Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 13,435 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import ring_theory.localization
import valuation.basic
/-!
# Extending valuations to localizations
In this file we extend valuations on a ring R to localizations of R.
We use this to define the valuation field, the valuation ring,
and the residue field of a valued ring.
If v is a valuation on an integral domain R and `hv : supp v = 0`, then
`on_frac v hv` is the extension of v to fraction_ring R, the field of
fractions of R.
`valuation_field v`, `valuation_ring v`, `max_ideal v` and `residue_field v`
are the valuation field, valuation ring, maximal ideal and residue field
of v. See [Wedhorn; 1.26].
-/
local attribute [instance] classical.prop_decidable
local attribute [instance] classical.DLO
noncomputable theory
universes u u₀
variables {R : Type u₀} [comm_ring R]
variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀]
variables {S : set R} [is_submonoid S]
namespace valuation
open linear_ordered_structure
variables (v : valuation R Γ₀)
lemma inverse_exists (s : S) : ∃ u : localization R S, u * s = 1 :=
⟨(localization.to_units s).inv, units.inv_val _⟩
/-- The underlying function of the extension of a valuation to a localization.-/
def localization_v (h : ∀ s, s ∈ S → v s ≠ 0) : localization R S → Γ₀ :=
λ (q : localization R S), quotient.lift_on' q (λ rs, v rs.1 * (v rs.2.1)⁻¹)
begin
rintros ⟨r1, s1, hs1⟩ ⟨r2, s2, hs2⟩ ⟨t, ht, hrst⟩,
change (s1 * r2 + -(s2 * r1)) * t = 0 at hrst,
show v r1 * (v s1)⁻¹ = v r2 * (v s2)⁻¹,
rw [add_mul, ←neg_mul_eq_neg_mul, add_neg_eq_zero] at hrst,
replace hrst : v (s1 * r2 * t) = v (s2 * r1 * t) := congr_arg v hrst,
apply group_with_zero.mul_inv_eq_of_eq_mul (h s1 hs1),
rw [mul_comm, ←mul_assoc],
apply group_with_zero.eq_mul_inv_of_mul_eq (h s2 hs2),
rw [←v.map_mul, ←v.map_mul, mul_comm],
apply group_with_zero.mul_right_cancel (h t ht),
rw [←v.map_mul, ←v.map_mul, hrst]
end
/-- Extension of a valuation to a localization -/
protected def localization (h : ∀ s, s ∈ S → v s ≠ 0) : valuation (localization R S) Γ₀ :=
{ to_fun := v.localization_v h,
map_zero' := show v 0 * (v 1)⁻¹ = 0, by rw [v.map_zero, zero_mul],
map_one' := show v 1 * (v 1)⁻¹ = 1, by {rw [v.map_one], simp},
map_mul' := λ x y, quotient.induction_on₂' x y begin
rintro ⟨r1, s1, hs1⟩,
rintro ⟨r2, s2, hs2⟩,
-- TODO : I had to write the next line "blind" -- I had to be the compiler.
-- Am I missing a trick?
show v (r1 * r2) * (v(s1 * s2))⁻¹ = (v r1 * (v s1)⁻¹) * (v r2 * (v s2)⁻¹),
have hs12 : s1 * s2 ∈ S := is_submonoid.mul_mem hs1 hs2,
apply group_with_zero.mul_inv_eq_of_eq_mul (h (s1 * s2) hs12),
rw [mul_comm _ (v (s1 * s2)), ←mul_assoc, ←mul_assoc],
apply group_with_zero.eq_mul_inv_of_mul_eq (h s2 hs2),
rw [mul_comm _ (v r2), ←v.map_mul, ←mul_assoc, ←v.map_mul, ←mul_assoc, ←v.map_mul],
apply group_with_zero.eq_mul_inv_of_mul_eq (h s1 hs1),
rw [←v.map_mul],
apply congr_arg, ring,
end,
map_add' := λ x y, quotient.induction_on₂' x y begin
rintro ⟨r1, s1, hs1⟩,
rintro ⟨r2, s2, hs2⟩,
have := v.map_add (r1 * s2) (r2 * s1),
rw le_max_iff at this ⊢,
show v (s1 * r2 + s2 * r1) * (v (s1 * s2))⁻¹ ≤ v r1 * (v s1)⁻¹ ∨
v (s1 * r2 + s2 * r1) * (v (s1 * s2))⁻¹ ≤ v r2 * (v s2)⁻¹,
cases this with h1 h2,
{ left,
apply le_mul_inv_of_mul_le (h s1 hs1),
rw [mul_comm, ←mul_assoc],
apply mul_inv_le_of_le_mul (h (s1 * s2) (is_submonoid.mul_mem hs1 hs2)),
replace h1 := linear_ordered_structure.mul_le_mul_right h1 (v s1),
rw [←v.map_mul, ←v.map_mul] at h1 ⊢,
rw (show s1 * (s1 * r2 + s2 * r1) = (r1 * s2 + r2 * s1) * s1, by ring),
rwa (show r1 * (s1 * s2) = r1 * s2 * s1, by ring),
},
{ right,
apply le_mul_inv_of_mul_le (h s2 hs2),
rw [mul_comm, ←mul_assoc],
apply mul_inv_le_of_le_mul (h (s1 * s2) (is_submonoid.mul_mem hs1 hs2)),
replace h2 := linear_ordered_structure.mul_le_mul_right h2 (v s2),
rw [←v.map_mul, ←v.map_mul] at h2 ⊢,
rw (show s2 * (s1 * r2 + s2 * r1) = (r1 * s2 + r2 * s1) * s2, by ring),
rwa (show r2 * (s1 * s2) = r2 * s1 * s2, by ring),
}
end }
/-- Extension of a valuation to a localization -/
lemma localization_apply (h : ∀ s, s ∈ S → v s ≠ 0) (r : R) :
(v.localization h : valuation (localization R S) Γ₀) r = v r :=
show v r * (v 1)⁻¹ = v r, by simp
/-- the extension of a valuation pulls back to the valuation -/
lemma localization_comap (h : ∀ s, s ∈ S → v s ≠ 0) : (v.localization h).comap (localization.of) = v :=
valuation.ext $ λ r, localization_apply v h r
lemma eq_localization_of_comap_aux {v} (w : valuation (localization R S) Γ₀)
(h : w.comap (localization.of) = v) : ∀ s, s ∈ S → v s ≠ 0 := λ s hs h0,
begin
cases inverse_exists ⟨s, hs⟩ with u hu,
let s' : units (localization R S) := ⟨localization.of s, u, mul_comm u s ▸ hu, hu⟩,
refine group_with_zero.unit_ne_zero (units.map (w : (localization R S) →* Γ₀) s') _,
rwa ←h at h0,
end
/-- If a valuation on a localisation pulls back to v then it's the localization of v -/
lemma eq_localization_of_comap (w : valuation (localization R S) Γ₀)
(h : w.comap (localization.of) = v) : v.localization (eq_localization_of_comap_aux w h) = w :=
begin
ext q,
induction q,
{ rcases q with ⟨r, s, hs⟩,
show v r * (v s)⁻¹ = w (localization.mk r ⟨s, hs⟩),
rw [localization.mk_eq, ←h, w.map_mul],
show w r * _ = _,
congr,
show (w s)⁻¹ = _,
rw w.map_units_inv,
refl, },
refl
end
section fraction_ring
open localization localization.fraction_ring
/-- A ring in which the zero ideal is prime is an integral domain. -/
def integral_domain_of_prime_bot (h : (⊥ : ideal R).is_prime) : integral_domain R :=
{ zero_ne_one := assume zero_eq_one, h.1 $ (ideal.eq_top_iff_one _).mpr $
(submodule.mem_bot R).mpr zero_eq_one.symm,
eq_zero_or_eq_zero_of_mul_eq_zero := λ r s, by { repeat {rw ← submodule.mem_bot R}, apply h.2 },
.. ‹comm_ring R› }
/-- A ring is an integral domain if it admits a valuation whose support is the zero ideal. -/
def integral_domain_of_supp_zero (hv : v.supp = 0) : integral_domain R :=
integral_domain_of_prime_bot $
by { rw [← ideal.zero_eq_bot, ← hv], exact valuation.ideal.is_prime v }
/-- The extension of valuation on R with support 0 to a valuation on the field of fractions. -/
def on_frac (hv : v.supp = 0) : valuation (fraction_ring R) Γ₀ :=
v.localization $ λ r hr hnz,
begin
letI := v.integral_domain_of_supp_zero hv,
refine (@mem_non_zero_divisors_iff_ne_zero R _ _ r).mp hr _,
rwa [← submodule.mem_bot R, ← ideal.zero_eq_bot, ← hv],
end
@[simp] lemma on_frac_comap_eq (hv : supp v = 0) :
(v.on_frac hv).comap of = v :=
v.localization_comap _
lemma on_frac_comap_eq_apply (hv : supp v = 0) (r : R) :
((v.on_frac hv).comap of : valuation R Γ₀) r = v r := by rw on_frac_comap_eq
/-- Pulling back a valuation on `fraction_ring R` to R and then applying `on_frac` is the
identity function. -/
@[simp] lemma comap_on_frac_eq {R : Type*} [integral_domain R] (v : valuation (fraction_ring R) Γ₀) :
(v.comap of).on_frac
(by {rw [comap_supp, ideal.zero_eq_bot, v.supp.eq_bot_of_prime],
apply ideal.comap_bot_of_inj, apply fraction_ring.of.injective })
= v :=
valuation.eq_localization_of_comap _ _ rfl
lemma frac_preorder_comap (hv : supp v = 0) :
preorder.lift (localization.of) (v.on_frac hv).to_preorder = v.to_preorder :=
preorder.ext $ λ x y, begin show (v.on_frac hv) x ≤ (v.on_frac hv) y ↔ v x ≤ v y,
rw [←on_frac_comap_eq_apply v hv, ←on_frac_comap_eq_apply v hv], exact iff.rfl end
end fraction_ring -- end of section
section valuation_field
/-- The quotient ring R/supp(v) associated to a valuation. -/
definition valuation_ID := (supp v).quotient
/-- the support of a valuation is a prime ideal, so R/supp(v) is an integral domain. -/
instance integral_domain' : integral_domain (valuation_ID v) :=
by delta valuation_ID; apply_instance
/-- The preorder on R/supp(v) induced by Γ₀ via `v.on_quot` -/
instance : preorder (valuation_ID v) := (v.on_quot (le_refl _)).to_preorder
/-- The function R → R/supp(v). -/
def valuation_ID_mk : R → valuation_ID v := ideal.quotient.mk (supp v)
/-- The function R → R/supp(v) is a ring homomorphism. -/
instance : is_ring_hom (v.valuation_ID_mk) := by unfold valuation_ID_mk; apply_instance
/-- The kernel of R → R/supp(v) is supp(v). -/
lemma valuation_ID_mk_ker (r : R) : v.valuation_ID_mk r = 0 ↔ r ∈ supp v :=
ideal.quotient.eq_zero_iff_mem
/-- `valuation_field v` is the field of fractions of R/supp(v). -/
definition valuation_field := localization.fraction_ring (valuation_ID v)
/-- The field of fractions of R/supp(v) is a field. -/
instance : discrete_field (valuation_field v) := by delta valuation_field; apply_instance
/-- The canonical map R → fraction_ring (R/supp(v)). -/
def valuation_field_mk (r : R) : valuation_field v := localization.of (v.valuation_ID_mk r)
/-- The map R → Frac(R/supp(v)) is a ring homomorphism. -/
instance to_valuation_field.is_ring_hom : is_ring_hom (valuation_field_mk v) :=
by delta valuation_field_mk; apply_instance
/-- The kernel of R → Frac(R/supp(v)) is supp(v). -/
lemma valuation_field_mk_ker (r : R) : v.valuation_field_mk r = 0 ↔ r ∈ supp v :=
⟨λ h, (v.valuation_ID_mk_ker r).1 $ localization.fraction_ring.eq_zero_of _ h,
λ h, show localization.of _ = 0, by rw (v.valuation_ID_mk_ker r).2 h; apply is_ring_hom.map_zero⟩
lemma valuation_field_mk_ne_zero (r : R) (hr : v r ≠ 0) : valuation_field_mk v r ≠ 0 :=
λ h, hr ((valuation_field_mk_ker v r).1 h)
/-- The induced preorder on Frac(R/supp(v)). -/
instance valfield_preorder : preorder (valuation_field v) :=
((v.on_quot (le_refl _)).on_frac $ supp_quot_supp v).to_preorder
/-- The induced map from R \ supp(v) to the units of Frac(R/supp(v)). -/
def units_valfield_mk (r : R) (h : r ∉ supp v) : units (valuation_field v) :=
⟨v.valuation_field_mk r,
(v.valuation_field_mk r)⁻¹,
mul_inv_cancel (λ h2, h $ ideal.quotient.eq_zero_iff_mem.1 $
localization.fraction_ring.eq_zero_of _ h2),
inv_mul_cancel (λ h2, h $ ideal.quotient.eq_zero_iff_mem.1 $
localization.fraction_ring.eq_zero_of _ h2)⟩
/-- The preorder on the units of Frac(R/supp(v)) induced by the extension of v. -/
instance units_valfield_preorder :
preorder (units (valuation_field v)) := preorder.lift (λ u, u.val) (by apply_instance)
/-- The valuation on Frac(R/supp(v)) induced by v. -/
definition on_valuation_field : valuation (valuation_field v) Γ₀ :=
on_frac (v.on_quot (set.subset.refl _))
begin
rw [supp_quot, ideal.zero_eq_bot],
apply ideal.map_quotient_self,
end
/-- `valuation_ring v` is the elements of Frac(R/supp(v)) whose valuation is at most 1. -/
definition valuation_ring := {x | v.on_valuation_field x ≤ 1}
/-- `valuation_ring v` is a subring of Frac(R/supp(v)). -/
instance : is_subring (valuation_ring v) :=
{ zero_mem := show v.on_valuation_field 0 ≤ 1, by simp,
add_mem := λ x y hx hy,
calc v.on_valuation_field (x + y) ≤ max (v.on_valuation_field x) (v.on_valuation_field y) :
v.on_valuation_field.map_add x y
... ≤ 1 : max_le hx hy,
neg_mem := by simp [valuation_ring],
one_mem := by simp [valuation_ring, le_refl],
mul_mem := λ x y (hx : _ ≤ _) (hy : _ ≤ _), show v.on_valuation_field _ ≤ 1,
by convert le_trans (linear_ordered_structure.mul_le_mul_left hy _) _; simp [hx] }
/-- `max_ideal v` is the ideal of `valuation_ring v` consisting of things with valuation
strictly less than 1. -/
definition max_ideal : ideal (valuation_ring v) :=
{ carrier := { r | v.on_valuation_field r < 1 },
zero := show v.on_valuation_field 0 < 1, by apply lt_of_le_of_ne; simp,
add := λ x y (hx : _ < 1) (hy : _ < 1),
calc v.on_valuation_field (x + y) ≤ max (v.on_valuation_field x) (v.on_valuation_field y) :
v.on_valuation_field.map_add x y
... < 1 : max_lt hx hy,
smul := λ c x (hx : _ < 1),
show v.on_valuation_field _ < 1,
begin
refine lt_of_le_of_lt _ _,
swap,
convert (linear_ordered_structure.mul_le_mul_right _ _),
exact map_mul _ _ _,
swap,
convert c.property,
simpa using hx
end }
set_option class.instance_max_depth 40
/-- `max_ideal v` is indeed a maximal ideal of `valuation_ring v`. -/
instance max_ideal_is_maximal : (max_ideal v).is_maximal :=
begin
rw ideal.is_maximal_iff,
split,
{ exact λ (H : _ < _), ne_of_lt H (map_one _) },
{ rintros J ⟨x,hx⟩ hJ hxni hxinJ,
have vx : v.on_valuation_field x = 1 :=
by { rw eq_iff_le_not_lt, split; assumption },
have hxinv : v.on_valuation_field x⁻¹ ≤ 1 := by simp [vx],
convert J.smul_mem ⟨x⁻¹, hxinv⟩ hxinJ,
symmetry, apply subtype.val_injective,
apply inv_mul_cancel,
show x ≠ 0,
assume hxeq0, simpa [hxeq0] using vx }
end
set_option class.instance_max_depth 32
/-- `residue_field v` is the quotient of `valuation_ring v` by `max_ideal v`. -/
definition residue_field := (max_ideal v).quotient
/-- `residue_field v` is a field. -/
instance residue_field.discrete_field : discrete_field (residue_field v) := ideal.quotient.field _
end valuation_field
end valuation
|