Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 2,117 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import data.equiv.algebra
import group_theory.quotient_group
-- Some stuff is now in mathlib
namespace quotient_group
theorem map_id {G : Type*} [group G] (K : set G) [normal_subgroup K] (g : quotient K) :
map K K id (λ x h, h) g = g := by induction g; refl
theorem map_comp
{G : Type*} {H : Type*} {J : Type*}
[group G] [group H] [group J]
(a : G → H) [is_group_hom a] (b : H → J) [is_group_hom b]
{G1 : set G} {H1 : set H} {J1 : set J}
[normal_subgroup G1] [normal_subgroup H1] [normal_subgroup J1]
(h1 : G1 ⊆ a ⁻¹' H1) (h2 : H1 ⊆ b ⁻¹' J1)
(g : quotient G1) :
map H1 J1 b h2 (map G1 H1 a h1 g) = map G1 J1 (b ∘ a) (λ _ hx, h2 $ h1 hx) g :=
by induction g; refl
end quotient_group
open quotient_group
-- This version is better (than a previous, deleted version),
-- but Mario points out that really I shuold be using a
-- relation rather than h2 : he.to_equiv ⁻¹' K = J.
def mul_equiv.quotient {G : Type*} {H : Type*} [group G] [group H]
(he : G ≃* H) (J : set G) [normal_subgroup J] (K : set H) [normal_subgroup K]
(h2 : he.to_equiv ⁻¹' K = J) :
mul_equiv (quotient_group.quotient J) (quotient_group.quotient K) :=
{ to_fun := quotient_group.lift J (mk ∘ he) begin
unfold set.preimage at h2,
intros g hg,
rw ←h2 at hg,
rw ←is_group_hom.mem_ker (quotient_group.mk : H → quotient_group.quotient K),
rwa quotient_group.ker_mk,
end,
inv_fun := quotient_group.lift K (mk ∘ he.symm) begin
intros h hh,
rw ←is_group_hom.mem_ker (quotient_group.mk : G → quotient_group.quotient J),
rw quotient_group.ker_mk,
show he.to_equiv.symm h ∈ J,
rw ←h2,
show he.to_equiv (he.to_equiv.symm h) ∈ K,
convert hh,
exact he.to_equiv.right_inv h
end,
left_inv := λ g, begin
induction g,
conv begin
to_rhs,
rw ←he.to_equiv.left_inv g,
end,
refl, refl,
end,
right_inv := λ h, begin
induction h,
conv begin
to_rhs,
rw ←he.to_equiv.right_inv h,
end,
refl, refl,
end,
map_mul' := (quotient_group.is_group_hom_quotient_lift J _ _).map_mul }
|