Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 13,435 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import ring_theory.localization

import valuation.basic

/-!
# Extending valuations to localizations

In this file we extend valuations on a ring R to localizations of R.
We use this to define the valuation field, the valuation ring,
and the residue field of a valued ring.

If v is a valuation on an integral domain R and `hv : supp v = 0`, then
`on_frac v hv` is the extension of v to fraction_ring R, the field of
fractions of R.

`valuation_field v`, `valuation_ring v`, `max_ideal v` and `residue_field v`
are the valuation field, valuation ring, maximal ideal and residue field
of v. See [Wedhorn; 1.26].

-/

local attribute [instance] classical.prop_decidable
local attribute [instance] classical.DLO
noncomputable theory

universes u u₀

variables {R : Type u₀} [comm_ring R]
variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀]
variables {S : set R} [is_submonoid S]

namespace valuation
open linear_ordered_structure

variables (v : valuation R Γ₀)

lemma inverse_exists (s : S) : ∃ u : localization R S, u * s = 1 :=
⟨(localization.to_units s).inv, units.inv_val _⟩

/-- The underlying function of the extension of a valuation to a localization.-/
def localization_v (h : ∀ s, s ∈ S → v s ≠ 0) : localization R S → Γ₀ :=
λ (q : localization R S), quotient.lift_on' q (λ rs, v rs.1 * (v rs.2.1)⁻¹)
begin
  rintros ⟨r1, s1, hs1⟩ ⟨r2, s2, hs2⟩ ⟨t, ht, hrst⟩,
  change (s1 * r2 + -(s2 * r1)) * t = 0 at hrst,
  show v r1 * (v s1)⁻¹ = v r2 * (v s2)⁻¹,
  rw [add_mul, ←neg_mul_eq_neg_mul, add_neg_eq_zero] at hrst,
  replace hrst : v (s1 * r2 * t) = v (s2 * r1 * t) := congr_arg v hrst,
  apply group_with_zero.mul_inv_eq_of_eq_mul (h s1 hs1),
  rw [mul_comm, ←mul_assoc],
  apply group_with_zero.eq_mul_inv_of_mul_eq (h s2 hs2),
  rw [←v.map_mul, ←v.map_mul, mul_comm],
  apply group_with_zero.mul_right_cancel (h t ht),
  rw [←v.map_mul, ←v.map_mul, hrst]
end

/-- Extension of a valuation to a localization -/
protected def localization (h : ∀ s, s ∈ S → v s ≠ 0) : valuation (localization R S) Γ₀ :=
{ to_fun := v.localization_v h,
  map_zero' := show v 0 * (v 1)⁻¹ = 0, by rw [v.map_zero, zero_mul],
  map_one' := show v 1 * (v 1)⁻¹ = 1, by {rw [v.map_one], simp},
  map_mul' := λ x y, quotient.induction_on₂' x y begin
    rintro ⟨r1, s1, hs1⟩,
    rintro ⟨r2, s2, hs2⟩,
    -- TODO : I had to write the next line "blind" -- I had to be the compiler.
    -- Am I missing a trick?
    show v (r1 * r2) * (v(s1 * s2))⁻¹ = (v r1 * (v s1)⁻¹) * (v r2 * (v s2)⁻¹),
    have hs12 : s1 * s2 ∈ S := is_submonoid.mul_mem hs1 hs2,
    apply group_with_zero.mul_inv_eq_of_eq_mul (h (s1 * s2) hs12),
    rw [mul_comm _ (v (s1 * s2)), ←mul_assoc, ←mul_assoc],
    apply group_with_zero.eq_mul_inv_of_mul_eq (h s2 hs2),
    rw [mul_comm _ (v r2), ←v.map_mul, ←mul_assoc, ←v.map_mul, ←mul_assoc, ←v.map_mul],
    apply group_with_zero.eq_mul_inv_of_mul_eq (h s1 hs1),
    rw [←v.map_mul],
    apply congr_arg, ring,
  end,
  map_add' := λ x y, quotient.induction_on₂' x y begin
    rintro ⟨r1, s1, hs1⟩,
    rintro ⟨r2, s2, hs2⟩,
    have := v.map_add (r1 * s2) (r2 * s1),
    rw le_max_iff at this ⊢,
    show v (s1 * r2 + s2 * r1) * (v (s1 * s2))⁻¹ ≤ v r1 * (v s1)⁻¹ ∨
      v (s1 * r2 + s2 * r1) * (v (s1 * s2))⁻¹ ≤ v r2 * (v s2)⁻¹,
    cases this with h1 h2,
    { left,
      apply le_mul_inv_of_mul_le (h s1 hs1),
      rw [mul_comm, ←mul_assoc],
      apply mul_inv_le_of_le_mul (h (s1 * s2) (is_submonoid.mul_mem hs1 hs2)),
      replace h1 := linear_ordered_structure.mul_le_mul_right h1 (v s1),
      rw [←v.map_mul, ←v.map_mul] at h1 ⊢,
      rw (show s1 * (s1 * r2 + s2 * r1) = (r1 * s2 + r2 * s1) * s1, by ring),
      rwa (show r1 * (s1 * s2) = r1 * s2 * s1, by ring),
    },
    { right,
      apply le_mul_inv_of_mul_le (h s2 hs2),
      rw [mul_comm, ←mul_assoc],
      apply mul_inv_le_of_le_mul (h (s1 * s2) (is_submonoid.mul_mem hs1 hs2)),
      replace h2 := linear_ordered_structure.mul_le_mul_right h2 (v s2),
      rw [←v.map_mul, ←v.map_mul] at h2 ⊢,
      rw (show s2 * (s1 * r2 + s2 * r1) = (r1 * s2 + r2 * s1) * s2, by ring),
      rwa (show r2 * (s1 * s2) = r2 * s1 * s2, by ring),
    }
  end }

/-- Extension of a valuation to a localization -/
lemma localization_apply (h : ∀ s, s ∈ S → v s ≠ 0) (r : R) :
  (v.localization h : valuation (localization R S) Γ₀) r = v r :=
show v r * (v 1)⁻¹ = v r, by simp

/-- the extension of a valuation pulls back to the valuation -/
lemma localization_comap (h : ∀ s, s ∈ S → v s ≠ 0) : (v.localization h).comap (localization.of) = v :=
valuation.ext $ λ r, localization_apply v h r

lemma eq_localization_of_comap_aux {v} (w : valuation (localization R S) Γ₀)
  (h : w.comap (localization.of) = v) : ∀ s, s ∈ S → v s ≠ 0 := λ s hs h0,
begin
  cases inverse_exists ⟨s, hs⟩ with u hu,
  let s' : units (localization R S) := ⟨localization.of s, u, mul_comm u s ▸ hu, hu⟩,
  refine group_with_zero.unit_ne_zero (units.map (w : (localization R S) →* Γ₀) s') _,
  rwa ←h at h0,
end

/-- If a valuation on a localisation pulls back to v then it's the localization of v -/
lemma eq_localization_of_comap (w : valuation (localization R S) Γ₀)
  (h : w.comap (localization.of) = v) : v.localization (eq_localization_of_comap_aux w h) = w :=
begin
  ext q,
  induction q,
  { rcases q with ⟨r, s, hs⟩,
    show v r * (v s)⁻¹ = w (localization.mk r ⟨s, hs⟩),
    rw [localization.mk_eq, ←h, w.map_mul],
    show w r * _ = _,
    congr,
    show (w s)⁻¹ = _,
    rw w.map_units_inv,
    refl, },
  refl
end

section fraction_ring
open localization localization.fraction_ring

/-- A ring in which the zero ideal is prime is an integral domain. -/
def integral_domain_of_prime_bot (h : (⊥ : ideal R).is_prime) : integral_domain R :=
{ zero_ne_one := assume zero_eq_one, h.1 $ (ideal.eq_top_iff_one _).mpr $
                 (submodule.mem_bot R).mpr zero_eq_one.symm,
  eq_zero_or_eq_zero_of_mul_eq_zero := λ r s, by { repeat {rw ← submodule.mem_bot R}, apply h.2 },
  .. ‹comm_ring R› }

/-- A ring is an integral domain if it admits a valuation whose support is the zero ideal. -/
def integral_domain_of_supp_zero (hv : v.supp = 0) : integral_domain R :=
integral_domain_of_prime_bot $
by { rw [← ideal.zero_eq_bot, ← hv], exact valuation.ideal.is_prime v }

/-- The extension of valuation on R with support 0 to a valuation on the field of fractions. -/
def on_frac (hv : v.supp = 0) : valuation (fraction_ring R) Γ₀ :=
v.localization $ λ r hr hnz,
begin
  letI := v.integral_domain_of_supp_zero hv,
  refine (@mem_non_zero_divisors_iff_ne_zero R _ _ r).mp hr _,
  rwa [← submodule.mem_bot R, ← ideal.zero_eq_bot, ← hv],
end

@[simp] lemma on_frac_comap_eq (hv : supp v = 0) :
  (v.on_frac hv).comap of = v :=
v.localization_comap _

lemma on_frac_comap_eq_apply (hv : supp v = 0) (r : R) :
  ((v.on_frac hv).comap of : valuation R Γ₀) r = v r := by rw on_frac_comap_eq

/-- Pulling back a valuation on `fraction_ring R` to R and then applying `on_frac` is the
identity function. -/
@[simp] lemma comap_on_frac_eq {R : Type*} [integral_domain R] (v : valuation (fraction_ring R) Γ₀) :
  (v.comap of).on_frac
  (by {rw [comap_supp, ideal.zero_eq_bot, v.supp.eq_bot_of_prime],
    apply ideal.comap_bot_of_inj, apply fraction_ring.of.injective })
  = v :=
valuation.eq_localization_of_comap _ _ rfl

lemma frac_preorder_comap (hv : supp v = 0) :
  preorder.lift (localization.of) (v.on_frac hv).to_preorder = v.to_preorder :=
preorder.ext $ λ x y, begin show (v.on_frac hv) x ≤ (v.on_frac hv) y ↔ v x ≤ v y,
rw [←on_frac_comap_eq_apply v hv, ←on_frac_comap_eq_apply v hv], exact iff.rfl end

end fraction_ring -- end of section

section valuation_field

/-- The quotient ring R/supp(v) associated to a valuation. -/
definition valuation_ID := (supp v).quotient

/-- the support of a valuation is a prime ideal, so R/supp(v) is an integral domain. -/
instance integral_domain' : integral_domain (valuation_ID v) :=
by delta valuation_ID; apply_instance

/-- The preorder on R/supp(v) induced by Γ₀ via `v.on_quot` -/
instance : preorder (valuation_ID v) := (v.on_quot (le_refl _)).to_preorder

/-- The function R → R/supp(v). -/
def valuation_ID_mk : R → valuation_ID v := ideal.quotient.mk (supp v)

/-- The function R → R/supp(v) is a ring homomorphism. -/
instance : is_ring_hom (v.valuation_ID_mk) := by unfold valuation_ID_mk; apply_instance

/-- The kernel of R → R/supp(v) is supp(v). -/
lemma valuation_ID_mk_ker (r : R) : v.valuation_ID_mk r = 0 ↔ r ∈ supp v :=
ideal.quotient.eq_zero_iff_mem

/-- `valuation_field v` is the field of fractions of R/supp(v). -/
definition valuation_field := localization.fraction_ring (valuation_ID v)

/-- The field of fractions of R/supp(v) is a field. -/
instance : discrete_field (valuation_field v) := by delta valuation_field; apply_instance

/-- The canonical map R → fraction_ring (R/supp(v)). -/
def valuation_field_mk (r : R) : valuation_field v := localization.of (v.valuation_ID_mk r)

/-- The map R → Frac(R/supp(v)) is a ring homomorphism. -/
instance to_valuation_field.is_ring_hom : is_ring_hom (valuation_field_mk v) :=
by delta valuation_field_mk; apply_instance

/-- The kernel of R → Frac(R/supp(v)) is supp(v). -/
lemma valuation_field_mk_ker (r : R) : v.valuation_field_mk r = 0 ↔ r ∈ supp v :=
⟨λ h, (v.valuation_ID_mk_ker r).1 $ localization.fraction_ring.eq_zero_of _ h,
 λ h, show localization.of _ = 0, by rw (v.valuation_ID_mk_ker r).2 h; apply is_ring_hom.map_zero⟩

lemma valuation_field_mk_ne_zero (r : R) (hr : v r ≠ 0) : valuation_field_mk v r ≠ 0 :=
λ h, hr ((valuation_field_mk_ker v r).1 h)

/-- The induced preorder on Frac(R/supp(v)). -/
instance valfield_preorder : preorder (valuation_field v) :=
  ((v.on_quot (le_refl _)).on_frac $ supp_quot_supp v).to_preorder

/-- The induced map from R \ supp(v) to the units of Frac(R/supp(v)). -/
def units_valfield_mk (r : R) (h : r ∉ supp v) : units (valuation_field v) :=
⟨v.valuation_field_mk r,
 (v.valuation_field_mk r)⁻¹,
 mul_inv_cancel (λ h2, h $ ideal.quotient.eq_zero_iff_mem.1 $
   localization.fraction_ring.eq_zero_of _ h2),
 inv_mul_cancel (λ h2, h $ ideal.quotient.eq_zero_iff_mem.1 $
   localization.fraction_ring.eq_zero_of _ h2)⟩

/-- The preorder on the units of Frac(R/supp(v)) induced by the extension of v. -/
instance units_valfield_preorder :
  preorder (units (valuation_field v)) := preorder.lift (λ u, u.val) (by apply_instance)

/-- The valuation on Frac(R/supp(v)) induced by v. -/
definition on_valuation_field : valuation (valuation_field v) Γ₀ :=
on_frac (v.on_quot (set.subset.refl _))
begin
  rw [supp_quot, ideal.zero_eq_bot],
  apply ideal.map_quotient_self,
end

/-- `valuation_ring v` is the elements of Frac(R/supp(v)) whose valuation is at most 1. -/
definition valuation_ring := {x | v.on_valuation_field x ≤ 1}

/-- `valuation_ring v` is a subring of Frac(R/supp(v)). -/
instance : is_subring (valuation_ring v) :=
{ zero_mem := show v.on_valuation_field 01, by simp,
  add_mem := λ x y hx hy,
  calc v.on_valuation_field (x + y) ≤ max (v.on_valuation_field x) (v.on_valuation_field y) :
    v.on_valuation_field.map_add x y
    ... ≤ 1 : max_le hx hy,
  neg_mem := by simp [valuation_ring],
  one_mem := by simp [valuation_ring, le_refl],
  mul_mem := λ x y (hx : _ ≤ _) (hy : _ ≤ _), show v.on_valuation_field _ ≤ 1,
  by convert le_trans (linear_ordered_structure.mul_le_mul_left hy _) _; simp [hx] }

/-- `max_ideal v` is the ideal of `valuation_ring v` consisting of things with valuation
strictly less than 1. -/
definition max_ideal : ideal (valuation_ring v) :=
{ carrier := { r | v.on_valuation_field r < 1 },
  zero := show v.on_valuation_field 0 < 1, by apply lt_of_le_of_ne; simp,
  add := λ x y (hx : _ < 1) (hy : _ < 1),
  calc v.on_valuation_field (x + y) ≤ max (v.on_valuation_field x) (v.on_valuation_field y) :
    v.on_valuation_field.map_add x y
    ... < 1 : max_lt hx hy,
  smul := λ c x (hx : _ < 1),
  show v.on_valuation_field _ < 1,
  begin
    refine lt_of_le_of_lt _ _,
    swap,
    convert (linear_ordered_structure.mul_le_mul_right _ _),
    exact map_mul _ _ _,
    swap,
    convert c.property,
    simpa using hx
  end }

set_option class.instance_max_depth 40

/-- `max_ideal v` is indeed a maximal ideal of `valuation_ring v`. -/
instance max_ideal_is_maximal : (max_ideal v).is_maximal :=
begin
  rw ideal.is_maximal_iff,
  split,
  { exact λ (H : _ < _), ne_of_lt H (map_one _) },
  { rintros J ⟨x,hx⟩ hJ hxni hxinJ,
    have vx : v.on_valuation_field x = 1 :=
    by { rw eq_iff_le_not_lt, split; assumption },
    have hxinv : v.on_valuation_field x⁻¹ ≤ 1 := by simp [vx],
    convert J.smul_mem ⟨x⁻¹, hxinv⟩ hxinJ,
    symmetry, apply subtype.val_injective,
    apply inv_mul_cancel,
    show x ≠ 0,
    assume hxeq0, simpa [hxeq0] using vx }
end

set_option class.instance_max_depth 32

/-- `residue_field v` is the quotient of `valuation_ring v` by `max_ideal v`. -/
definition residue_field := (max_ideal v).quotient

/-- `residue_field v` is a field. -/
instance residue_field.discrete_field : discrete_field (residue_field v) := ideal.quotient.field _
end valuation_field
end valuation