Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 32,527 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
\chapter{The Frobenius element}
Throughout this chapter $K/\QQ$ is a Galois extension with Galois group $G$,
$p$ is an \emph{unramified} rational prime in $K$, and $\kp$ is a prime above it.
Picture:
\begin{center}
\begin{tikzcd}
K \ar[d, dash]
& \supset
& \OO_K \ar[d, dash]
& \kp \ar[d, dash]
& \OO_K/\kp \cong \FF_{p^f} \ar[d, dash] \\
\QQ & \supset & \ZZ & (p) & \FF_p
\end{tikzcd}
\end{center}
If $p$ is unramified, then one can show there
is a unique $\sigma \in \Gal(L/K)$ such that
$\sigma(\alpha) \equiv \alpha^p \pmod{\kp}$ for every prime $p$.
\section{Frobenius elements}
\prototype{$\Frob_\kp$ in $\ZZ[i]$ depends on $p \pmod 4$.}
Here is the theorem statement again:
\begin{theorem}[The Frobenius element]
Assume $K/\QQ$ is Galois with Galois group $G$.
Let $p$ be a rational prime unramified in $K$, and $\kp$ a prime above it.
There is a \emph{unique} element $\Frob_\kp \in G$
with the property that
\[ \Frob_\kp(\alpha) \equiv \alpha^{p} \pmod{\kp}. \]
It is called the \vocab{Frobenius element} at $\kp$, and has order $f$.
\end{theorem}
The \emph{uniqueness} part is pretty important:
it allows us to show that a given $\sigma \in \Gal(L/K)$
is the Frobenius element by just observing that it satisfies
the above functional equation.
Let's see an example of this:
\begin{example}[Frobenius elements of the Gaussian integers]
Let's actually compute some Frobenius elements for $K = \QQ(i)$,
which has $\OO_K = \ZZ[i]$.
This is a Galois extension, with $G = \Zm2$,
corresponding to the identity and complex conjugation.
If $p$ is an odd prime with $\kp$ above it,
then $\Frob_\kp$ is the unique element such that
\[ (a+bi)^p \equiv \Frob_\kp(a+bi) \pmod{\kp} \]
in $\ZZ[i]$. In particular,
\[ \Frob_\kp(i) = i^p =
\begin{cases}
i & p \equiv 1 \pmod 4 \\
-i & p \equiv 3 \pmod 4.
\end{cases}
\]
From this we see that $\Frob_\kp$ is the identity when $p \equiv 1 \pmod 4$
and $\Frob_\kp$ is complex conjugation when $p \equiv 3 \pmod 4$.
\end{example}
Note that we really only needed to compute $\Frob_\kp$ on $i$.
If this seems too good to be true,
a philosophical reason is ``freshman's dream''
where $(x+y)^p \equiv x^p + y^p \pmod{p}$ (and hence mod $\kp$).
So if $\sigma$ satisfies the functional equation on generators,
it satisfies the functional equation everywhere.
We also have an important lemma:
\begin{lemma}
[Order of the Frobenius element]
Let $\Frob_\kp$ be a Frobenius element from an extension $K/\QQ$.
Then the order of $\Frob_\kp$ is equal to the inertial degree $f_\kp$.
In particular, $(p)$ splits completely in $\OO_K$
if and only if $\Frob_\kp = \id$.
\end{lemma}
\begin{exercise}
Prove this lemma as by using the fact that $\OO_K / \kp$
is the finite field of order $f_\kp$,
and the Frobenius element is just $x \mapsto x^p$ on this field.
\end{exercise}
Let us now prove the main theorem.
This will only make sense in the context of decomposition groups,
so readers which skipped that part should omit this proof.
\begin{proof}
[Proof of existence of Frobenius element]
The entire theorem is just a rephrasing of the fact
that the map $\theta$ defined in the last section
is an isomorphism when $p$ is unramified.
Picture:
\begin{center}
\begin{asy}
size(12cm);
filldraw( (-4,-2)--(-4,2)--(1.5,2)--(1.5,-2)--cycle, lightblue+opacity(0.2), black);
label("$G = \operatorname{Gal}(K/\mathbb Q)$", (-1,2), dir(90));
dot( (-1.1,-1.2) );
dot( (-1.4,0.9) );
dot( (-2,1.4) );
dot( (-2.7,-0.4) );
dot( (-3.1,0.2) );
dot( (-3.4,-1.6) );
filldraw(scale(0.8,1.8)*unitcircle, lightcyan+opacity(0.4), black);
label("$D_{\mathfrak p}$", (0.8,2), dir(-90));
for (real y=-1.5; y<2; ++y) { dot( (0,y) ); }
label("$\operatorname{Frob}_{\mathfrak p}$", (0,-1.5), dir(90));
filldraw(shift(5,0)*scale(0.8,1.8)*unitcircle, lightcyan+opacity(0.4), black);
for (real y=0.5; y<2; ++y) { dot( (5,y) ); }
dot("$T$", (5,-1.5), dir(45));
dot("$T^2$", (5,-0.5), dir(45));
draw( (1,0)--(4,0), Arrows );
label("$\left<T \mid T^f=1\right>$", (5,1.8), dir(90));
draw( (0.2,-1.5)--(4.8,-1.5), dashed, EndArrow);
label("$\theta(\operatorname{Frob}_{\mathfrak p}) = T$", (2.8,-1.5), dir(-90));
label("$\theta$", (2.5,0), dir(90));
label("$\cong$", (2.5,0), dir(-90));
\end{asy}
\end{center}
In here we can restrict our attention to $D_\kp$
since we need to have $\sigma(\alpha) \equiv 0 \pmod \kp$
when $\alpha \equiv 0 \pmod \kp$.
Thus we have the isomorphism
\[ D_\kp \taking\theta \Gal\left( (\OO_K/\kp) / \FF_p \right). \]
But we already know $\Gal\left( (\OO_K/\kp)/\FF_p \right)$,
according to the string of isomorphisms
\[
\Gal\left( (\OO_K/\kp) / \FF_p \right)
\cong \Gal\left( \FF_{p^f} / \FF_p \right)
\cong \left< T = x \mapsto x^p \right>
\cong \Zc{f} .
\]
So the unique such element is the pre-image of $T$ under $\theta$.
\end{proof}
\section{Conjugacy classes}
Now suppose $\kp_1$ and $\kp_2$ are \emph{two} primes above an unramified rational prime $p$.
Then we can define $\Frob_{\kp_1}$ and $\Frob_{\kp_2}$.
Since the Galois group acts transitively,
we can select $\sigma \in \Gal(K/\QQ)$ be such that
\[ \sigma(\kp_1) = \kp_2. \]
We claim that
\[
\Frob_{\kp_2} = \sigma \circ \Frob_{\kp_1} \circ \sigma\inv.
\]
Note that this is an equation in $G$.
\begin{ques}
Prove this.
\end{ques}
More generally, for a given unramified rational prime $p$, we obtain:
\begin{theorem}
[Conjugacy classes in Galois groups]
The set
\[ \left\{ \Frob_\kp \mid \kp \text{ above } p \right\} \]
is one of the conjugacy classes of $G$.
\end{theorem}
\begin{proof}
We've used the fact that $G = \Gal(K/\QQ)$ is transitive
to show that $\Frob_{\kp_1}$ and $\Frob_{\kp_2}$ are conjugate
if they both lie above $p$; hence it's \emph{contained} in some
conjugacy class.
So it remains to check that for any $\kp$, $\sigma$,
we have $\sigma \circ \Frob_\kp \circ \sigma\inv = \Frob_{\kp'}$
for some $\kp'$. For this, just take $\kp' = \sigma\kp$.
Hence the set is indeed a conjugacy class.
\end{proof}
%We denote the conjugacy class by the \vocab{Frobenius symbol}
%\[ \left( \frac{K/\QQ}{p} \right). \]
In summary,
\begin{moral}
$\Frob_{\kp}$ is determined up to conjugation by the prime $p$
from which $\kp$ arises.
\end{moral}
So even though the Gothic letters look scary, the content of $\Frob_{\kp}$
really just comes from the more friendly-looking rational prime $p$.
\begin{example}
[Frobenius elements in $\QQ(\cbrt2,\omega)$]
With those remarks, here is a more involved example of a Frobenius map.
Let $K = \QQ(\cbrt2, \omega)$ be the splitting field of
\[ t^3-2 = (t-\cbrt2)(t-\omega\cbrt2)(t-\omega^2\cbrt2). \]
Thus $K/\QQ$ is Galois.
We've seen in an earlier example that
\[ \OO_K = \ZZ[\eps] \quad\text{where}\quad \eps \text { is a root of } t^6+3t^5-5t^3+3t+1. \]
Let's consider the prime $5$ which factors (trust me here) as
\[ (5) = (5, \eps^2+\eps+2)(5, \eps^2+3\eps+3)(5, \eps^2+4\eps+1)
= \kp_1 \kp_2 \kp_3. \]
Note that all the prime ideals have inertial degree $2$.
Thus $\Frob_{\kp_i}$ will have order $2$ for each $i$.
Note that
\[ \Gal(K/\QQ) =
\text{permutations of } \{\cbrt2,\omega\cbrt2,\omega^2\cbrt2\}
\cong S_3. \]
In this $S_3$ there are $3$ elements of order two:
fixing one root and swapping the other two.
These correspond to each of $\Frob_{\kp_1}$, $\Frob{\kp_2}$, $\Frob_{\kp_3}$.
In conclusion, the conjugacy class
$\left\{ \Frob_{\kp_1}, \Frob_{\kp_2}, \Frob_{\kp_3} \right\}$
associated to $(5)$ is the
cycle type $(\bullet)(\bullet \; \bullet)$ in $S_3$.
\end{example}
\section{Chebotarev density theorem}
Natural question: can we represent every conjugacy class in this way?
In other words, is every element of $G$ equal to $\Frob_\kp$ for some $\kp$?
Miraculously, not only is the answer ``yes'', but in fact it does so in the nicest way possible:
the $\Frob_\kp$'s are ``equally distributed'' when we pick a random $\kp$.
\begin{theorem}
[Chebotarev density theorem over $\QQ$]
Let $C$ be a conjugacy class of $G = \Gal(K/\QQ)$.
The density of (unramified) primes $p$ such that $\{ \Frob_\kp \mid \kp \text{ above } p \} = C$
%\[ \left( \frac{K/\QQ}{p} \right) = C \]
is exactly $\left\lvert C \right\rvert / \left\lvert G \right\rvert$.
In particular, for any $\sigma \in G$ there are infinitely many rational primes $p$
with $\kp$ above $p$ so that $\Frob_{\kp} = \sigma$.
\end{theorem}
By density, I mean that the proportion of primes $p \le x$ that work
approaches $\frac{\left\lvert C \right\rvert}{\left\lvert G \right\rvert}$ as $x \to \infty$.
Note that I'm throwing out the primes that ramify in $K$.
This is no issue, since the only primes that ramify are those dividing $\Delta_K$,
of which there are only finitely many.
In other words, if I pick a random prime $p$ and look at the resulting conjugacy class,
it's a lot like throwing a dart at $G$:
the probability of hitting any conjugacy class depends just on the size of the class.
\begin{center}
\begin{asy}
size(8cm);
bigbox("$G$");
pen b = lightcyan + opacity(0.4);
pen k = black;
filldraw( (-2.6,2.5)--(0.6,2.5)--(0.6,0.5)--(-2.6,0.5)--cycle, b, k);
filldraw( (-2.6,-2.5)--(0.6,-2.5)--(0.6,-0.5)--(-2.6,-0.5)--cycle, b, k);
filldraw( (2,0)--(3.5,0)--(3.5,2.5)--(2,2.5)--cycle, b, k);
filldraw( (2,-1)--(3.5,-1)--(3.5,-2)--(2,-2)--cycle, b, k);
for (real x = -2; x < 1; ++x) {
dot( (x, 1.9) );
dot( (x, 1.1) );
dot( (x, -1.9) );
dot( (x, -1.1) );
}
label("$37.5\%$", (-2.6, 0.5), dir(140));
label("$37.5\%$", (-2.6,-2.5), dir(140));
label("$C_1$", (-2.6, 2.5), dir(225));
label("$C_2$", (-2.6, -.5), dir(225));
dot( (2.75, 2.0) );
dot( (2.75, 1.25) );
dot( (2.75, 0.50) );
dot( (2.75, -1.50) );
label("$C_3$", (2, 0), dir(-90));
label("$18.75\%$", (3, 0), dir(-75));
label("$C_4$", (2, -2), dir(-90));
label("$6.25\%$", (3, -2), dir(-75));
\end{asy}
\end{center}
\begin{remark}
Happily, this theorem (and preceding discussion)
also works if we replace $K/\QQ$ with any Galois extension $K/F$;
in that case we replace ``$\kp$ over $p$'' with ``$\kP$ over $\kp$''.
In that case, we use $\Norm(\kp) \le x$ rather than $p \le x$ as the way
to define density.
\end{remark}
\section{Example: Frobenius elements of cyclotomic fields}
Let $q$ be a prime, and consider $L = \QQ(\zeta_q)$,
with $\zeta_q$ a primitive $q$th root of unity.
You should recall from various starred problems that
\begin{itemize}
\ii $\Delta_L = \pm q^{q-2}$,
\ii $\OO_L = \ZZ[\zeta_q]$, and
\ii The map \[ \sigma_n : L \to L \quad\text{by}\quad \zeta_q \mapsto \zeta_q^n \]
is an automorphism of $L$ whenever $\gcd(n,q)=1$,
and depends only on $n \pmod q$.
In other words, the automorphisms of $L/\QQ$ just shuffle around the $q$th roots of unity.
In fact the Galois group consists exactly of the elements $\{\sigma_n\}$, namely
\[ \Gal(L/\QQ) = \{ \sigma_n \mid n \not\equiv 0 \pmod q \}. \]
As a group, \[ \Gal(L/\QQ) = \Zm q \cong \Zcc{q-1}. \]
\end{itemize}
This is surprisingly nice,
because \textbf{elements of $\Gal(L/\QQ)$ look a lot
like Frobenius elements already}.
Specifically:
\begin{lemma}[Cyclotomic Frobenius elements]
\label{lem:cyclo_frob}
In the cyclotomic setting $L = \QQ(\zeta_q)$,
let $p$ be a rational unramified prime
and $\kp$ above it. Then \[ \Frob_\kp = \sigma_p. \]
\end{lemma}
\begin{proof}
Observe that $\sigma_p$ satisfies the functional equation
(check on generators).
Done by uniqueness.
% We know $\Frob_\kp(\alpha) \equiv \alpha^p \pmod{\kp}$ by definition,
% but also that $\Frob_\kp = \sigma_n$ for some $n$
% We want $n=p$; since $\sigma_n(\zeta_q)^n = \zeta_q^n$ by definition
% it would be very weird if this wasn't true!
%
% Given $\zeta_q^n \equiv \zeta_q^p \pmod{\kp}$, it suffices to
% prove that the $q$th roots of unity are distinct mod $\kp$.
% Look at the polynomial $F(x) = x^q-1$ in $\ZZ[\zeta_p]/\kp \cong \FF_{p^f}$.
% Its derivative is \[ F'(x) = qx^{q-1} \not\equiv 0 \pmod{\kp} \]
% (since $\FF_{p^f}$ has characteristic $p \nmid q$).
% The only root of $F'$ is zero, hence $F$ has no double roots mod $\kp$.
\end{proof}
\begin{ques}
Conclude that a rational prime $p$
splits completely in $\OO_L$ if and only if $p \equiv 1 \pmod q$.
\end{ques}
\section{Frobenius elements behave well with restriction}
Let $L/\QQ$ and $K/\QQ$ be Galois extensions, and consider the setup
\begin{center}
\begin{tikzcd}
L \ar[d, dash] & \supset
& \kP \ar[d, dash] \ar[r, dotted]
& \Frob_{\kP} \in \Gal(L/\QQ)\\
K \ar[d, dash] & \supset
& \kp \ar[d, dash] \ar[r, dotted]
& \Frob_\kp \in \Gal(K/\QQ) \\
\QQ & \supset
& (p)
&
\end{tikzcd}
\end{center}
Here $\kp$ is above $(p)$ and $\kP$ is above $\kp$.
We may define
\[ \Frob_\kp \colon K \to K
\quad\text{and}\quad
\Frob_{\kP} \colon L \to L \]
and want to know how these are related.
\begin{theorem}
[Restrictions of Frobenius elements]
Assume $L/\QQ$ and $K/\QQ$ are both Galois.
Let $\kP$ and $\kp$ be unramified as above.
Then $\Frob_{\kP} \restrict{K} = \Frob_{\kp}$,
i.e.\ for every $\alpha \in K$,
\[ \Frob_\kp(\alpha) = \Frob_{\kP}(\alpha). \]
\end{theorem}
%\begin{proof}
% We know
% \[ \Frob_{\kP}(\alpha) \equiv \alpha^p \pmod{\kP}
% \quad \forall \alpha \in \OO_L \]
% from the definition.
% \begin{ques}
% Deduce that
% \[ \Frob_{\kP}(\alpha) \equiv \alpha^p \pmod{\kp}
% \quad \forall \alpha \in \OO_K. \]
% (This is weaker than the previous statement in two ways!)
% \end{ques}
% Thus $\Frob_{\kP}$ restricted to $\OO_K$ satisfies the
% characterizing property of $\Frob_\kp$.
%\end{proof}
\begin{proof}
TODO: Broken proof. Needs repair.
\end{proof}
In short, the point of this section is that
\begin{moral}
Frobenius elements upstairs restrict to Frobenius elements downstairs.
\end{moral}
\section{Application: Quadratic reciprocity}
We now aim to prove:
\begin{theorem}
[Quadratic reciprocity]
Let $p$ and $q$ be distinct odd primes.
Then
\[ \left( \frac pq \right)\left( \frac qp \right)
= (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}. \]
\end{theorem}
(See, e.g. \cite{ref:holden} for an exposition on quadratic reciprocity,
if you're not familiar with it.)
\subsection{Step 1: Setup}
For this proof, we first define
\[ L = \QQ(\zeta_q) \]
where $\zeta_q$ is a primitive $q$th root of unity.
Then $L/\QQ$ is Galois, with Galois group $G$.
\begin{ques}
Show that $G$ has a unique subgroup $H$ of index two.
\end{ques}
In fact, we can describe it exactly: viewing $G \cong \Zm q$, we have
\[ H = \left\{ \sigma_n \mid \text{$n$ quadratic residue mod $q$} \right\}. \]
By the fundamental theorem of Galois Theory, there ought to be a degree $2$
extension of $\QQ$ inside $\QQ(\zeta_q)$ (that is, a quadratic field).
Call it $\QQ(\sqrt{q^\ast})$, for $q^\ast$ squarefree:
\begin{center}
\begin{tikzcd}
L = \QQ(\zeta_q)
\ar[d, "\frac{q-1}{2}"', dash]
\ar[r, leftrightarrow]
& \{1\} \ar[d, dash] \\
K = \QQ(\sqrt{q^\ast})
\ar[d, "2"', dash]
\ar[r, leftrightarrow]
& H \ar[d, dash] \\
\QQ \ar[r, leftrightarrow]
& G
\end{tikzcd}
\end{center}
\begin{exercise}
Note that if a rational prime $\ell$ ramifies in $K$,
then it ramifies in $L$.
Use this to show that
\[ q^\ast = \pm q \text{ and } q^\ast \equiv 1 \pmod 4. \]
Together these determine the value of $q^\ast$.
\end{exercise}
(Actually, it is true in general
$\Delta_K$ divides $\Delta_L$ in a tower $L/K/\QQ$.)
\subsection{Step 2: Reformulation}
Now we are going to prove:
\begin{theorem}
[Quadratic reciprocity, equivalent formulation]
For distinct odd primes $p$, $q$ we have
\[ \left( \frac pq \right) = \left( \frac{q^\ast}{p} \right). \]
\end{theorem}
\begin{exercise}
Using the fact that $\left( \frac{-1}{p} \right) = (-1)^{\frac{p-1}{2}}$,
show that this is equivalent to quadratic reciprocity as we know it.
\end{exercise}
We look at the rational prime $p$ in $\ZZ$.
Either it splits into two in $K$ or is inert; either way let $\kp$ be a prime factor
in the resulting decomposition (so $\kp$ is either $p \cdot \OO_K$ in the inert case,
or one of the primes in the split case).
Then let ${\kP}$ be above $\kp$.
It could possibly also split in $K$: the picture looks like
\begin{center}
\begin{tikzcd}
\OO_L = \ZZ[\zeta_q] & \supset
& {\kP} \ar[r, dotted] & \ZZ[\zeta_p]/{\kP} \cong \FF_{p^f} \\
\OO_K = \ZZ[\frac{1+\sqrt{q^\ast}}{2}] & \supset
& \kp \ar[r, dotted] & \FF_p \text{ or } \FF_{p^2} \\
\ZZ & \supset & (p) \ar[r, dotted]
& \FF_p
\end{tikzcd}
\end{center}
\begin{ques}
Why is $p$ not ramified in either $K$ or $L$?
\end{ques}
\subsection{Step 3: Introducing the Frobenius}
Now, we take the Frobenius
\[ \sigma_p = \Frob_{\kP} \in \Gal(L/\QQ). \]
We claim that
\[ \Frob_{\kP} \in H \iff \text{$p$ splits in $K$}. \]
To see this, note that $\Frob_{\kP}$ is in $H$ if and only if it acts
as the identity on $K$.
But $\Frob_{\kP} \restrict{K}$ is $\Frob_\kp$!
So \[ \Frob_{\kP} \in H \iff \Frob_\kp = \id_K. \]
Finally note that $\Frob_\kp$ has order $1$ if $p$ splits
($\kp$ has inertial degree $1$)
and order $2$ if $p$ is inert.
This completes the proof of the claim.
\subsection{Finishing up}
We already know by \Cref{lem:cyclo_frob} that $\Frob_{\kP} = \sigma_p \in H$
if and only if $p$ is a quadratic residue.
On the other hand,
\begin{exercise}
Show that $p$ splits in $\OO_K = \ZZ[\frac12(1+\sqrt{q^\ast})]$
if and only if $\left( \frac{q^\ast}{p} \right) = 1$.
(Use the factoring algorithm. You need the fact that $p \neq 2$ here.)
\end{exercise}
In other words
\[ \left( \frac pq \right) = 1
\iff \sigma_p \in H \iff \text{$p$ splits in $\ZZ\left[ \tfrac12(1+\sqrt{q^\ast}) \right]$}
\iff \left( \frac{q^\ast}{p} \right) = 1.
\]
This completes the proof.
\section{Frobenius elements control factorization}
\prototype{$\Frob_\kp$ controlled the splitting of $p$ in the proof of quadratic reciprocity;
the same holds in general.}
In the proof of quadratic reciprocity, we used the fact that Frobenius elements behaved
well with restriction in order to relate the splitting of $p$ with properties of $\Frob_\kp$.
In fact, there is a much stronger statement for
any intermediate field $\QQ \subseteq E \subseteq K$
which works even if $E/\QQ$ is not Galois.
It relies on the notion of a \emph{factorization pattern}.
Here is how it goes.
Set $n = [E:\QQ]$, and let $p$ be a rational prime unramified in $K$.
Then $p$ can be broken in $E$ as
\[ p \cdot \OO_E = \kp_1 \kp_2 \dots \kp_g \]
with inertial degrees $f_1$, \dots, $f_g$:
(these inertial degrees might be different since $E/\QQ$ isn't Galois).
The numbers $f_1 + \dots + f_g = n$ form a partition of the number $n$.
For example, in the quadratic reciprocity proof we had $n = 2$,
with possible partitions $1 + 1$ (if $p$ split) and $2$ (if $p$ was inert).
We call this the \vocab{factorization pattern} of $p$ in $E$.
Next, we introduce a Frobenius $\Frob_{\kP}$ above $(p)$, all the way in $K$;
this is an element of $G = \Gal(K/\QQ)$.
Then let $H$ be the group corresponding to the field $E$.
Diagram:
\begin{center}
\begin{tikzcd}
K \ar[r, leftrightarrow] \ar[d, dash] & \{1\} \ar[d, dash]
& \Frob_{\kP} \\
E \ar[d, dash, "n"'] \ar[r, leftrightarrow] & H \ar[d, dash, "n"]
& \kp_1 \dots \kp_g \ar[d, dash] & f_1 + \dots + f_g = n \\
\QQ \ar[r, leftrightarrow] & G & (p)
\end{tikzcd}
\end{center}
Then $\Frob_{\kP}$ induces a \emph{permutation}
of the $n$ left cosets $gH$ by left multiplication
(after all, $\Frob_{\kP}$ is an element of $G$ too!).
Just as with any permutation, we may look at the resulting cycle decomposition,
which has a natural ``cycle structure'': a partition of $n$.
\begin{center}
\begin{asy}
size(8cm);
pen tg = heavyred; // "times g"
pen pointpen = lightblue;
pair A = Drawing("g_1H", dir(80), dir(80), pointpen);
pair B = Drawing("g_2H", A*dir(120), A*dir(120), pointpen);
pair C = Drawing("g_3H", A*dir(240), A*dir(240), pointpen);
draw(A--B, dashed + pointpen, EndArrow, Margin(2,2));
draw(B--C, dashed + pointpen, EndArrow, Margin(2,2));
draw(C--A, dashed + pointpen, EndArrow, Margin(2,2));
label("$\times g$", midpoint(A--B), A+B, tg);
label("$\times g$", midpoint(B--C), B+C, tg);
label("$\times g$", midpoint(C--A), C+A, tg);
label("$3$", origin, origin, pointpen);
add(shift( (-3.2,0.1) ) * CC());
label("$g = \operatorname{Frob}_{\mathfrak P}$", (-1.7,1.7), origin, tg);
pointpen = heavygreen;
pair W = Drawing("g_4H", dir(50), dir(50), pointpen);
pair X = Drawing("g_5H", W*dir(90), W*dir(90), pointpen);
pair Y = Drawing("g_6H", W*dir(180), W*dir(180), pointpen);
pair Z = Drawing("g_7H", W*dir(270), W*dir(270), pointpen);
draw(W--X, dashed + pointpen, EndArrow, Margin(2,2));
draw(X--Y, dashed + pointpen, EndArrow, Margin(2,2));
draw(Y--Z, dashed + pointpen, EndArrow, Margin(2,2));
draw(Z--W, dashed + pointpen, EndArrow, Margin(2,2));
defaultpen(red);
label("$\times g$", W--X, W+X, tg);
label("$\times g$", X--Y, X+Y, tg);
label("$\times g$", Y--Z, Y+Z, tg);
label("$\times g$", Z--W, Z+W, tg);
label("$4$", origin, origin, pointpen);
label("$\boxed{n = 7 = 3+4}$", (-2,-1.8), origin, black);
\end{asy}
\end{center}
The theorem is that these coincide:
\begin{theorem}
[Frobenius elements control decomposition]
\label{thm:frob_control_decomp}
Let $\QQ \subseteq E \subseteq K$ an extension of number fields
and assume $K/\QQ$ is Galois (though $E/\QQ$ need not be).
Pick an unramified rational prime $p$; let $G = \Gal(K/\QQ)$
and $H$ the corresponding intermediate subgroup.
Finally, let $\kP$ be a prime above $p$ in $K$.
Then the \emph{factorization pattern} of $p$ in $E$ is given by
the \emph{cycle structure} of $\Frob_{\kP}$ acting on the left cosets of $H$.
\end{theorem}
Often, we take $E = K$, in which case this is just asserting
that the decomposition of the prime $p$ is controlled by a Frobenius element over it.
An important special case is when $E = \QQ(\alpha)$,
because as we will see it is let us determine how the minimal
polynomial of $\alpha$ factors modulo $p$.
To motivate this, let's go back a few chapters
and think about the Factoring Algorithm.
Let $\alpha$ be an algebraic integer and $f$ its minimal polynomial (of degree $n$).
Set $E = \QQ(\alpha)$ (which has degree $n$ over $\QQ$).
Suppose we're lucky enough that $\OO_E = \ZZ[\alpha]$,
i.e.\ that $E$ is monogenic.
Then we know by the Factoring Algorithm,
to factor any $p$ in $E$, all we have to do is factor $f$ modulo $p$,
since if $f = f_1^{e_1} \dots f_g^{e_g} \pmod p$ then we have
\[ (p) = \prod_i \kp_i = \prod_i (f_i(\alpha), p)^{e_i}. \]
This gives us complete information about the ramification indices and inertial degrees;
the $e_i$ are the ramification indices, and $\deg f_i$ are the inertial degrees
(since $\OO_E / \kp_i \cong \FF_p[X] / (f_i(X))$).
In particular, if $p$ is unramified then all the $e_i$ are equal to $1$, and we get
\[ n = \deg f = \deg f_1 + \deg f_2 + \dots + \deg f_g. \]
Once again we have a partition of $n$;
we call this the \vocab{factorization pattern} of $f$ modulo $p$.
So, to see the factorization pattern of an unramified $p$ in $\OO_E$,
we just have to know the factorization pattern of the $f \pmod p$.
Turning this on its head, if we want to know the factorization pattern of $f \pmod p$,
we just need to know how $p$ decomposes.
And it turns out these coincide even without the assumption that $E$ is monogenic.
\begin{theorem}[Frobenius controls polynomial factorization]
\label{thm:factor_poly_frob}
Let $\alpha$ be an algebraic integer with minimal polynomial $f$,
and let $E = \QQ(\alpha)$.
Then for any prime $p$ unramified in the splitting field $K$ of $f$,
the following coincide:
\begin{enumerate}[(i)]
\ii The factorization pattern of $p$ in $E$.
\ii The factorization pattern of $f \pmod p$.
\ii The cycle structure associated to the action
of $\Frob_{\kP} \in \Gal(K/\QQ)$ on the roots of $f$,
where $\kP$ is above $p$ in $K$.
\end{enumerate}
\end{theorem}
\begin{example}[Factoring $x^3-2 \pmod 5$]
Let $\alpha = \cbrt2$ and $f = x^3-2$, so $E = \QQ(\cbrt2)$.
Set $p=5$ and finally, let $K = \QQ(\cbrt2, \omega)$ be the splitting field.
Setup:
\begin{center}
\begin{tikzcd}
K = \QQ(\cbrt2, \omega) \ar[d, dash, "2"']
& \kP \ar[d, dash]
& x^3-2 = (x-\cbrt2)(x-\cbrt2\omega)(x-\cbrt2\omega^2) \\
E = \QQ(\sqrt[3]{2}) \ar[d, dash, "3"']
& \kp \ar[d, dash]
& x^3-2 = (x-\cbrt2)(x^2+\cbrt2x+\cbrt4) \\
\QQ & (5) & x^3-2 \text{ irreducible over } \QQ
\end{tikzcd}
\end{center}
The three claimed objects now all have shape $2+1$:
\begin{enumerate}[(i)]
\ii By the Factoring Algorithm, we have
$(5) = (5, \cbrt2-3)(5, 9+3\cbrt2+\cbrt4)$.
\ii We have $x^3-2 \equiv (x-3)(x^2+3x+9) \pmod 5$.
\ii We saw before that $\Frob_{\kP} = (\bullet)(\bullet \; \bullet)$.
\end{enumerate}
\end{example}
\begin{proof}[Sketch of Proof]
Letting $n = \deg f$.
Let $H$ be the subgroup of $G = \Gal(K/\QQ)$ corresponding to $E$, so $[G:E] = n$.
Pictorially, we have
\begin{center}
\begin{tikzcd}
K \ar[d, dash] & \{1\} \ar[d, dash] & \kP \ar[d, dash] \\
E = \QQ(\alpha) \ar[d, dash] & H \ar[d, dash] & \kp \ar[d, dash] \\
\QQ & G & (p)
\end{tikzcd}
\end{center}
We claim that (i), (ii), (iii) are all equivalent to
\begin{center}
(iv) The pattern of the action of $\Frob_{\kP}$ on the $G/H$.
\end{center}
In other words we claim the cosets correspond to the $n$ roots of $f$ in $K$.
Indeed $H$ is just the set of $\tau \in G$ such that $\tau(\alpha)=\alpha$,
so there's a bijection between the roots and the cosets $G/H$
by $\tau H \mapsto \tau(\alpha)$.
Think of it this way: if $G = S_n$, and $H = \{\tau : \tau(1) = 1\}$,
then $G/H$ has order $n! / (n-1)! = n$ and corresponds to the elements $\{1, \dots, n\}$.
So there is a natural bijection from (iii) to (iv).
The fact that (i) is in bijection to (iv) was the previous theorem,
\Cref{thm:frob_control_decomp}.
The correspondence (i) $\iff$ (ii) is a fact of Galois theory,
so we omit the proof here.
\end{proof}
All this can be done in general with $\QQ$ replaced by $F$;
for example, in \cite{ref:lenstra_chebotarev}.
\section{Example application: IMO 2003 problem 6}
As an example of the power we now have at our disposal, let's prove:
\begin{center}
\begin{minipage}{4.5cm}
\includegraphics[width=4cm]{media/IMO-2003-logo.png}
\end{minipage}%
\begin{minipage}{10cm}
\textbf{Problem 6}.
Let $p$ be a prime number.
Prove that there exists a prime number $q$ such that for every integer $n$,
the number $n^p-p$ is not divisible by $q$.
\end{minipage}
\end{center}
We will show, much more strongly, that there exist infinitely many primes $q$
such that $X^p-p$ is irreducible modulo $q$.
\begin{proof}[Solution]
Okay! First, we draw the tower of fields
\[ \QQ \subseteq \QQ(\sqrt[p]{p}) \subseteq K \]
where $K$ is the splitting field of $f(x) = x^p-p$.
Let $E = \QQ(\sqrt[p]{p})$ for brevity and note it has degree $[E:\QQ] = p$.
Let $G = \Gal(K/\QQ)$.
\begin{ques}
Show that $p$ divides the order of $G$. (Look at $E$.)
\end{ques}
Hence by Cauchy's theorem (\Cref{thm:cauchy_group}, which is a purely group-theoretic fact)
we can find a $\sigma \in G$ of order $p$.
By Chebotarev, there exist infinitely many rational (unramified) primes $q \neq p$
and primes $\kQ \subseteq \OO_K$ above $q$
such that $\Frob_\kQ = \sigma$.
(Yes, that's an uppercase Gothic $Q$. Sorry.)
We claim that all these $q$ work.
By \Cref{thm:factor_poly_frob}, the factorization of $f \pmod q$ is
controlled by the action of $\sigma = \Frob_\kQ$ on the roots of $f$.
But $\sigma$ has prime order $p$ in $G$!
So all the lengths in the cycle structure have to divide $p$.
Thus the possible factorization patterns of $f$ are
\[ p = \underbrace{1 + 1 + \dots + 1}_{\text{$p$ times}}
\quad\text{or}\quad p = p. \]
So we just need to rule out the $p = 1 + \dots + 1$ case now:
this only happens if $f$ breaks into linear factors mod $q$.
Intuitively this edge case seems highly unlikely (are we really so unlucky
that $f$ factors into \emph{linear} factors when we want it to be irreducible?).
And indeed this is easy to see: this means that $\sigma$ fixes all
of the roots of $f$ in $K$, but that means $\sigma$ fixes $K$ altogether,
and hence is the identity of $G$, contradiction.
\end{proof}
\begin{remark}
In fact $K = \QQ(\sqrt[p]{p}, \zeta_p)$, and $\left\lvert G \right\rvert = p(p-1)$.
With a little more group theory, we can show that in fact the density of
primes $q$ that work is $\frac 1p$.
\end{remark}
\section\problemhead
\begin{problem}
Show that for an odd prime $p$, \[ \left( \frac 2p \right) = (-1)^{\frac 18(p^2-1)}. \]
\begin{hint}
Modify the end of the proof of quadratic reciprocity.
\end{hint}
\begin{sol}
It is still true that
\[ \left( \frac 2q \right) = 1
\iff \sigma_2 \in H \iff \text{$2$ splits in $\ZZ\left[ \tfrac12(1+\sqrt{q^\ast}) \right]$}. \]
Now, $2$ splits in the ring if and only if $t^2 - t - \tfrac14(1-q^\ast)$
factors mod $2$. This happens if and only if $q^\ast \equiv 1 \pmod 8$.
One can check this is exactly if $q \equiv \pm 1 \pmod 8$, which gives the conclusion.
\end{sol}
\end{problem}
\begin{problem}
Let $f$ be a nonconstant polynomial with integer coefficients.
Suppose $f \pmod p$ splits completely into linear factors
for all sufficiently large primes $p$.
Show that $f$ splits completely into linear factors.
\end{problem}
\begin{dproblem}
[Dirichlet's theorem on arithmetic progressions]
Let $a$ and $m$ be relatively prime positive integers.
Show that the density of primes $p \equiv a \pmod m$ is exactly $\frac{1}{\phi(m)}$.
\begin{hint}
Chebotarev Density on $\QQ(\zeta_m)$.
\end{hint}
\begin{sol}
Let $K = \Gal(\QQ(\zeta_m)/\QQ)$.
One can show that $\Gal(K/\QQ) \cong \Zm m$ exactly as before.
In particular, $\Gal(K/\QQ)$ is abelian and therefore its conjugacy classes
are singleton sets; there are $\phi(m)$ of them.
As long as $p$ is sufficiently large, it is unramified
and $\sigma_p = \Frob_\kp$ for any $\kp$ above $p$
(as $m$th roots of unity will be distinct modulo $p$;
differentiate $x^m-1$ mod $p$ again).
\end{sol}
\end{dproblem}
\begin{problem}
Let $n$ be an odd integer which is not a prime power.
Show that the $n$th cyclotomic polynomial is not
irreducible modulo \emph{any} rational prime.
% http://mathoverflow.net/questions/12366/how-many-primes-stay-inert-in-a-finite-non-cyclic-extension-of-number-fields
\end{problem}
\begin{problem}
[Putnam 2012 B6]
\yod
Let $p$ be an odd prime such that $p \equiv 2 \pmod 3$.
Let $\pi$ be a permutation of $\FF_p$ by $\pi(x) = x^3 \pmod p$.
Show that $\pi$ is even if and only if $p \equiv 3 \pmod 4$.
\begin{hint}
By primitive roots, it's the same as the action of $\times 3$ on $\Zcc{p-1}$.
Let $\zeta$ be a $(p-1)$st root of unity.
Take $d = \prod_{i < j} (\zeta^i - \zeta^j)$, think about $\QQ(d)$,
and figure out how to act on it by $x \mapsto x^3$.
\end{hint}
\begin{sol}
This solution is by David Corwin.
By primitive roots, it's the same as the action of $\times 3$ on $\Zcc{p-1}$.
Let $\zeta$ be a $(p-1)$st root of unity.
Consider
\[ d = \prod_{0 \le i < j < p-1} (\zeta^i - \zeta^j). \]
This is the square root of the discriminant of
the polynomial $X^{p-1}-1$; in other words $d^2 \in \ZZ$.
In fact, by elementary methods one can compute
\[ (-1)^{\binom{p-1}{2}} d^2 = -(p-1)^{p-1} \]
Now take the extension $K = \QQ(d)$, noting that
\begin{itemize}
\ii If $p \equiv 3 \pmod 4$, then $d = (p-1)^{\half(p-1)}$, so $K = \QQ$.
\ii If $p \equiv 1 \pmod 4$, then $d = i(p-1)^{\half(p-1)}$, so $K = \QQ(i)$.
\end{itemize}
Either way, in $\OO_K$, let $\kp$ be a prime ideal above $(3) \subseteq \OO_K$.
Let $\sigma = \Frob_\kp$ then be the unique element such that
$\sigma(x) = x^3 \pmod{\kp}$ for all $x$.
Then, we observe that
\[
\sigma(d) \equiv \prod_{0 \le i < j < p-1} (\zeta^{3i} - \zeta^{3j})
\equiv \begin{cases}
+d & \text{if $\pi$ is even} \\
-d & \text{if $\pi$ is odd}
\end{cases} \pmod{\kp}.
\]
Now if $K = \QQ$, then $\sigma$ is the identity, thus $\sigma$ even.
Conversely, if $K = \QQ(i)$, then $3$ does not split, so $\sigma(d) = -d$
(actually $\sigma$ is complex conjugation) thus $\pi$ is odd.
Note the condition that $p \equiv 2 \pmod 3$ is used only
to guarantee that $\pi$ is actually a permutation (and thus $d \neq 0$);
it does not play any substantial role in the solution.
\end{sol}
\end{problem}
|