Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 1,571 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/-
  Presheaf of rings.

  https://stacks.math.columbia.edu/tag/006N

  Author: Ramon Fernandez Mir
-/

import sheaves.presheaf

universes u v

-- Definition of a presheaf of rings.

structure presheaf_of_rings (α : Type u) [topological_space α]
extends presheaf α :=
(Fring           : ∀ (U), comm_ring (F U))
(res_is_ring_hom : ∀ (U V) (HVU : VU), is_ring_hom (res U V HVU))

instance {α : Type u} [topological_space α]
: has_coe (presheaf_of_rings α) (presheaf α)
:= ⟨λ F, F.to_presheaf⟩

attribute [instance] presheaf_of_rings.Fring
attribute [instance] presheaf_of_rings.res_is_ring_hom

instance presheaf_of_rings.comm_ring {α : Type u} [topological_space α]
  (F : presheaf_of_rings α) (U : topological_space.opens α) : comm_ring (F U) :=
F.Fring U

namespace presheaf_of_rings

variables {α : Type u} {β : Type v} [topological_space α] [topological_space β]

-- Morphism of presheaf of rings.

structure morphism (F G : presheaf_of_rings α)
extends presheaf.morphism F.to_presheaf G.to_presheaf :=
(ring_homs : ∀ (U), is_ring_hom (map U))

local infix `⟶`:80 := morphism

def identity (F : presheaf_of_rings α) : FF :=
{ ring_homs := λ U, is_ring_hom.id,
  ..presheaf.id F.to_presheaf }

-- Isomorphic presheaves of rings.

local infix `⊚`:80 := presheaf.comp

structure iso (F G : presheaf_of_rings α) :=
(mor : FG)
(inv : GF)
(mor_inv_id : mor.to_morphisminv.to_morphism = presheaf.id F.to_presheaf)
(inv_mor_id : inv.to_morphismmor.to_morphism = presheaf.id G.to_presheaf)

end presheaf_of_rings