Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 1,133 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import pseudo_normed_group.basic
local attribute [instance] type_pow
open_locale nnreal big_operators
namespace pseudo_normed_group
section splittable
class splittable (M : Type*) [pseudo_normed_group M] (N : β) (d : ββ₯0) : Prop :=
(exists_sum : β (c : ββ₯0) (x : M) (hx : x β filtration M c),
β y : fin N β M, (x = β i, y i) β§ (β i, y i β filtration M (c/N + d)))
variables {M : Type*} [pseudo_normed_group M] (N : β) (d : ββ₯0) [splittable M N d]
lemma exists_sum (c : ββ₯0) (x : M) (hx : x β filtration M c) :
β y : fin N β M, (x = β i, y i) β§ (y β filtration (M^N) (c/N + d)) :=
splittable.exists_sum c x hx
instance splittable_pi {ΞΉ : Type*} (M : ΞΉ β Type*) [Ξ i, pseudo_normed_group (M i)]
(N : β) (d : ββ₯0) [β i, splittable (M i) N d] :
splittable (Ξ i, M i) N d :=
{ exists_sum := Ξ» c x hx,
begin
have := Ξ» i, exists_sum N d c (x i) (hx i),
choose y hy1 hy2 using this,
refine β¨function.swap y, _, function.swap hy2β©,
ext i, rw [hy1], symmetry, convert finset.sum_apply i _ _,
end }
end splittable
end pseudo_normed_group
|