Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 4,391 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import data.equiv.basic algebra.group
import order.basic logic.basic -- needed for order stuff
import for_mathlib.with_zero
import data.equiv.algebra
def equiv.with_zero_equiv {α β : Type*} (h : α ≃ β) : (with_zero α) ≃ (with_zero β) :=
{ to_fun := with_zero.map h,
inv_fun := with_zero.map h.symm,
left_inv := λ x, begin cases x, refl, show some _ = some _, congr, exact h.left_inv x end,
right_inv := λ x, begin cases x, refl, show some _ = some _, congr, exact h.right_inv x end,
}
variables {α : Type*} {β : Type*} {γ : Type*}
namespace mul_equiv
variables [monoid α] [monoid β] [monoid γ]
def to_with_zero_mul_equiv (h : α ≃* β) : (with_zero α) ≃* (with_zero β) :=
{ map_mul' := λ x y,
begin cases x; cases y; try { refl},
show some _ = some _, congr, exact @is_mul_hom.map_mul _ _ _ _ h _ x y
end,
..h.to_equiv.with_zero_equiv }
end mul_equiv
-- from here on -- should this go in data.equiv.order?
structure le_equiv (α β : Type*) [has_le α] [has_le β] extends α ≃ β :=
(le_map : ∀ ⦃x y⦄, x ≤ y ↔ to_fun x ≤ to_fun y)
infix ` ≃≤ `:50 := le_equiv
namespace le_equiv
variables (X : Type*) [has_le X] (Y : Type*) [has_le Y] (Z : Type*) [has_le Z]
variables {X} {Y} {Z}
@[refl] def refl (X : Type*) [has_le X] : X ≃≤ X :=
{ le_map := λ _ _, iff.rfl,
..equiv.refl _}
@[symm] def symm (h : X ≃≤ Y) : Y ≃≤ X :=
{ le_map := λ x₁ x₂, begin
convert (@le_equiv.le_map _ _ _ _ h (h.to_equiv.symm x₁) (h.to_equiv.symm x₂)).symm,
exact (h.right_inv x₁).symm, exact (h.right_inv x₂).symm end,
..h.to_equiv.symm
}
@[trans] def trans (h1 : X ≃≤ Y) (h2 : Y ≃≤ Z) : X ≃≤ Z :=
{ le_map := λ x₁ x₂, iff.trans (@le_equiv.le_map _ _ _ _ h1 x₁ x₂)
(@le_equiv.le_map _ _ _ _ h2 (h1.to_fun x₁) (h1.to_fun x₂)),
..equiv.trans h1.to_equiv h2.to_equiv
}
end le_equiv
def preorder_equiv (α β : Type*) [preorder α] [preorder β] := le_equiv α β
structure lt_equiv (α β : Type*) [has_lt α] [has_lt β] extends α ≃ β :=
(lt_map : ∀ ⦃x y⦄, x < y ↔ to_fun x < to_fun y)
infix ` ≃< `:50 := lt_equiv
-- iff for ordering -- is this in mathlib?
def linear_order_le_iff_of_monotone_injective {α : Type*} {β : Type*}
[linear_order α] [linear_order β] {f : α → β}
(hf : function.injective f)
(h2 : ∀ x y, x ≤ y → f x ≤ f y)
: ∀ x y, x ≤ y ↔ f x ≤ f y :=
λ x y, ⟨h2 x y, λ h3, le_of_not_lt $ λ h4, not_lt_of_le h3 $ lt_of_le_of_ne
(h2 y x $ le_of_lt h4) $ λ h5, ne_of_lt h4 $ hf h5⟩
namespace preorder_equiv
variables [preorder α] [preorder β] [preorder γ]
@[refl] def refl (α : Type*) [preorder α] : α ≃≤ α :=
{ le_map := λ _ _, iff.rfl,
..equiv.refl _}
@[symm] def symm (h : α ≃≤ β) : β ≃≤ α :=
{ le_map := λ x y, begin
convert (@le_equiv.le_map _ _ _ _ h (h.to_equiv.symm x) (h.to_equiv.symm y)).symm,
{ exact (h.right_inv x).symm},
{ exact (h.right_inv y).symm},
end
..h.to_equiv.symm}
@[trans] def trans (h1 : α ≃≤ β) (h2 : β ≃≤ γ) : (α ≃≤ γ) :=
{ le_map := λ x y,
iff.trans (@le_equiv.le_map _ _ _ _ h1 x y)
(@le_equiv.le_map _ _ _ _ h2 (h1.to_equiv x) (h1.to_equiv y)),
..equiv.trans h1.to_equiv h2.to_equiv }
end preorder_equiv
def equiv.lt_map_of_le_map {α : Type*} {β : Type*} [preorder α] [preorder β]
(he : α ≃ β) (hle : ∀ x y, x ≤ y ↔ he x ≤ he y) : (∀ x y, x < y ↔ he x < he y) :=
λ x y, by rw [lt_iff_le_not_le, hle x y, hle y x, lt_iff_le_not_le]
def equiv.le_map_iff_lt_map {α : Type*} {β : Type*} [partial_order α] [partial_order β]
(he : α ≃ β) : (∀ x y, x ≤ y ↔ he x ≤ he y) ↔ (∀ x y, x < y ↔ he x < he y) :=
⟨equiv.lt_map_of_le_map he, λ hlt x y, by rw [le_iff_eq_or_lt, le_iff_eq_or_lt];
exact or_congr (by simp) (hlt x y)⟩
def preorder_equiv.to_lt_equiv {α : Type*} {β : Type*} [preorder α] [preorder β]
(he : α ≃≤ β) : α ≃< β := {lt_map := he.to_equiv.lt_map_of_le_map he.le_map
..he.to_equiv}
def preorder_equiv.to_with_zero_preorder_equiv {α : Type*} {β : Type*} [preorder α] [preorder β]
(he : α ≃≤ β) : (with_zero α) ≃≤ (with_zero β) :=
{ le_map := with_zero.map_le he.le_map
..he.to_equiv.with_zero_equiv}
-- equiv of top spaces is already done -- it's called homeomorph in topology/constructions.lean
|