Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 1,133 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pseudo_normed_group.basic

local attribute [instance] type_pow

open_locale nnreal big_operators

namespace pseudo_normed_group

section splittable

class splittable (M : Type*) [pseudo_normed_group M] (N : β„•) (d : ℝβ‰₯0) : Prop :=
(exists_sum : βˆ€ (c : ℝβ‰₯0) (x : M) (hx : x ∈ filtration M c),
  βˆƒ y : fin N β†’ M, (x = βˆ‘ i, y i) ∧ (βˆ€ i, y i ∈ filtration M (c/N + d)))

variables {M : Type*} [pseudo_normed_group M] (N : β„•) (d : ℝβ‰₯0) [splittable M N d]

lemma exists_sum (c : ℝβ‰₯0) (x : M) (hx : x ∈ filtration M c) :
  βˆƒ y : fin N β†’ M, (x = βˆ‘ i, y i) ∧ (y ∈ filtration (M^N) (c/N + d)) :=
splittable.exists_sum c x hx

instance splittable_pi {ΞΉ : Type*} (M : ΞΉ β†’ Type*) [Ξ  i, pseudo_normed_group (M i)]
  (N : β„•) (d : ℝβ‰₯0) [βˆ€ i, splittable (M i) N d] :
  splittable (Ξ  i, M i) N d :=
{ exists_sum := Ξ» c x hx,
  begin
    have := Ξ» i, exists_sum N d c (x i) (hx i),
    choose y hy1 hy2 using this,
    refine ⟨function.swap y, _, function.swap hy2⟩,
    ext i, rw [hy1], symmetry, convert finset.sum_apply i _ _,
  end }

end splittable

end pseudo_normed_group