Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 32,527 Bytes
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
\chapter{The Frobenius element}
Throughout this chapter $K/\QQ$ is a Galois extension with Galois group $G$,
$p$ is an \emph{unramified} rational prime in $K$, and $\kp$ is a prime above it.
Picture:
\begin{center}
\begin{tikzcd}
	K \ar[d, dash]
		& \supset
		& \OO_K \ar[d, dash]
		& \kp \ar[d, dash]
		& \OO_K/\kp \cong \FF_{p^f} \ar[d, dash] \\
	\QQ & \supset & \ZZ & (p) & \FF_p
\end{tikzcd}
\end{center}
If $p$ is unramified, then one can show there
is a unique $\sigma \in \Gal(L/K)$ such that
$\sigma(\alpha) \equiv \alpha^p \pmod{\kp}$ for every prime $p$.

\section{Frobenius elements}
\prototype{$\Frob_\kp$ in $\ZZ[i]$ depends on $p \pmod 4$.}

Here is the theorem statement again:
\begin{theorem}[The Frobenius element]
	Assume $K/\QQ$ is Galois with Galois group $G$.
	Let $p$ be a rational prime unramified in $K$, and $\kp$ a prime above it.
	There is a \emph{unique} element $\Frob_\kp \in G$
	with the property that
	\[ \Frob_\kp(\alpha) \equiv \alpha^{p} \pmod{\kp}. \]
	It is called the \vocab{Frobenius element} at $\kp$, and has order $f$.
\end{theorem}
The \emph{uniqueness} part is pretty important:
it allows us to show that a given $\sigma \in \Gal(L/K)$
is the Frobenius element by just observing that it satisfies
the above functional equation.

Let's see an example of this:
\begin{example}[Frobenius elements of the Gaussian integers]
	Let's actually compute some Frobenius elements for $K = \QQ(i)$,
	which has $\OO_K = \ZZ[i]$.
	This is a Galois extension, with $G = \Zm2$,
	corresponding to the identity and complex conjugation.

	If $p$ is an odd prime with $\kp$ above it,
	then $\Frob_\kp$ is the unique element such that
	\[ (a+bi)^p \equiv \Frob_\kp(a+bi) \pmod{\kp} \]
	in $\ZZ[i]$. In particular,
	\[ \Frob_\kp(i) = i^p =
		\begin{cases}
			i & p \equiv 1 \pmod 4 \\
			-i & p \equiv 3 \pmod 4.
		\end{cases}
	\]
	From this we see that $\Frob_\kp$ is the identity when $p \equiv 1 \pmod 4$
	and $\Frob_\kp$ is complex conjugation when $p \equiv 3 \pmod 4$.
\end{example}
Note that we really only needed to compute $\Frob_\kp$ on $i$.
If this seems too good to be true,
a philosophical reason is ``freshman's dream''
where $(x+y)^p \equiv x^p + y^p \pmod{p}$ (and hence mod $\kp$).
So if $\sigma$ satisfies the functional equation on generators,
it satisfies the functional equation everywhere.

We also have an important lemma:
\begin{lemma}
	[Order of the Frobenius element]
	Let $\Frob_\kp$ be a Frobenius element from an extension $K/\QQ$.
	Then the order of $\Frob_\kp$ is equal to the inertial degree $f_\kp$.
	In particular, $(p)$ splits completely in $\OO_K$
	if and only if $\Frob_\kp = \id$.
\end{lemma}
\begin{exercise}
	Prove this lemma as by using the fact that $\OO_K / \kp$
	is the finite field of order $f_\kp$,
	and the Frobenius element is just $x \mapsto x^p$ on this field.
\end{exercise}

Let us now prove the main theorem.
This will only make sense in the context of decomposition groups,
so readers which skipped that part should omit this proof.
\begin{proof}
	[Proof of existence of Frobenius element]
	The entire theorem is just a rephrasing of the fact
	that the map $\theta$ defined in the last section
	is an isomorphism when $p$ is unramified.
	Picture:
	\begin{center}
		\begin{asy}
			size(12cm);
			filldraw( (-4,-2)--(-4,2)--(1.5,2)--(1.5,-2)--cycle, lightblue+opacity(0.2), black);
			label("$G = \operatorname{Gal}(K/\mathbb Q)$", (-1,2), dir(90));
			dot( (-1.1,-1.2) );
			dot( (-1.4,0.9) );
			dot( (-2,1.4) );
			dot( (-2.7,-0.4) );
			dot( (-3.1,0.2) );
			dot( (-3.4,-1.6) );

			filldraw(scale(0.8,1.8)*unitcircle, lightcyan+opacity(0.4), black);
			label("$D_{\mathfrak p}$", (0.8,2), dir(-90));
			for (real y=-1.5; y<2; ++y) { dot( (0,y) ); }
			label("$\operatorname{Frob}_{\mathfrak p}$", (0,-1.5), dir(90));

			filldraw(shift(5,0)*scale(0.8,1.8)*unitcircle, lightcyan+opacity(0.4), black);
			for (real y=0.5; y<2; ++y) { dot( (5,y) ); }
			dot("$T$", (5,-1.5), dir(45));
			dot("$T^2$", (5,-0.5), dir(45));
			draw( (1,0)--(4,0), Arrows );
			label("$\left<T \mid T^f=1\right>$", (5,1.8), dir(90));

			draw( (0.2,-1.5)--(4.8,-1.5), dashed, EndArrow);
			label("$\theta(\operatorname{Frob}_{\mathfrak p}) = T$", (2.8,-1.5), dir(-90));
			label("$\theta$", (2.5,0), dir(90));
			label("$\cong$", (2.5,0), dir(-90));
		\end{asy}
	\end{center}
	In here we can restrict our attention to $D_\kp$
	since we need to have $\sigma(\alpha) \equiv 0 \pmod \kp$
	when $\alpha \equiv 0 \pmod \kp$.
	Thus we have the isomorphism
	\[ D_\kp \taking\theta \Gal\left( (\OO_K/\kp) / \FF_p \right). \]
	But we already know $\Gal\left( (\OO_K/\kp)/\FF_p \right)$,
	according to the string of isomorphisms
	\[
		\Gal\left( (\OO_K/\kp) / \FF_p \right)
		\cong \Gal\left( \FF_{p^f} / \FF_p \right)
		\cong \left< T = x \mapsto x^p \right>
		\cong \Zc{f} .
	\]
	So the unique such element is the pre-image of $T$ under $\theta$.
\end{proof}


\section{Conjugacy classes}
Now suppose $\kp_1$ and $\kp_2$ are \emph{two} primes above an unramified rational prime $p$.
Then we can define $\Frob_{\kp_1}$ and $\Frob_{\kp_2}$.
Since the Galois group acts transitively,
we can select $\sigma \in \Gal(K/\QQ)$ be such that
\[ \sigma(\kp_1) = \kp_2. \]
We claim that
\[
	\Frob_{\kp_2} = \sigma \circ \Frob_{\kp_1} \circ \sigma\inv.
\]
Note that this is an equation in $G$.
\begin{ques}
	Prove this.
\end{ques}

More generally, for a given unramified rational prime $p$, we obtain:
\begin{theorem}
	[Conjugacy classes in Galois groups]
	The set
	\[ \left\{ \Frob_\kp \mid \kp \text{ above } p \right\} \]
	is one of the conjugacy classes of $G$.
\end{theorem}
\begin{proof}
	We've used the fact that $G = \Gal(K/\QQ)$ is transitive
	to show that $\Frob_{\kp_1}$ and $\Frob_{\kp_2}$ are conjugate
	if they both lie above $p$; hence it's \emph{contained} in some
	conjugacy class.
	So it remains to check that for any $\kp$, $\sigma$,
	we have $\sigma \circ \Frob_\kp \circ \sigma\inv = \Frob_{\kp'}$
	for some $\kp'$. For this, just take $\kp' = \sigma\kp$.
	Hence the set is indeed a conjugacy class.
\end{proof}
%We denote the conjugacy class by the \vocab{Frobenius symbol}
%\[ \left( \frac{K/\QQ}{p} \right). \]

In summary,
\begin{moral}
	$\Frob_{\kp}$ is determined up to conjugation by the prime $p$
	from which $\kp$ arises.
\end{moral}
So even though the Gothic letters look scary, the content of $\Frob_{\kp}$
really just comes from the more friendly-looking rational prime $p$.


\begin{example}
	[Frobenius elements in $\QQ(\cbrt2,\omega)$]
	With those remarks, here is a more involved example of a Frobenius map.
	Let $K = \QQ(\cbrt2, \omega)$ be the splitting field of
	\[ t^3-2 = (t-\cbrt2)(t-\omega\cbrt2)(t-\omega^2\cbrt2). \]
	Thus $K/\QQ$ is Galois.
	We've seen in an earlier example that
	\[ \OO_K = \ZZ[\eps] \quad\text{where}\quad \eps \text { is a root of } t^6+3t^5-5t^3+3t+1. \]

	Let's consider the prime $5$ which factors (trust me here) as
	\[ (5) = (5, \eps^2+\eps+2)(5, \eps^2+3\eps+3)(5, \eps^2+4\eps+1)
		= \kp_1 \kp_2 \kp_3. \]
	Note that all the prime ideals have inertial degree $2$.
	Thus $\Frob_{\kp_i}$ will have order $2$ for each $i$.

	Note that
	\[ \Gal(K/\QQ) =
		\text{permutations of } \{\cbrt2,\omega\cbrt2,\omega^2\cbrt2\}
		\cong S_3.  \]
	In this $S_3$ there are $3$ elements of order two:
	fixing one root and swapping the other two.
	These correspond to each of $\Frob_{\kp_1}$, $\Frob{\kp_2}$, $\Frob_{\kp_3}$.

	In conclusion, the conjugacy class
	$\left\{ \Frob_{\kp_1}, \Frob_{\kp_2}, \Frob_{\kp_3} \right\}$
	associated to $(5)$ is the
	cycle type $(\bullet)(\bullet \; \bullet)$ in $S_3$.
\end{example}


\section{Chebotarev density theorem}
Natural question: can we represent every conjugacy class in this way?
In other words, is every element of $G$ equal to $\Frob_\kp$ for some $\kp$?

Miraculously, not only is the answer ``yes'', but in fact it does so in the nicest way possible:
the $\Frob_\kp$'s are ``equally distributed'' when we pick a random $\kp$.
\begin{theorem}
	[Chebotarev density theorem over $\QQ$]
	Let $C$ be a conjugacy class of $G = \Gal(K/\QQ)$.
	The density of (unramified) primes $p$ such that $\{ \Frob_\kp \mid \kp \text{ above } p \} = C$
	%\[ \left( \frac{K/\QQ}{p} \right) = C \]
	is exactly $\left\lvert C \right\rvert / \left\lvert G \right\rvert$.
	In particular, for any $\sigma \in G$ there are infinitely many rational primes $p$
	with $\kp$ above $p$ so that $\Frob_{\kp} = \sigma$.
\end{theorem}

By density, I mean that the proportion of primes $p \le x$ that work
approaches $\frac{\left\lvert C \right\rvert}{\left\lvert G \right\rvert}$ as $x \to \infty$.
Note that I'm throwing out the primes that ramify in $K$.
This is no issue, since the only primes that ramify are those dividing $\Delta_K$,
of which there are only finitely many.

In other words, if I pick a random prime $p$ and look at the resulting conjugacy class,
it's a lot like throwing a dart at $G$:
the probability of hitting any conjugacy class depends just on the size of the class.
\begin{center}
	\begin{asy}
		size(8cm);
		bigbox("$G$");
		pen b = lightcyan + opacity(0.4);
		pen k = black;
		filldraw( (-2.6,2.5)--(0.6,2.5)--(0.6,0.5)--(-2.6,0.5)--cycle, b, k);
		filldraw( (-2.6,-2.5)--(0.6,-2.5)--(0.6,-0.5)--(-2.6,-0.5)--cycle, b, k);
		filldraw( (2,0)--(3.5,0)--(3.5,2.5)--(2,2.5)--cycle, b, k);
		filldraw( (2,-1)--(3.5,-1)--(3.5,-2)--(2,-2)--cycle, b, k);
		for (real x = -2; x < 1; ++x) {
			dot( (x, 1.9) );
			dot( (x, 1.1) );
			dot( (x, -1.9) );
			dot( (x, -1.1) );
		}
		label("$37.5\%$", (-2.6, 0.5), dir(140));
		label("$37.5\%$", (-2.6,-2.5), dir(140));
		label("$C_1$", (-2.6, 2.5), dir(225));
		label("$C_2$", (-2.6, -.5), dir(225));
		dot( (2.75, 2.0) );
		dot( (2.75, 1.25) );
		dot( (2.75, 0.50) );
		dot( (2.75, -1.50) );
		label("$C_3$", (2, 0), dir(-90));
		label("$18.75\%$", (3, 0), dir(-75));
		label("$C_4$", (2, -2), dir(-90));
		label("$6.25\%$", (3, -2), dir(-75));
	\end{asy}
\end{center}

\begin{remark}
Happily, this theorem (and preceding discussion)
also works if we replace $K/\QQ$ with any Galois extension $K/F$;
in that case we replace ``$\kp$ over $p$'' with ``$\kP$ over $\kp$''.
In that case, we use $\Norm(\kp) \le x$ rather than $p \le x$ as the way
to define density.
\end{remark}

\section{Example: Frobenius elements of cyclotomic fields}
Let $q$ be a prime, and consider $L = \QQ(\zeta_q)$,
with $\zeta_q$ a primitive $q$th root of unity.
You should recall from various starred problems that
\begin{itemize}
	\ii $\Delta_L = \pm q^{q-2}$,
	\ii $\OO_L = \ZZ[\zeta_q]$, and
	\ii The map \[ \sigma_n : L \to L \quad\text{by}\quad \zeta_q \mapsto \zeta_q^n \]
	is an automorphism of $L$ whenever $\gcd(n,q)=1$,
	and depends only on $n \pmod q$.
	In other words, the automorphisms of $L/\QQ$ just shuffle around the $q$th roots of unity.
	In fact the Galois group consists exactly of the elements $\{\sigma_n\}$, namely
	\[ \Gal(L/\QQ) = \{ \sigma_n \mid n \not\equiv 0 \pmod q \}. \]
	As a group, \[ \Gal(L/\QQ) = \Zm q \cong \Zcc{q-1}. \]
\end{itemize}
This is surprisingly nice,
because \textbf{elements of $\Gal(L/\QQ)$ look a lot
like Frobenius elements already}.
Specifically:

\begin{lemma}[Cyclotomic Frobenius elements]
	\label{lem:cyclo_frob}
	In the cyclotomic setting $L = \QQ(\zeta_q)$,
	let $p$ be a rational unramified prime
	and $\kp$ above it. Then \[ \Frob_\kp = \sigma_p. \]
\end{lemma}
\begin{proof}
	Observe that $\sigma_p$ satisfies the functional equation
	(check on generators).
	Done by uniqueness.
%	We know $\Frob_\kp(\alpha) \equiv \alpha^p \pmod{\kp}$ by definition,
%	but also that $\Frob_\kp = \sigma_n$ for some $n$
%	We want $n=p$; since $\sigma_n(\zeta_q)^n = \zeta_q^n$ by definition
%	it would be very weird if this wasn't true!
%
%	Given $\zeta_q^n \equiv \zeta_q^p \pmod{\kp}$, it suffices to
%	prove that the $q$th roots of unity are distinct mod $\kp$.
%	Look at the polynomial $F(x) = x^q-1$ in $\ZZ[\zeta_p]/\kp \cong \FF_{p^f}$.
%	Its derivative is \[ F'(x) = qx^{q-1} \not\equiv 0 \pmod{\kp} \]
%	(since $\FF_{p^f}$ has characteristic $p \nmid q$).
%	The only root of $F'$ is zero, hence $F$ has no double roots mod $\kp$.
\end{proof}

\begin{ques}
	Conclude that a rational prime $p$
	splits completely in $\OO_L$ if and only if $p \equiv 1 \pmod q$.
\end{ques}

\section{Frobenius elements behave well with restriction}
Let $L/\QQ$ and $K/\QQ$ be Galois extensions, and consider the setup
\begin{center}
\begin{tikzcd}
	L \ar[d, dash] & \supset
		& \kP \ar[d, dash] \ar[r, dotted]
		& \Frob_{\kP} \in \Gal(L/\QQ)\\
	K \ar[d, dash] & \supset
		& \kp \ar[d, dash] \ar[r, dotted]
		& \Frob_\kp \in \Gal(K/\QQ) \\
	\QQ & \supset
		& (p)
		&
\end{tikzcd}
\end{center}
Here $\kp$ is above $(p)$ and $\kP$ is above $\kp$.
We may define
\[ \Frob_\kp \colon K \to K
	\quad\text{and}\quad
	\Frob_{\kP} \colon L \to L \]
and want to know how these are related.

\begin{theorem}
	[Restrictions of Frobenius elements]
	Assume $L/\QQ$ and $K/\QQ$ are both Galois.
	Let $\kP$ and $\kp$ be unramified as above.
	Then $\Frob_{\kP} \restrict{K} = \Frob_{\kp}$,
	i.e.\ for every $\alpha \in K$,
	\[ \Frob_\kp(\alpha) = \Frob_{\kP}(\alpha). \]
\end{theorem}
%\begin{proof}
%	We know
%	\[ \Frob_{\kP}(\alpha) \equiv \alpha^p \pmod{\kP}
%		\quad \forall \alpha \in \OO_L \]
%	from the definition.
%	\begin{ques}
%		Deduce that
%		\[ \Frob_{\kP}(\alpha) \equiv \alpha^p \pmod{\kp}
%			\quad \forall \alpha \in \OO_K. \]
%		(This is weaker than the previous statement in two ways!)
%	\end{ques}
%	Thus $\Frob_{\kP}$ restricted to $\OO_K$ satisfies the
%	characterizing property of $\Frob_\kp$.
%\end{proof}
\begin{proof}
	TODO: Broken proof. Needs repair.
\end{proof}
In short, the point of this section is that
\begin{moral}
	Frobenius elements upstairs restrict to Frobenius elements downstairs.
\end{moral}

\section{Application: Quadratic reciprocity}
We now aim to prove:
\begin{theorem}
	[Quadratic reciprocity]
	Let $p$ and $q$ be distinct odd primes.
	Then
	\[ \left( \frac pq \right)\left( \frac qp \right)
		= (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}. \]
\end{theorem}
(See, e.g. \cite{ref:holden} for an exposition on quadratic reciprocity,
if you're not familiar with it.)

\subsection{Step 1: Setup}
For this proof, we first define
\[ L = \QQ(\zeta_q) \]
where $\zeta_q$ is a primitive $q$th root of unity.
Then $L/\QQ$ is Galois, with Galois group $G$.
\begin{ques}
	Show that $G$ has a unique subgroup $H$ of index two.
\end{ques}
In fact, we can describe it exactly: viewing $G \cong \Zm q$, we have
\[ H = \left\{ \sigma_n \mid \text{$n$ quadratic residue mod $q$} \right\}. \]
By the fundamental theorem of Galois Theory, there ought to be a degree $2$
extension of $\QQ$ inside $\QQ(\zeta_q)$ (that is, a quadratic field).
Call it $\QQ(\sqrt{q^\ast})$, for $q^\ast$ squarefree:
\begin{center}
\begin{tikzcd}
	L = \QQ(\zeta_q)
		\ar[d, "\frac{q-1}{2}"', dash]
		\ar[r, leftrightarrow]
		& \{1\} \ar[d, dash] \\
	K = \QQ(\sqrt{q^\ast})
		\ar[d, "2"', dash]
		\ar[r, leftrightarrow]
		& H \ar[d, dash] \\
	\QQ \ar[r, leftrightarrow]
		& G
\end{tikzcd}
\end{center}
\begin{exercise}
	Note that if a rational prime $\ell$ ramifies in $K$,
	then it ramifies in $L$.
	Use this to show that
	\[ q^\ast = \pm q \text{ and } q^\ast \equiv 1 \pmod 4. \]
	Together these determine the value of $q^\ast$.
\end{exercise}
(Actually, it is true in general
$\Delta_K$ divides $\Delta_L$ in a tower $L/K/\QQ$.)

\subsection{Step 2: Reformulation}
Now we are going to prove:
\begin{theorem}
	[Quadratic reciprocity, equivalent formulation]
	For distinct odd primes $p$, $q$ we have
	\[ \left( \frac pq \right) = \left( \frac{q^\ast}{p} \right). \]
\end{theorem}
\begin{exercise}
	Using the fact that $\left( \frac{-1}{p} \right) = (-1)^{\frac{p-1}{2}}$,
	show that this is equivalent to quadratic reciprocity as we know it.
\end{exercise}

We look at the rational prime $p$ in $\ZZ$.
Either it splits into two in $K$ or is inert; either way let $\kp$ be a prime factor
in the resulting decomposition (so $\kp$ is either $p \cdot \OO_K$ in the inert case,
or one of the primes in the split case).
Then let ${\kP}$ be above $\kp$.
It could possibly also split in $K$: the picture looks like
\begin{center}
\begin{tikzcd}
	\OO_L = \ZZ[\zeta_q] & \supset
		& {\kP} \ar[r, dotted] & \ZZ[\zeta_p]/{\kP} \cong \FF_{p^f} \\
	\OO_K = \ZZ[\frac{1+\sqrt{q^\ast}}{2}] & \supset
		& \kp \ar[r, dotted] & \FF_p \text{ or } \FF_{p^2} \\
	\ZZ & \supset & (p) \ar[r, dotted]
		& \FF_p
\end{tikzcd}
\end{center}
\begin{ques}
	Why is $p$ not ramified in either $K$ or $L$?
\end{ques}

\subsection{Step 3: Introducing the Frobenius}
Now, we take the Frobenius
\[ \sigma_p = \Frob_{\kP} \in \Gal(L/\QQ). \]
We claim that
\[ \Frob_{\kP} \in H \iff \text{$p$ splits in $K$}. \]
To see this, note that $\Frob_{\kP}$ is in $H$ if and only if it acts
as the identity on $K$.
But $\Frob_{\kP} \restrict{K}$ is $\Frob_\kp$!
So \[ \Frob_{\kP} \in H \iff \Frob_\kp = \id_K. \]
Finally note that $\Frob_\kp$ has order $1$ if $p$ splits
($\kp$ has inertial degree $1$)
and order $2$ if $p$ is inert.
This completes the proof of the claim.

\subsection{Finishing up}
We already know by \Cref{lem:cyclo_frob} that $\Frob_{\kP} = \sigma_p \in H$
if and only if $p$ is a quadratic residue.
On the other hand,
\begin{exercise}
	Show that $p$ splits in $\OO_K = \ZZ[\frac12(1+\sqrt{q^\ast})]$
	if and only if $\left( \frac{q^\ast}{p} \right) = 1$.
	(Use the factoring algorithm. You need the fact that $p \neq 2$ here.)
\end{exercise}
In other words
\[ \left( \frac pq \right) = 1
	\iff \sigma_p \in H \iff \text{$p$ splits in $\ZZ\left[ \tfrac12(1+\sqrt{q^\ast}) \right]$}
	\iff \left( \frac{q^\ast}{p} \right) = 1.
\]
This completes the proof.


\section{Frobenius elements control factorization}
\prototype{$\Frob_\kp$ controlled the splitting of $p$ in the proof of quadratic reciprocity;
the same holds in general.}
In the proof of quadratic reciprocity, we used the fact that Frobenius elements behaved
well with restriction in order to relate the splitting of $p$ with properties of $\Frob_\kp$.

In fact, there is a much stronger statement for
any intermediate field $\QQ \subseteq E \subseteq K$
which works even if $E/\QQ$ is not Galois.
It relies on the notion of a \emph{factorization pattern}.
Here is how it goes.

Set $n = [E:\QQ]$, and let $p$ be a rational prime unramified in $K$.
Then $p$ can be broken in $E$ as
\[ p \cdot \OO_E = \kp_1 \kp_2 \dots \kp_g \]
with inertial degrees $f_1$, \dots, $f_g$:
(these inertial degrees might be different since $E/\QQ$ isn't Galois).
The numbers $f_1 + \dots + f_g = n$ form a partition of the number $n$.
For example, in the quadratic reciprocity proof we had $n = 2$,
with possible partitions $1 + 1$ (if $p$ split) and $2$ (if $p$ was inert).
We call this the \vocab{factorization pattern} of $p$ in $E$.

Next, we introduce a Frobenius $\Frob_{\kP}$ above $(p)$, all the way in $K$;
this is an element of $G = \Gal(K/\QQ)$.
Then let $H$ be the group corresponding to the field $E$.
Diagram:
\begin{center}
\begin{tikzcd}
	K \ar[r, leftrightarrow] \ar[d, dash] & \{1\} \ar[d, dash]
		& \Frob_{\kP} \\
	E \ar[d, dash, "n"'] \ar[r, leftrightarrow] & H \ar[d, dash, "n"]
		& \kp_1 \dots \kp_g \ar[d, dash] & f_1 + \dots + f_g = n \\
	\QQ \ar[r, leftrightarrow] & G & (p)
\end{tikzcd}
\end{center}
Then $\Frob_{\kP}$ induces a \emph{permutation}
of the $n$ left cosets $gH$ by left multiplication
(after all, $\Frob_{\kP}$ is an element of $G$ too!).
Just as with any permutation, we may look at the resulting cycle decomposition,
which has a natural ``cycle structure'': a partition of $n$.
\begin{center}
	\begin{asy}
		size(8cm);
		pen tg = heavyred; // "times g"

		pen pointpen = lightblue;
		pair A = Drawing("g_1H", dir(80), dir(80), pointpen);
		pair B = Drawing("g_2H", A*dir(120), A*dir(120), pointpen);
		pair C = Drawing("g_3H", A*dir(240), A*dir(240), pointpen);
		draw(A--B, dashed + pointpen, EndArrow, Margin(2,2));
		draw(B--C, dashed + pointpen, EndArrow, Margin(2,2));
		draw(C--A, dashed + pointpen, EndArrow, Margin(2,2));
		label("$\times g$", midpoint(A--B), A+B, tg);
		label("$\times g$", midpoint(B--C), B+C, tg);
		label("$\times g$", midpoint(C--A), C+A, tg);
		label("$3$", origin, origin, pointpen);
		add(shift( (-3.2,0.1) ) * CC());

		label("$g = \operatorname{Frob}_{\mathfrak P}$", (-1.7,1.7), origin, tg);

		pointpen = heavygreen;
		pair W = Drawing("g_4H", dir(50), dir(50), pointpen);
		pair X = Drawing("g_5H", W*dir(90), W*dir(90), pointpen);
		pair Y = Drawing("g_6H", W*dir(180), W*dir(180), pointpen);
		pair Z = Drawing("g_7H", W*dir(270), W*dir(270), pointpen);
		draw(W--X, dashed + pointpen, EndArrow, Margin(2,2));
		draw(X--Y, dashed + pointpen, EndArrow, Margin(2,2));
		draw(Y--Z, dashed + pointpen, EndArrow, Margin(2,2));
		draw(Z--W, dashed + pointpen, EndArrow, Margin(2,2));
		defaultpen(red);
		label("$\times g$", W--X, W+X, tg);
		label("$\times g$", X--Y, X+Y, tg);
		label("$\times g$", Y--Z, Y+Z, tg);
		label("$\times g$", Z--W, Z+W, tg);
		label("$4$", origin, origin, pointpen);

		label("$\boxed{n = 7 = 3+4}$", (-2,-1.8), origin, black);
	\end{asy}
\end{center}

The theorem is that these coincide:
\begin{theorem}
	[Frobenius elements control decomposition]
	\label{thm:frob_control_decomp}
	Let $\QQ \subseteq E \subseteq K$ an extension of number fields
	and assume $K/\QQ$ is Galois (though $E/\QQ$ need not be).
	Pick an unramified rational prime $p$; let $G = \Gal(K/\QQ)$
	and $H$ the corresponding intermediate subgroup.
	Finally, let $\kP$ be a prime above $p$ in $K$.

	Then the \emph{factorization pattern} of $p$ in $E$ is given by
	the \emph{cycle structure} of $\Frob_{\kP}$ acting on the left cosets of $H$.
\end{theorem}
Often, we take $E = K$, in which case this is just asserting
that the decomposition of the prime $p$ is controlled by a Frobenius element over it.

An important special case is when $E = \QQ(\alpha)$,
because as we will see it is let us determine how the minimal
polynomial of $\alpha$ factors modulo $p$.
To motivate this, let's go back a few chapters
and think about the Factoring Algorithm.

Let $\alpha$ be an algebraic integer and $f$ its minimal polynomial (of degree $n$).
Set $E = \QQ(\alpha)$ (which has degree $n$ over $\QQ$).
Suppose we're lucky enough that $\OO_E = \ZZ[\alpha]$,
i.e.\ that $E$ is monogenic.
Then we know by the Factoring Algorithm,
to factor any $p$ in $E$, all we have to do is factor $f$ modulo $p$,
since if $f = f_1^{e_1} \dots f_g^{e_g} \pmod p$ then we have
\[ (p) = \prod_i \kp_i = \prod_i (f_i(\alpha), p)^{e_i}. \]
This gives us complete information about the ramification indices and inertial degrees;
the $e_i$ are the ramification indices, and $\deg f_i$ are the inertial degrees
(since $\OO_E / \kp_i \cong \FF_p[X] / (f_i(X))$).

In particular, if $p$ is unramified then all the $e_i$ are equal to $1$, and we get
\[ n = \deg f = \deg f_1 + \deg f_2 + \dots + \deg f_g. \]
Once again we have a partition of $n$;
we call this the \vocab{factorization pattern} of $f$ modulo $p$.
So, to see the factorization pattern of an unramified $p$ in $\OO_E$,
we just have to know the factorization pattern of the $f \pmod p$.

Turning this on its head, if we want to know the factorization pattern of $f \pmod p$,
we just need to know how $p$ decomposes.
And it turns out these coincide even without the assumption that $E$ is monogenic.

\begin{theorem}[Frobenius controls polynomial factorization]
	\label{thm:factor_poly_frob}
	Let $\alpha$ be an algebraic integer with minimal polynomial $f$,
	and let $E = \QQ(\alpha)$.
	Then for any prime $p$ unramified in the splitting field $K$ of $f$,
	the following coincide:
	\begin{enumerate}[(i)]
		\ii The factorization pattern of $p$ in $E$.
		\ii The factorization pattern of $f \pmod p$.
		\ii The cycle structure associated to the action
		of $\Frob_{\kP} \in \Gal(K/\QQ)$ on the roots of $f$,
		where $\kP$ is above $p$ in $K$.
	\end{enumerate}
\end{theorem}
\begin{example}[Factoring $x^3-2 \pmod 5$]
	Let $\alpha = \cbrt2$ and $f = x^3-2$, so $E = \QQ(\cbrt2)$.
	Set $p=5$ and finally, let $K = \QQ(\cbrt2, \omega)$ be the splitting field.
	Setup:
	\begin{center}
	\begin{tikzcd}
		K = \QQ(\cbrt2, \omega) \ar[d, dash, "2"']
			& \kP \ar[d, dash]
			& x^3-2 = (x-\cbrt2)(x-\cbrt2\omega)(x-\cbrt2\omega^2) \\
		E = \QQ(\sqrt[3]{2}) \ar[d, dash, "3"']
			& \kp \ar[d, dash]
			& x^3-2 = (x-\cbrt2)(x^2+\cbrt2x+\cbrt4) \\
		\QQ & (5) & x^3-2 \text{ irreducible over } \QQ
	\end{tikzcd}
	\end{center}
	The three claimed objects now all have shape $2+1$:
	\begin{enumerate}[(i)]
		\ii By the Factoring Algorithm, we have
		$(5) = (5, \cbrt2-3)(5, 9+3\cbrt2+\cbrt4)$.
		\ii We have $x^3-2 \equiv (x-3)(x^2+3x+9) \pmod 5$.
		\ii We saw before that $\Frob_{\kP} = (\bullet)(\bullet \; \bullet)$.
	\end{enumerate}
\end{example}

\begin{proof}[Sketch of Proof]
	Letting $n = \deg f$.
	Let $H$ be the subgroup of $G = \Gal(K/\QQ)$ corresponding to $E$, so $[G:E] = n$.
	Pictorially, we have
	\begin{center}
	\begin{tikzcd}
		K \ar[d, dash] & \{1\} \ar[d, dash] & \kP \ar[d, dash] \\
		E = \QQ(\alpha) \ar[d, dash] & H \ar[d, dash] & \kp \ar[d, dash] \\
		\QQ & G & (p)
	\end{tikzcd}
	\end{center}
	We claim that (i), (ii), (iii) are all equivalent to
	\begin{center}
		(iv) The pattern of the action of $\Frob_{\kP}$ on the $G/H$.
	\end{center}
	In other words we claim the cosets correspond to the $n$ roots of $f$ in $K$.
	Indeed $H$ is just the set of $\tau \in G$ such that $\tau(\alpha)=\alpha$,
	so there's a bijection between the roots and the cosets $G/H$
	by $\tau H \mapsto \tau(\alpha)$.
	Think of it this way: if $G = S_n$, and $H = \{\tau : \tau(1) = 1\}$,
	then $G/H$ has order $n! / (n-1)! = n$ and corresponds to the elements $\{1, \dots, n\}$.
	So there is a natural bijection from (iii) to (iv).

	The fact that (i) is in bijection to (iv) was the previous theorem,
	\Cref{thm:frob_control_decomp}.
	The correspondence (i) $\iff$ (ii) is a fact of Galois theory,
	so we omit the proof here.
\end{proof}

All this can be done in general with $\QQ$ replaced by $F$;
for example, in \cite{ref:lenstra_chebotarev}.

\section{Example application: IMO 2003 problem 6}
As an example of the power we now have at our disposal, let's prove:

\begin{center}
	\begin{minipage}{4.5cm}
		\includegraphics[width=4cm]{media/IMO-2003-logo.png}
	\end{minipage}%
	\begin{minipage}{10cm}
		\textbf{Problem 6}.
		Let $p$ be a prime number.
		Prove that there exists a prime number $q$ such that for every integer $n$,
		the number $n^p-p$ is not divisible by $q$.
	\end{minipage}
\end{center}
We will show, much more strongly, that there exist infinitely many primes $q$
such that $X^p-p$ is irreducible modulo $q$.

\begin{proof}[Solution]
	Okay! First, we draw the tower of fields
	\[ \QQ \subseteq \QQ(\sqrt[p]{p}) \subseteq K \]
	where $K$ is the splitting field of $f(x) = x^p-p$.
	Let $E = \QQ(\sqrt[p]{p})$ for brevity and note it has degree $[E:\QQ] = p$.
	Let $G = \Gal(K/\QQ)$.
	\begin{ques}
		Show that $p$ divides the order of $G$. (Look at $E$.)
	\end{ques}
	Hence by Cauchy's theorem (\Cref{thm:cauchy_group}, which is a purely group-theoretic fact)
	we can find a $\sigma \in G$ of order $p$.
	By Chebotarev, there exist infinitely many rational (unramified) primes $q \neq p$
	and primes $\kQ \subseteq \OO_K$ above $q$
	such that $\Frob_\kQ = \sigma$.
	(Yes, that's an uppercase Gothic $Q$. Sorry.)

	We claim that all these $q$ work.

	By \Cref{thm:factor_poly_frob}, the factorization of $f \pmod q$ is
	controlled by the action of $\sigma = \Frob_\kQ$ on the roots of $f$.
	But $\sigma$ has prime order $p$ in $G$!
	So all the lengths in the cycle structure have to divide $p$.
	Thus the possible factorization patterns of $f$ are
	\[ p = \underbrace{1 + 1 + \dots + 1}_{\text{$p$ times}}
	\quad\text{or}\quad p = p. \]
	So we just need to rule out the $p = 1 + \dots + 1$ case now:
	this only happens if $f$ breaks into linear factors mod $q$.
	Intuitively this edge case seems highly unlikely (are we really so unlucky
	that $f$ factors into \emph{linear} factors when we want it to be irreducible?).
	And indeed this is easy to see: this means that $\sigma$ fixes all
	of the roots of $f$ in $K$, but that means $\sigma$ fixes $K$ altogether,
	and hence is the identity of $G$, contradiction.
\end{proof}
\begin{remark}
	In fact $K = \QQ(\sqrt[p]{p}, \zeta_p)$, and $\left\lvert G \right\rvert = p(p-1)$.
	With a little more group theory, we can show that in fact the density of
	primes $q$ that work is $\frac 1p$.
\end{remark}

\section\problemhead

\begin{problem}
	Show that for an odd prime $p$, \[ \left( \frac 2p \right) = (-1)^{\frac 18(p^2-1)}. \]
	\begin{hint}
		Modify the end of the proof of quadratic reciprocity.
	\end{hint}
	\begin{sol}
		It is still true that
		\[ \left( \frac 2q \right) = 1
		\iff \sigma_2 \in H \iff \text{$2$ splits in $\ZZ\left[ \tfrac12(1+\sqrt{q^\ast}) \right]$}. \]
		Now, $2$ splits in the ring if and only if $t^2 - t - \tfrac14(1-q^\ast)$
		factors mod $2$. This happens if and only if $q^\ast \equiv 1 \pmod 8$.
		One can check this is exactly if $q \equiv \pm 1 \pmod 8$, which gives the conclusion.
	\end{sol}
\end{problem}

\begin{problem}
	Let $f$ be a nonconstant polynomial with integer coefficients.
	Suppose $f \pmod p$ splits completely into linear factors
	for all sufficiently large primes $p$.
	Show that $f$ splits completely into linear factors.
\end{problem}

\begin{dproblem}
	[Dirichlet's theorem on arithmetic progressions]
	Let $a$ and $m$ be relatively prime positive integers.
	Show that the density of primes $p \equiv a \pmod m$ is exactly $\frac{1}{\phi(m)}$.
	\begin{hint}
		Chebotarev Density on $\QQ(\zeta_m)$.
	\end{hint}
	\begin{sol}
		Let $K = \Gal(\QQ(\zeta_m)/\QQ)$.
		One can show that $\Gal(K/\QQ) \cong \Zm m$ exactly as before.
		In particular, $\Gal(K/\QQ)$ is abelian and therefore its conjugacy classes
		are singleton sets; there are $\phi(m)$ of them.

		As long as $p$ is sufficiently large, it is unramified
		and $\sigma_p = \Frob_\kp$ for any $\kp$ above $p$
		(as $m$th roots of unity will be distinct modulo $p$;
		differentiate $x^m-1$ mod $p$ again).
	\end{sol}
\end{dproblem}

\begin{problem}
	Let $n$ be an odd integer which is not a prime power.
	Show that the $n$th cyclotomic polynomial is not
	irreducible modulo \emph{any} rational prime.
	% http://mathoverflow.net/questions/12366/how-many-primes-stay-inert-in-a-finite-non-cyclic-extension-of-number-fields
\end{problem}

\begin{problem}
	[Putnam 2012 B6]
	\yod
	Let $p$ be an odd prime such that $p \equiv 2 \pmod 3$.
	Let $\pi$ be a permutation of $\FF_p$ by $\pi(x) = x^3 \pmod p$.
	Show that $\pi$ is even if and only if $p \equiv 3 \pmod 4$.
	\begin{hint}
		By primitive roots, it's the same as the action of $\times 3$ on $\Zcc{p-1}$.
		Let $\zeta$ be a $(p-1)$st root of unity.
		Take $d = \prod_{i < j} (\zeta^i - \zeta^j)$, think about $\QQ(d)$,
		and figure out how to act on it by $x \mapsto x^3$.
	\end{hint}
	\begin{sol}
		This solution is by David Corwin.
		By primitive roots, it's the same as the action of $\times 3$ on $\Zcc{p-1}$.
		Let $\zeta$ be a $(p-1)$st root of unity.

		Consider
		\[ d = \prod_{0 \le i < j < p-1} (\zeta^i - \zeta^j). \]
		This is the square root of the discriminant of
		the polynomial $X^{p-1}-1$; in other words $d^2 \in \ZZ$.
		In fact, by elementary methods one can compute
		\[ (-1)^{\binom{p-1}{2}} d^2 = -(p-1)^{p-1} \]

		Now take the extension $K = \QQ(d)$, noting that
		\begin{itemize}
			\ii If $p \equiv 3 \pmod 4$, then $d = (p-1)^{\half(p-1)}$, so $K = \QQ$.
			\ii If $p \equiv 1 \pmod 4$, then $d = i(p-1)^{\half(p-1)}$, so $K = \QQ(i)$.
		\end{itemize}
		Either way, in $\OO_K$, let $\kp$ be a prime ideal above $(3) \subseteq \OO_K$.
		Let $\sigma = \Frob_\kp$ then be the unique element such that
		$\sigma(x) = x^3 \pmod{\kp}$ for all $x$.
		Then, we observe that
		\[
			\sigma(d) \equiv \prod_{0 \le i < j < p-1} (\zeta^{3i} - \zeta^{3j})
			\equiv \begin{cases}
				+d & \text{if $\pi$ is even} \\
				-d & \text{if $\pi$ is odd}
			\end{cases} \pmod{\kp}.
		\]
		Now if $K = \QQ$, then $\sigma$ is the identity, thus $\sigma$ even.
		Conversely, if $K = \QQ(i)$, then $3$ does not split, so $\sigma(d) = -d$
		(actually $\sigma$ is complex conjugation) thus $\pi$ is odd.

		Note the condition that $p \equiv 2 \pmod 3$ is used only
		to guarantee that $\pi$ is actually a permutation (and thus $d \neq 0$);
		it does not play any substantial role in the solution.
	\end{sol}
\end{problem}