chi_W, \chi_V \chi_W \right> \\
			&= \frac{1}{|G|} \sum_{g \in G}
			\left\lvert \chi_V(g) \right\rvert^2
			\left\lvert \chi_W(g) \right\rvert^2 \\
			&= \frac{1}{|G|} \sum_{g \in G}
			\left\lvert \chi_V(g) \right\rvert^2 \\
			&= \left< \chi_V, \chi_V \right> = 1.
		\end{align*}
	\end{sol}
\end{problem}

\begin{problem}
	[Quaternions]
	Compute the character table of the quaternion group $Q_8$.
	\begin{hint}
		There are five conjugacy classes, $1$, $-1$
		and $\pm i$, $\pm j$, $\pm k$.
		Given four of the representations, orthogonality
		can give you the fifth one.
	\end{hint}
	\begin{sol}
		The table is given by
		\[
			\begin{array}{|c|rrrrr|}
				\hline
				Q_8 & 1 & -1 & \pm i & \pm j & \pm k \\ \hline
				\Ctriv & 1 & 1 & 1 & 1 & 1 \\
				\CC_i & 1 & 1 & 1 & -1 & -1 \\
				\CC_j & 1 & 1 & -1 & 1 & -1 \\
				\CC_k & 1 & 1 & -1 & -1 & 1 \\
				\CC^2 & 2 & -2 & 0 & 0 & 0 \\\hline
			\end{array}
		\]
		The one-dimensional representations (first four rows)
		follows by considering the homomorphism $Q_8 \to \CC^\times$.
		The last row is two-dimensional and can be recovered
		by using the orthogonality formula.
	\end{sol}
\end{problem}

\begin{sproblem}
	[Second orthogonality formula]
	\label{prob:second_orthog}
	\gim
	Let $g$ and $h$ be elements of a finite group $G$,
	and let $V_1$, \dots, $V_r$ be the irreps of $G$.
	Prove that
	\[
		\sum_{i = 1}^r \chi_{V_i}(g) \ol{\chi_{V_i}(h)}
		=
		\begin{cases}
			|C_G(g)| & \text{if $g$ and $h$ are conjugates} \\
			0 & \text{otherwise}.
		\end{cases}
	\]
	Here, $C_G(g) = \left\{ x \in G : xg = gx \right\}$
	is the centralizer of $g$.
	\begin{hint}
		Write as
		\[ \sum_{i=1}^r \chi_{V_i \otimes V_i^\vee} (gh\inv)
			= \chi_{\bigoplus_i V_i \otimes V_i^\vee}(gh\inv)
			= \chi_{\CC[G]}(gh\inv).
		\]
		Now look at the usual basis for $\CC[G]$.
	\end{hint}
\end{sproblem}