Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 52,522 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
(* ========================================================================= *)
(* Fermat, weak Euler and Euler-Jacobi pseudoprimes, Carmichael numbers etc. *)
(* ========================================================================= *)

needs "Library/jacobi.ml";;
needs "Examples/miller_rabin.ml";;

(* ------------------------------------------------------------------------- *)
(* A little set cardinality lemma we use repeatedly. In an explicitly group  *)
(* theoretic setting, Lagrange's theorem takes the place of this.            *)
(* ------------------------------------------------------------------------- *)

let CARD_SUBSET_HALF_LEMMA = prove
 (`!f s (t:A->bool) n.
        FINITE t /\ CARD t <= n /\
        s SUBSET t /\ IMAGE f s SUBSET t DIFF s /\
        (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
        ==> 2 * CARD s <= n`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(ARITH_RULE
   `!f t. CARD t <= n /\
          CARD(IMAGE f s) <= CARD(t DIFF s) /\
          CARD(t DIFF s) + CARD(s) = CARD t /\
          CARD(IMAGE (f:A->A) s) = CARD s
          ==> 2 * CARD s <= n`) THEN
  MAP_EVERY EXISTS_TAC [`f:A->A`; `t:A->bool`] THEN
  ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC CARD_SUBSET THEN ASM_SIMP_TAC[FINITE_DIFF] THEN ASM SET_TAC[];
    MATCH_MP_TAC CARD_UNION_EQ THEN ASM SET_TAC[];
    MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_MESON_TAC[FINITE_SUBSET]]);;

(* ------------------------------------------------------------------------- *)
(* Fermat pseudoprimes and Carmichael numbers.                               *)
(* ------------------------------------------------------------------------- *)

let fermat_pseudoprime = new_definition
 `fermat_pseudoprime a n <=>
        (a EXP (n - 1) == 1) (mod n)`;;

let carmichael_number = new_definition
 `carmichael_number n <=>
     2 <= n /\ ~prime n /\ !a. coprime(a,n) ==> fermat_pseudoprime a n`;;

let CARMICHAEL_NUMBER,CARMICHAEL_NUMBER_KORSELT_ALT = (CONJ_PAIR o prove)
 (`(!n. carmichael_number n <=>
        2 <= n /\ ~prime n /\ !a. (a EXP n == a) (mod n)) /\
   (!n. carmichael_number n <=>
        2 <= n /\ ~prime n /\ ODD n /\
        !p. prime p /\ p divides n
            ==> ~(p EXP 2 divides n) /\ (p - 1) divides (n - 1))`,
  REWRITE_TAC[carmichael_number; fermat_pseudoprime; AND_FORALL_THM] THEN
  X_GEN_TAC `n:num` THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH] THEN MATCH_MP_TAC(TAUT
   `(q ==> p) /\ (p ==> r) /\ (r ==> q) ==> (p <=> q) /\ (p <=> r)`) THEN
  REPEAT CONJ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [GEN_TAC THEN MATCH_MP_TAC(NUMBER_RULE
     `(a * x == a) (mod n) ==> coprime(a,n) ==> (x == 1) (mod n)`) THEN
    ASM_SIMP_TAC[GSYM(CONJUNCT2 EXP); ARITH_RULE `2 <= n ==> SUC(n - 1) = n`];
    MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
     [REWRITE_TAC[GSYM NOT_EVEN] THEN REPEAT STRIP_TAC THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN ANTS_TAC THENL
       [MATCH_MP_TAC COPRIME_MINUS1 THEN ASM_ARITH_TAC;
        REWRITE_TAC[fermat_pseudoprime]] THEN
      DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
       `(a EXP k == 1) (mod n) ==> (a * a EXP k == a) (mod n)`)) THEN
      ASM_SIMP_TAC[GSYM(CONJUNCT2 EXP); ARITH_RULE
       `2 <= n ==> SUC(n - 1) = n`] THEN
      SUBGOAL_THEN
       `?m. (n - 1) EXP n = (n - 1) EXP (2 * m)`
       (X_CHOOSE_THEN `m:num` SUBST1_TAC) THENL
        [ASM_MESON_TAC[EVEN_EXISTS]; REWRITE_TAC[GSYM EXP_EXP]] THEN
      MATCH_MP_TAC(MESON[CONG_TRANS; CONG_SYM]
       `(x == 1) (mod n) /\ ~(y == 1) (mod n) ==> ~(x == y) (mod n)`) THEN
      ASM_SIMP_TAC[CONG_EXP_1; CONG_MINUS1_SQUARED] THEN
      DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONG_SUB)) THEN
      DISCH_THEN(MP_TAC o SPECL [`1`; `1`]) THEN
      REWRITE_TAC[CONG_REFL; LE_REFL; CONG_0_DIVIDES; SUB_REFL; NOT_IMP] THEN
      CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
      DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN
      ASM_CASES_TAC `n = 2` THENL [ASM_MESON_TAC[PRIME_2]; ASM_ARITH_TAC];
      DISCH_TAC] THEN
    X_GEN_TAC `p:num` THEN STRIP_TAC THEN
    ASM_CASES_TAC `ODD p` THENL
     [ALL_TAC; ASM_MESON_TAC[DIVIDES_TRANS; DIVIDES_2; NOT_ODD]] THEN
    ASM_CASES_TAC `p = 0` THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
    ASM_CASES_TAC `p = 1` THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN
    MP_TAC(SPECL [`n:num`; `p:num`] INDEX_DECOMPOSITION_PRIME) THEN
    ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `m:num` THEN
    ABBREV_TAC `k = index p n` THEN STRIP_TAC THEN
    SUBGOAL_THEN `~(k = 0)` ASSUME_TAC THENL
     [EXPAND_TAC "k" THEN REWRITE_TAC[INDEX_EQ_0] THEN ASM_REWRITE_TAC[];
      ALL_TAC] THEN
    MP_TAC(snd(EQ_IMP_RULE(SPEC `p EXP k` PRIMITIVE_ROOT_EXISTS))) THEN
    ANTS_TAC THENL [ASM_MESON_TAC[ODD_PRIME]; ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_TAC `g:num`) THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP PRIMITIVE_ROOT_IMP_COPRIME) THEN
    REWRITE_TAC[EXP_EQ_0; COPRIME_LEXP; ARITH_EQ] THEN
    ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
    MP_TAC(ISPECL [`p EXP k`; `m:num`; `g:num`; `1`]
      CHINESE_REMAINDER_USUAL) THEN
    ASM_REWRITE_TAC[COPRIME_LEXP; LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `t:num` THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `t:num`) THEN
    EXPAND_TAC "n" THEN ANTS_TAC THENL
     [REWRITE_TAC[COPRIME_RMUL; COPRIME_REXP] THEN CONJ_TAC THENL
       [DISJ1_TAC THEN UNDISCH_TAC `(t == g) (mod (p EXP k))` THEN
        DISCH_THEN(MP_TAC o MATCH_MP CONG_COPRIME) THEN
        ASM_REWRITE_TAC[COPRIME_LEXP] THEN MESON_TAC[COPRIME_SYM];
        ASM_MESON_TAC[NUMBER_RULE `(t == 1) (mod m) ==> coprime(t,m)`]];
      DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
       `(a == 1) (mod (n * m)) ==> (a == 1) (mod n)`))] THEN
    ASM_REWRITE_TAC[ORDER_DIVIDES] THEN
    SUBGOAL_THEN `order (p EXP k) t = order (p EXP k) g` SUBST1_TAC THENL
     [ASM_MESON_TAC[ORDER_CONG]; ASM_REWRITE_TAC[]] THEN
    ASM_SIMP_TAC[PHI_PRIMEPOW_ALT] THEN DISCH_THEN(MP_TAC o MATCH_MP
     (NUMBER_RULE `(a:num) * b divides c ==> a divides c /\ b divides c`)) THEN
    MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN
    MP_TAC(SPECL [`p EXP (k - 1)`; `n:num`] CONG_1_DIVIDES_EQ) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
    EXPAND_TAC "n" THEN DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
     `(p * m == 1) (mod q) ==> q divides p ==> q = 1`)) THEN
    ASM_SIMP_TAC[DIVIDES_EXP_LE; PRIME_GE_2; EXP_EQ_1] THEN
    ASM_REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX; ARITH_RULE `k - 1 <= k`] THEN
    ARITH_TAC;
    X_GEN_TAC `a:num` THEN
    ABBREV_TAC `b = a EXP n` THEN
    SUBGOAL_THEN
     `!m:num. m divides n ==> (b == a) (mod m)`
     (fun th -> MESON_TAC[th; DIVIDES_REFL]) THEN
    MATCH_MP_TAC INDUCT_COPRIME_ALT THEN
    ASM_REWRITE_TAC[DIVIDES_ZERO] THEN CONJ_TAC THENL
     [ASM_MESON_TAC[DIVIDES_LMUL2; DIVIDES_RMUL2; CONG_CHINESE]; ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN DISCH_TAC THEN
    ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[EXP; CONG_MOD_1] THEN
    ASM_CASES_TAC `k = 1` THENL
     [ALL_TAC;
      FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC(TAUT
       `(dk ==> d2) /\ (dk ==> d)
        ==> (d ==> ~d2 /\ p) ==> dk ==> q`) THEN
      GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV) [GSYM EXP_1] THEN
      CONJ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] DIVIDES_TRANS) THEN
      MATCH_MP_TAC DIVIDES_EXP_LE_IMP THEN ASM_ARITH_TAC] THEN
    ASM_REWRITE_TAC[EXP_1] THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN
    ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
    ASM_CASES_TAC `coprime(a:num,p)` THENL
     [SUBGOAL_THEN `b = a * a EXP (n - 1)` SUBST1_TAC THENL
       [REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN
        ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> SUC(n - 1) = n`];
        ALL_TAC] THEN
      MATCH_MP_TAC(NUMBER_RULE
       `(b == 1) (mod n) ==> (a * b == a) (mod n)`) THEN
      UNDISCH_TAC `p - 1 divides n - 1` THEN
      SIMP_TAC[divides; LEFT_IMP_EXISTS_THM; GSYM EXP_EXP] THEN
      REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_EXP_1 THEN
      ASM_SIMP_TAC[FERMAT_LITTLE_PRIME];
      MATCH_MP_TAC(NUMBER_RULE
       `p divides a /\ p divides b ==> (b:num == a) (mod p)`) THEN
      EXPAND_TAC "b" THEN ASM_SIMP_TAC[PRIME_DIVEXP_EQ] THEN
      ASM_MESON_TAC[PRIME_COPRIME_EQ; COPRIME_SYM]]]);;

let CARMICHAEL_NUMBER_KORSELT = prove
 (`!n. carmichael_number n <=>
        2 <= n /\ ~prime n /\ ODD n /\ squarefree n /\
        !p. prime p /\ p divides n ==> (p - 1) divides (n - 1)`,
  REWRITE_TAC[CARMICHAEL_NUMBER_KORSELT_ALT; SQUAREFREE_PRIME_DIVISOR] THEN
  MESON_TAC[]);;

let CARMICHAEL_NUMBER_IMP_ODD = prove
 (`!n. carmichael_number n ==> ODD n`,
  SIMP_TAC[CARMICHAEL_NUMBER_KORSELT]);;

let CARMICHAEL_NUMBER_IMP_SQUAREFREE = prove
 (`!n. carmichael_number n ==> squarefree n`,
  SIMP_TAC[CARMICHAEL_NUMBER_KORSELT]);;

let CARMICHAEL_NUMBER_IMP_NZ = prove
 (`!n. carmichael_number n ==> ~(n = 0)`,
  MESON_TAC[CARMICHAEL_NUMBER_IMP_ODD; ODD]);;

let CARMICHAEL_NUMBER_IMP_TRIPLET = prove
 (`!n. carmichael_number n ==> CARD {p | prime p /\ p divides n} >= 3`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[ARITH_RULE `n >= 3 <=> ~(n = 0) /\ ~(n = 1) /\ ~(n = 2)`] THEN
  ASM_SIMP_TAC[MESON[HAS_SIZE] `FINITE s ==> (CARD s = n <=> s HAS_SIZE n)`;
               FINITE_SPECIAL_DIVISORS; CARMICHAEL_NUMBER_IMP_NZ] THEN
  CONV_TAC(ONCE_DEPTH_CONV HAS_SIZE_CONV) THEN
  REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT CONJ_TAC THENL
   [ALL_TAC; X_GEN_TAC `p:num`; MAP_EVERY X_GEN_TAC [`p:num`; `q:num`]] THEN
  STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP CARMICHAEL_NUMBER_IMP_SQUAREFREE) THEN
  ASM_SIMP_TAC[SQUAREFREE_EXPAND_EQ; NPRODUCT_CLAUSES; FINITE_INSERT;
               FINITE_EMPTY; IN_INSERT; NOT_IN_EMPTY; MULT_CLAUSES]
  THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [carmichael_number]) THEN
    ARITH_TAC;
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [carmichael_number]) THEN
    ASM SET_TAC[];
    POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev)] THEN
  MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`q:num`; `p:num`] THEN
  MATCH_MP_TAC WLOG_LT THEN REWRITE_TAC[] THEN
  CONJ_TAC THENL [REWRITE_TAC[MULT_SYM] THEN SET_TAC[]; ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`p:num`; `q:num`] THEN STRIP_TAC THEN
  REWRITE_TAC[CARMICHAEL_NUMBER_KORSELT_ALT] THEN REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN
  ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(MP_TAC o CONJUNCT2)] THEN
  SUBGOAL_THEN `n - 1 = p * (q - 1) + p - 1` SUBST1_TAC THENL
   [EXPAND_TAC "n" THEN REWRITE_TAC[LEFT_SUB_DISTRIB] THEN
    MATCH_MP_TAC(ARITH_RULE
     `~(p = 0) /\ p * 1 <= pq ==> pq - 1 = (pq - p * 1) + p - 1`) THEN
    REWRITE_TAC[LE_MULT_LCANCEL; ARITH_RULE `1 <= q <=> ~(q = 0)`] THEN
    MP_TAC PRIME_IMP_NZ THEN ASM SET_TAC[];
    DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
     `(q:num) divides p * q + r ==> q divides r`)) THEN
    DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN
    SUBGOAL_THEN `2 <= p /\ 2 <= q` MP_TAC THENL [ALL_TAC; ASM_ARITH_TAC] THEN
    CONJ_TAC THEN MATCH_MP_TAC PRIME_GE_2 THEN ASM SET_TAC[]]);;

let CARMICHAEL_NUMBER_PRIME_FACTOR_CONG_1 = prove
 (`!n p q.
        carmichael_number n /\
        prime p /\ p divides n /\
        prime q /\ q divides n
        ==> ~((q == 1) (mod p))`,
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(STRIP_ASSUME_TAC o
    GEN_REWRITE_RULE I [CARMICHAEL_NUMBER_KORSELT]) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP CONG_1_DIVIDES) THEN
  UNDISCH_TAC `(p:num) divides n` THEN
  REWRITE_TAC[TAUT `p ==> ~q <=> ~(p /\ q)`] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
   `q divides n /\ q divides q' /\ q' divides n'
    ==> (n' + 1 == n + 1) (mod q)`)) THEN
  ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> n - 1 + 1 = n`] THEN
  REWRITE_TAC[NUMBER_RULE `(n == n + 1) (mod q) <=> q = 1`] THEN
  ASM_MESON_TAC[PRIME_1]);;

let FERMAT_PSEUDOPRIME_IMP_COPRIME = prove
 (`!a n. fermat_pseudoprime a n ==> n = 0 \/ coprime(a,n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN REWRITE_TAC[] THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[COPRIME_1] THEN
  REWRITE_TAC[fermat_pseudoprime] THEN DISCH_THEN(MP_TAC o MATCH_MP
   (NUMBER_RULE `(a == 1) (mod n) ==> coprime(a,n)`)) THEN
  ASM_REWRITE_TAC[COPRIME_LEXP] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);;

let PRIME_IMP_FERMAT_PSEUDOPRIME = prove
 (`!p a. prime p /\ ~(p divides a) ==> fermat_pseudoprime a p`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[fermat_pseudoprime] THEN
  MATCH_MP_TAC FERMAT_LITTLE_PRIME THEN
  ASM_MESON_TAC[PRIME_COPRIME_EQ; COPRIME_SYM]);;

let PRIME_EQ_FERMAT_PSEUDOPRIME = prove
 (`!p. prime p <=> 2 <= p /\ (!a. 0 < a /\ a < p ==> fermat_pseudoprime a p)`,
  GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[PRIME_GE_2] THENL
   [MATCH_MP_TAC PRIME_IMP_FERMAT_PSEUDOPRIME THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN ASM_ARITH_TAC;
    REWRITE_TAC[PRIME] THEN
    REPEAT(CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN
    X_GEN_TAC `a:num` THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `a:num`) THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP FERMAT_PSEUDOPRIME_IMP_COPRIME) THEN
    ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC]);;

let ABSOLUTE_FERMAT_PSEUDOPRIME = prove
 (`!n. (!a. coprime(a,n) ==> fermat_pseudoprime a n) <=>
       n = 0 \/ n = 1 \/ prime n \/ carmichael_number n`,
  GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [ASM_SIMP_TAC[fermat_pseudoprime; COPRIME_0; CONG_MOD_0] THEN
    CONV_TAC NUM_REDUCE_CONV;
    ALL_TAC] THEN
  ASM_CASES_TAC `n = 1` THENL
   [ASM_SIMP_TAC[fermat_pseudoprime; CONG_MOD_1];
    ALL_TAC] THEN
  ASM_REWRITE_TAC[carmichael_number; ARITH_RULE
   `2 <= n <=> ~(n = 0 \/ n = 1)`] THEN
  ASM_CASES_TAC `prime n` THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[PRIME_IMP_FERMAT_PSEUDOPRIME; PRIME_COPRIME_EQ; COPRIME_SYM]);;

let FERMAT_PSEUDOPRIME_BOUND_PHI_ALT = prove
 (`!n. ~(n = 1) /\ ~prime n /\ ~carmichael_number n
        ==> 2 * CARD {a | a < n /\ fermat_pseudoprime a n} <= phi n`,
  GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[LT; EMPTY_GSPEC; CARD_CLAUSES; MULT_CLAUSES; LE_0] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  ASM_REWRITE_TAC[carmichael_number; NOT_FORALL_THM; NOT_IMP;
         LEFT_IMP_EXISTS_THM; ARITH_RULE `2 <= n <=> ~(n = 0 \/ n = 1)`] THEN
  X_GEN_TAC `b:num` THEN STRIP_TAC THEN
  MATCH_MP_TAC CARD_SUBSET_HALF_LEMMA THEN
  EXISTS_TAC `\a. (a * b) MOD n` THEN
  EXISTS_TAC `{a:num | coprime(a,n) /\ a < n}` THEN
  SIMP_TAC[PHI_ALT; LE_REFL; SUBSET; FORALL_IN_IMAGE] THEN
  REWRITE_TAC[IN_ELIM_THM; IN_DIFF] THEN REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:num | i < n}` THEN
    REWRITE_TAC[FINITE_NUMSEG_LT] THEN SET_TAC[];
    ASM_MESON_TAC[FERMAT_PSEUDOPRIME_IMP_COPRIME; LT];
    ALL_TAC;
    REWRITE_TAC[GSYM CONG] THEN REPEAT STRIP_TAC THEN
    MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `n:num` THEN
    ASM_MESON_TAC[CONG_MULT_RCANCEL]] THEN
  X_GEN_TAC `a:num` THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[LT] THEN
  STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP FERMAT_PSEUDOPRIME_IMP_COPRIME) THEN
  ASM_REWRITE_TAC[COPRIME_LMOD; COPRIME_LMUL] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[MOD_LT_EQ; fermat_pseudoprime] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[fermat_pseudoprime]) THEN
  REWRITE_TAC[MOD_EXP_MOD; CONG] THEN REWRITE_TAC[GSYM CONG; MULT_EXP] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
   `(a * b == 1) (mod n) ==> (a == 1) (mod n) ==> (b == 1) (mod n)`)) THEN
  ASM_REWRITE_TAC[]);;

let FERMAT_PSEUDOPRIME_BOUND_PHI = prove
 (`!n. ~(n = 1) /\ ~prime n /\ ~carmichael_number n
        ==> CARD {a | a < n /\ fermat_pseudoprime a n} <= phi n DIV 2`,
  REWRITE_TAC[ARITH_RULE `a <= b DIV 2 <=> 2 * a <= b`] THEN
  REWRITE_TAC[FERMAT_PSEUDOPRIME_BOUND_PHI_ALT]);;

let FERMAT_PSEUDOPRIME_BOUND_LT = prove
 (`!n. ~(n = 0) /\ ~(n = 1) /\ ~prime n /\ ~carmichael_number n
        ==> CARD {a | a < n /\ fermat_pseudoprime a n} < n DIV 2`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `n:num` FERMAT_PSEUDOPRIME_BOUND_PHI_ALT) THEN
  ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(ARITH_RULE `p < n - 1  ==> 2 * a <= p ==> a < n DIV 2`) THEN
  MATCH_MP_TAC PHI_LIMIT_COMPOSITE THEN ASM_REWRITE_TAC[]);;

let MILLER_RABIN_IMP_FERMAT_PSEUDOPRIME = prove
 (`!a q. miller_rabin_pseudoprime a q /\ ~(q = 2) ==> fermat_pseudoprime a q`,
  REWRITE_TAC[fermat_pseudoprime] THEN
  REWRITE_TAC[MILLER_RABIN_IMP_FERMAT_PSEUDOPRIME_EXPLICIT]);;

let MILLER_RABIN_EQ_FERMAT_PSEUDOPRIME = prove
 (`!a q. (?p k. prime p /\ ODD p /\ p EXP k = q)
         ==> (miller_rabin_pseudoprime a q <=> fermat_pseudoprime a q)`,
  REWRITE_TAC[fermat_pseudoprime] THEN
  REWRITE_TAC[MILLER_RABIN_EQ_FERMAT_PSEUDOPRIME_EXPLICIT]);;

(* ------------------------------------------------------------------------- *)
(* Weak Euler pseudoprimes.                                                  *)
(* ------------------------------------------------------------------------- *)

let weak_euler_pseudoprime = new_definition
 `weak_euler_pseudoprime a n <=>
        ODD n /\
        ((&a pow ((n - 1) DIV 2) == (&1:int)) (mod &n) \/
         (&a pow ((n - 1) DIV 2) == (-- &1:int)) (mod &n))`;;

let WEAK_EULER_IMP_FERMAT_PSEUDOPRIME = prove
 (`!a n. weak_euler_pseudoprime a n ==> fermat_pseudoprime a n`,
  REWRITE_TAC[fermat_pseudoprime; weak_euler_pseudoprime] THEN
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INTEGER_RULE
   `(x:int == y) (mod m) ==> (x pow 2 == y pow 2) (mod m)`)) THEN
  CONV_TAC INT_REDUCE_CONV THEN
  REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_POW; INT_POW_POW] THEN
  MATCH_MP_TAC(INTEGER_RULE
   `x:int = y ==> (x == &1) (mod n) ==> (y == &1) (mod n)`) THEN
  AP_TERM_TAC THEN
  FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[ODD_EXISTS]) THEN
  REWRITE_TAC[SUC_SUB1; ARITH_RULE `(2 * m) DIV 2 = m`] THEN ARITH_TAC);;

let WEAK_EULER_PSEUDOPRIME_IMP_ODD = prove
 (`!a n. weak_euler_pseudoprime a n ==> ODD n`,
  SIMP_TAC[weak_euler_pseudoprime]);;

let WEAK_EULER_PSEUDOPRIME_IMP_COPRIME = prove
 (`!a n. weak_euler_pseudoprime a n ==> coprime(a,n)`,
  MESON_TAC[WEAK_EULER_IMP_FERMAT_PSEUDOPRIME; FERMAT_PSEUDOPRIME_IMP_COPRIME;
            ODD; weak_euler_pseudoprime]);;

let PRIME_IMP_WEAK_EULER_PSEUDOPRIME = prove
 (`!p a. prime p /\ ~(p = 2) /\ ~(p divides a) ==> weak_euler_pseudoprime a p`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[weak_euler_pseudoprime] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[PRIME_ODD]; ONCE_REWRITE_TAC[DISJ_SYM]] THEN
  MP_TAC(SPECL [`a:num`; `p:num`] JACOBI_CASES) THEN
  MP_TAC(SPECL [`a:num`; `p:num`] JACOBI_EULER) THEN
  ASM_REWRITE_TAC[JACOBI_EQ_0] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN
  ASM_SIMP_TAC[PRIME_COPRIME_EQ] THEN ASM_MESON_TAC
   [INTEGER_RULE `(j == a) (mod p) ==> j:int = z ==> (a == z) (mod p)`]);;

let PRIME_EQ_WEAK_EULER_PSEUDOPRIME = prove
 (`!p. prime p <=>
       p = 2 \/ 2 <= p /\
       (!a. 0 < a /\ a < p ==> weak_euler_pseudoprime a p)`,
  GEN_TAC THEN ASM_CASES_TAC `p = 2` THEN ASM_REWRITE_TAC[PRIME_2] THEN
  EQ_TAC THENL
   [SIMP_TAC[PRIME_GE_2] THEN REPEAT STRIP_TAC THEN
    MATCH_MP_TAC PRIME_IMP_WEAK_EULER_PSEUDOPRIME THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN ASM_ARITH_TAC;
    MESON_TAC[WEAK_EULER_IMP_FERMAT_PSEUDOPRIME;
              PRIME_EQ_FERMAT_PSEUDOPRIME]]);;

let MILLER_RABIN_IMP_WEAK_EULER_PSEUDOPRIME = prove
 (`!a q. miller_rabin_pseudoprime a q /\ ~(q = 2)
         ==> weak_euler_pseudoprime a q`,
  MAP_EVERY X_GEN_TAC [`a:num`; `n:num`] THEN
  REWRITE_TAC[miller_rabin_pseudoprime; weak_euler_pseudoprime] THEN
  ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ODD] THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[INT_CONG_MOD_1; ARITH] THEN
  REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_POW] THEN
  ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; LE_1] THEN
  REWRITE_TAC[INTEGER_RULE
   `(x:int == n - z) (mod n) <=> (x == --z) (mod n)`] THEN
  MP_TAC(SPECL [`n - 1`; `2`] INDEX_DECOMPOSITION) THEN
  ASM_REWRITE_TAC[ARITH_EQ; ARITH_RULE `n - 1 = 0 <=> n = 0 \/ n = 1`] THEN
  ABBREV_TAC `e = index 2 (n - 1)` THEN
  REWRITE_TAC[DIVIDES_2; NOT_EVEN; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `m:num` THEN STRIP_TAC THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN
  SUBST1_TAC(SYM(ASSUME `2 EXP e * m = n - 1`)) THEN
  SIMP_TAC[DIV_MULT; EXP_EQ_0; ARITH_EQ] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  SUBGOAL_THEN `(2 EXP e * m) DIV 2 = 2 EXP (e - 1) * m` SUBST1_TAC THENL
   [MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
    REWRITE_TAC[ARITH_RULE `(ee * m) * 2 + 0 = (2 * ee) * m`] THEN
    REWRITE_TAC[ARITH] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN AP_TERM_TAC THEN
    REWRITE_TAC[ARITH_RULE `e = SUC(e - 1) <=> ~(e = 0)`] THEN
    EXPAND_TAC "e" THEN REWRITE_TAC[INDEX_EQ_0] THEN
    ASM_REWRITE_TAC[NOT_EVEN; DIVIDES_2; ODD_SUB] THEN ASM_ARITH_TAC;
    ALL_TAC] THEN
  DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL
   [DISJ1_TAC THEN
    REWRITE_TAC[ONCE_REWRITE_RULE[MULT_SYM] (GSYM INT_POW_POW)] THEN
    ASM_SIMP_TAC[INT_CONG_POW_1];
    DISCH_THEN(X_CHOOSE_THEN `i:num` STRIP_ASSUME_TAC)] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE
   `i < e ==> e - 1 = SUC(i + (e - i - 2)) \/ e - 1 = i`)) THEN
  MATCH_MP_TAC MONO_OR THEN ASM_SIMP_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
  REWRITE_TAC[EXP; EXP_ADD] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `2 * 2 EXP (e - i - 2)` o
    MATCH_MP INT_CONG_POW) THEN
  REWRITE_TAC[GSYM INT_POW_POW; INT_POW_NEG; INT_POW_ONE] THEN
  REWRITE_TAC[EVEN_MULT; ARITH; INT_POW_POW] THEN REWRITE_TAC[MULT_AC]);;

let MILLER_RABIN_EQ_WEAK_EULER_PSEUDOPRIME = prove
 (`!a n. ~(n = 2) /\ (?p k. prime p /\ ODD p /\ p EXP k = n) \/
         (n == 3) (mod 4)
         ==> (miller_rabin_pseudoprime a n <=> weak_euler_pseudoprime a n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[CONG] THEN CONV_TAC NUM_REDUCE_CONV; ALL_TAC] THEN
  DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL
   [EQ_TAC THEN ASM_SIMP_TAC[MILLER_RABIN_IMP_WEAK_EULER_PSEUDOPRIME] THEN
    ASM_SIMP_TAC[MILLER_RABIN_EQ_FERMAT_PSEUDOPRIME] THEN
    REWRITE_TAC[WEAK_EULER_IMP_FERMAT_PSEUDOPRIME];
    REWRITE_TAC[CONG] THEN
    REWRITE_TAC[weak_euler_pseudoprime; miller_rabin_pseudoprime] THEN
    ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC NUM_REDUCE_CONV THEN
    ASM_CASES_TAC `ODD n` THEN ASM_REWRITE_TAC[CONG_MINUS1] THEN
    REWRITE_TAC[num_divides; GSYM INT_OF_NUM_ADD; num_congruent] THEN
    REWRITE_TAC[GSYM INT_OF_NUM_POW; INTEGER_RULE
      `n divides (x + &1:int) <=> (x == -- &1) (mod n)`] THEN
    DISCH_THEN(SUBST1_TAC o MATCH_MP (ARITH_RULE
     `n MOD 4 = 3 ==> n - 1 = 2 * (2 * (n DIV 4) + 1)`)) THEN
    ABBREV_TAC `m = n DIV 4` THEN
    SIMP_TAC[INDEX_MUL; PRIME_2; INDEX_REFL; ARITH;
             ARITH_RULE `~(2 * n + 1 = 0)`] THEN
    SIMP_TAC[INDEX_ZERO; DIVIDES_2; EVEN_ADD; EVEN_MULT; ARITH] THEN
    CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN CONV_TAC NUM_REDUCE_CONV THEN
    REWRITE_TAC[ARITH_RULE `(2 * n) DIV 2 = n`] THEN
    REWRITE_TAC[ARITH_RULE `i < 1 <=> i = 0`; UNWIND_THM2] THEN
    REWRITE_TAC[EXP; MULT_CLAUSES]]);;

let ABSOLUTE_WEAK_EULER_PSEUDOPRIME,ABSOLUTE_WEAK_EULER_PSEUDOPRIME_ALT =
 (CONJ_PAIR o prove)
 (`(!n. (!a. coprime(a,n) ==> weak_euler_pseudoprime a n) <=>
        ODD n /\
        (prime n \/
         squarefree n /\
         !p. prime p /\ p divides n ==> (p - 1) divides ((n - 1) DIV 2))) /\
   (!n. (!a. coprime(a,n) ==> weak_euler_pseudoprime a n) <=>
        ODD n /\
        (prime n \/
         !a. coprime(a,n) ==> (a EXP ((n - 1) DIV 2) == 1) (mod n)))`,
  REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `n:num` THEN
  ASM_CASES_TAC `ODD n` THENL
   [ASM_REWRITE_TAC[];
    ASM_MESON_TAC[WEAK_EULER_PSEUDOPRIME_IMP_ODD; COPRIME_1]] THEN
  ASM_CASES_TAC `prime n` THEN ASM_REWRITE_TAC[] THENL
   [ASM_MESON_TAC[COPRIME_SYM; PRIME_COPRIME_EQ;
                  PRIME_IMP_WEAK_EULER_PSEUDOPRIME;
                  NUM_REDUCE_CONV `ODD 2`];
    ALL_TAC] THEN
  ASM_CASES_TAC `n = 1` THENL
   [ASM_REWRITE_TAC[weak_euler_pseudoprime; CONG_MOD_1; INT_CONG_MOD_1] THEN
    CONV_TAC NUM_REDUCE_CONV THEN
    REWRITE_TAC[DIVIDES_0; SQUAREFREE_1];
    ALL_TAC] THEN
  MATCH_MP_TAC(TAUT
   `(r ==> p) /\ (q ==> r) /\ (p ==> q)
    ==> (p <=> q) /\ (p <=> r)`) THEN
  CONJ_TAC THENL
   [ASM_SIMP_TAC[weak_euler_pseudoprime; INT_OF_NUM_POW; GSYM num_congruent];
    ALL_TAC] THEN
  CONJ_TAC THENL
   [STRIP_TAC THEN X_GEN_TAC `a:num` THEN STRIP_TAC THEN
    MATCH_MP_TAC CONG_MOD_SQUAREFREE THEN ASM_REWRITE_TAC[] THEN
    X_GEN_TAC `p:num` THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN
    ASM_REWRITE_TAC[divides] THEN
    DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST1_TAC) THEN
    REWRITE_TAC[GSYM EXP_EXP] THEN MATCH_MP_TAC CONG_EXP_1 THEN
    MATCH_MP_TAC FERMAT_LITTLE_PRIME THEN
    MAP_EVERY UNDISCH_TAC [`coprime(a:num,n)`; `(p:num) divides n`] THEN
    ASM_REWRITE_TAC[] THEN CONV_TAC NUMBER_RULE;
    DISCH_TAC] THEN
  MP_TAC(SPEC `n:num` ABSOLUTE_FERMAT_PSEUDOPRIME) THEN
  ASM_SIMP_TAC[WEAK_EULER_IMP_FERMAT_PSEUDOPRIME] THEN
  STRIP_TAC THENL [ASM_MESON_TAC[ODD]; ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CARMICHAEL_NUMBER_KORSELT]) THEN
  ASM_REWRITE_TAC[] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `p:num` THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN
  GEN_REWRITE_TAC LAND_CONV [divides] THEN
  DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC) THEN
  DISJ_CASES_TAC(SPEC `m:num` EVEN_OR_ODD) THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVEN_EXISTS]) THEN
    DISCH_THEN(X_CHOOSE_THEN `q:num` SUBST1_TAC) THEN
    DISCH_THEN SUBST1_TAC THEN
    REWRITE_TAC[ARITH_RULE `(a * 2 * b) DIV 2 = a * b`] THEN
    CONV_TAC NUMBER_RULE;
    DISCH_THEN(ASSUME_TAC o SYM)] THEN
  MATCH_MP_TAC(TAUT `F ==> p`) THEN
  SUBGOAL_THEN `?q:num. p * q = n` STRIP_ASSUME_TAC THENL
   [ASM_MESON_TAC[divides]; ALL_TAC] THEN
  SUBGOAL_THEN `coprime(p:num,q)` ASSUME_TAC THENL
   [ASM_MESON_TAC[SQUAREFREE_MUL]; ALL_TAC] THEN
  MP_TAC(snd(EQ_IMP_RULE(SPEC `p:num` QUADRATIC_NONRESIDUE_EXISTS))) THEN
  ANTS_TAC THENL
   [ASM_MESON_TAC[ODD_PRIME; PRIME_ODD; CARMICHAEL_NUMBER_IMP_ODD;
                  ODD_MULT; NUM_ODD_CONV `ODD 2`];
    DISCH_THEN(X_CHOOSE_THEN `b:num` STRIP_ASSUME_TAC)] THEN
  MP_TAC(ISPECL [`p:num`; `q:num`; `b:num`; `1`]
        CHINESE_REMAINDER_USUAL) THEN
  ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `a:num` THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `a:num`) THEN ANTS_TAC THENL
   [EXPAND_TAC "n" THEN REWRITE_TAC[COPRIME_RMUL] THEN
    ASM_SIMP_TAC[NUMBER_RULE `(a == 1) (mod q) ==> coprime(a,q)`] THEN
    MAP_EVERY UNDISCH_TAC [`coprime(p:num,b)`; `(a:num == b) (mod p)`] THEN
    CONV_TAC NUMBER_RULE;
    ASM_REWRITE_TAC[weak_euler_pseudoprime; DE_MORGAN_THM]] THEN
  EXPAND_TAC "n" THEN REWRITE_TAC[GSYM INT_OF_NUM_MUL] THEN
  ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
   [ALL_TAC;
    DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
      `(a:int == --z) (mod (p * q))
       ==> (a == z) (mod q) ==> q divides (&2 * z)`)) THEN
    ASM_SIMP_TAC[INT_OF_NUM_POW; GSYM num_congruent; CONG_EXP_1] THEN
    REWRITE_TAC[INT_OF_NUM_MUL; MULT_CLAUSES; GSYM num_divides] THEN
    DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
    REWRITE_TAC[ARITH_RULE `q <= 2 \/ 2 = 0 <=> q = 0 \/ q = 1 \/ q = 2`] THEN
    ASM_MESON_TAC[NUM_REDUCE_CONV `~ODD 0 /\ ~ODD 2`;
                  ODD_MULT; MULT_CLAUSES]] THEN
  MP_TAC(SPECL [`a:num`; `p:num`] JACOBI_EULER) THEN ANTS_TAC THENL
   [ASM_MESON_TAC[ODD_MULT; NUM_REDUCE_CONV `ODD 2`]; ALL_TAC] THEN
  SUBGOAL_THEN `jacobi(a,p) = jacobi(b,p)` SUBST1_TAC THENL
   [ASM_MESON_TAC[JACOBI_CONG]; ASM_SIMP_TAC[JACOBI_PRIME]] THEN
  COND_CASES_TAC THENL
   [MP_TAC(SPECL [`p:num`; `b:num`] DIVIDES_LE) THEN
    ASM_REWRITE_TAC[GSYM NOT_LT] THEN ASM_MESON_TAC[COPRIME_0; PRIME_1];
    DISCH_THEN(MP_TAC o SPEC `m:num` o MATCH_MP INT_CONG_POW)] THEN
  REWRITE_TAC[INT_POW_POW] THEN
  SUBGOAL_THEN `(p - 1) DIV 2 * m = (n - 1) DIV 2` SUBST1_TAC THENL
   [SUBST1_TAC(SYM(ASSUME `(p - 1) * m = n - 1`)) THEN
    SUBGOAL_THEN `ODD p` MP_TAC THENL [ASM_MESON_TAC[ODD_MULT]; ALL_TAC] THEN
    REWRITE_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `r:num` THEN DISCH_THEN SUBST1_TAC THEN
    REWRITE_TAC[SUC_SUB1; GSYM MULT_ASSOC] THEN
    REWRITE_TAC[ARITH_RULE `(2 * r) DIV 2 = r`];
    REWRITE_TAC[TAUT `p ==> ~q <=> ~(p /\ q)`]] THEN
  ASM_REWRITE_TAC[INT_POW_NEG; INT_POW_ONE; GSYM NOT_ODD] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
   `(--z:int == a) (mod p) /\ (a == z) (mod (p * q))
    ==> p divides &2 * z`)) THEN
  REWRITE_TAC[INT_OF_NUM_MUL; MULT_CLAUSES; GSYM num_divides] THEN
  ASM_MESON_TAC[DIVIDES_PRIME_PRIME; ODD_MULT;
                NUM_REDUCE_CONV `ODD 2`; PRIME_2]);;

let WEAK_EULER_PSEUDOPRIME_BOUND_PHI_ALT = prove
 (`!n. ~prime n /\
       ~(squarefree n /\
         !p. prime p /\ p divides n ==> p - 1 divides (n - 1) DIV 2)
        ==> 2 * CARD {a | a < n /\ weak_euler_pseudoprime a n} <= phi n`,
  GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[LT; EMPTY_GSPEC; CARD_CLAUSES; MULT_CLAUSES; LE_0] THEN
  STRIP_TAC THEN
  MP_TAC(SPEC `n:num` ABSOLUTE_WEAK_EULER_PSEUDOPRIME) THEN
  ASM_REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `b:num` THEN STRIP_TAC THEN
  MATCH_MP_TAC CARD_SUBSET_HALF_LEMMA THEN
  EXISTS_TAC `\a. (a * b) MOD n` THEN
  EXISTS_TAC `{a:num | coprime(a,n) /\ a < n}` THEN
  SIMP_TAC[PHI_ALT; LE_REFL; SUBSET; FORALL_IN_IMAGE] THEN
  REWRITE_TAC[IN_ELIM_THM; IN_DIFF] THEN REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:num | i < n}` THEN
    REWRITE_TAC[FINITE_NUMSEG_LT] THEN SET_TAC[];
    ASM_MESON_TAC[WEAK_EULER_PSEUDOPRIME_IMP_COPRIME; LT];
    ALL_TAC;
    REWRITE_TAC[GSYM CONG] THEN REPEAT STRIP_TAC THEN
    MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `n:num` THEN
    ASM_MESON_TAC[CONG_MULT_RCANCEL]] THEN
  X_GEN_TAC `a:num` THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[LT] THEN
  STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP WEAK_EULER_PSEUDOPRIME_IMP_COPRIME) THEN
  ASM_REWRITE_TAC[COPRIME_LMOD; COPRIME_LMUL] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[MOD_LT_EQ; weak_euler_pseudoprime] THEN
  REWRITE_TAC[GSYM INT_OF_NUM_REM; INT_POW_REM; GSYM INT_REM_EQ] THEN
  REWRITE_TAC[INT_REM_EQ; GSYM INT_OF_NUM_MUL; INT_POW_MUL] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [weak_euler_pseudoprime]) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV
   [weak_euler_pseudoprime]) THEN
  ASM_CASES_TAC `ODD n` THEN ASM_REWRITE_TAC[] THEN
  MESON_TAC (map INTEGER_RULE
   [`(a * b:int == &1) (mod n)
     ==> (a == &1) (mod n) ==> (b == &1) (mod n)`;
    `(a * b:int == &1) (mod n)
     ==> (a == -- &1) (mod n) ==> (b == -- &1) (mod n)`;
    `(a * b:int == -- &1) (mod n)
     ==> (a == &1) (mod n) ==> (b == -- &1) (mod n)`;
    `(a * b:int == -- &1) (mod n)
     ==> (a == -- &1) (mod n) ==> (b == &1) (mod n)`]));;

let WEAK_EULER_PSEUDOPRIME_BOUND_PHI = prove
 (`!n. ~prime n /\
       ~(squarefree n /\
         !p. prime p /\ p divides n ==> p - 1 divides (n - 1) DIV 2)
        ==> CARD {a | a < n /\ weak_euler_pseudoprime a n} <= phi n DIV 2`,
  REWRITE_TAC[ARITH_RULE `a <= b DIV 2 <=> 2 * a <= b`] THEN
  REWRITE_TAC[WEAK_EULER_PSEUDOPRIME_BOUND_PHI_ALT]);;

let WEAK_EULER_PSEUDOPRIME_BOUND_LT = prove
 (`!n. ~(n = 0) /\ ~(n = 1) /\ ~prime n /\
       ~(squarefree n /\
         !p. prime p /\ p divides n ==> p - 1 divides (n - 1) DIV 2)
       ==> CARD {a | a < n /\ weak_euler_pseudoprime a n} < n DIV 2`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `n:num` WEAK_EULER_PSEUDOPRIME_BOUND_PHI_ALT) THEN
  ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(ARITH_RULE `p < n - 1  ==> 2 * a <= p ==> a < n DIV 2`) THEN
  MATCH_MP_TAC PHI_LIMIT_COMPOSITE THEN ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Euler (-Jacobi) pseudoprimes, as used in the Solovay-Strassen test.       *)
(* ------------------------------------------------------------------------- *)

let euler_jacobi_pseudoprime = new_definition
 `euler_jacobi_pseudoprime a n <=>
        ODD n /\ coprime(a,n) /\
        (jacobi(a,n) == &a pow ((n - 1) DIV 2)) (mod &n)`;;

let EULER_JACOBI_PSEUDOPRIME_IMP_COPRIME = prove
 (`!a n. euler_jacobi_pseudoprime a n ==> coprime(a,n)`,
  SIMP_TAC[euler_jacobi_pseudoprime]);;

let EULER_JACOBI_PSEUDOPRIME_IMP_ODD = prove
 (`!a n. euler_jacobi_pseudoprime a n ==> ODD n`,
  SIMP_TAC[euler_jacobi_pseudoprime]);;

let EULER_JACOBI_IMP_WEAK_EULER_PSEUDOPRIME = prove
 (`!a n. euler_jacobi_pseudoprime a n ==> weak_euler_pseudoprime a n`,
  REPEAT GEN_TAC THEN
  SIMP_TAC[weak_euler_pseudoprime; euler_jacobi_pseudoprime] THEN
  MP_TAC(SPECL [`a:num`; `n:num`] JACOBI_CASES) THEN
  REWRITE_TAC[JACOBI_EQ_0; COPRIME_SYM] THEN
  STRIP_TAC THEN ASM_SIMP_TAC[INT_CONG_SYM]);;

let EULER_JACOBI_IMP_FERMAT_PSEUDOPRIME = prove
 (`!a n. euler_jacobi_pseudoprime a n ==> fermat_pseudoprime a n`,
  MESON_TAC[EULER_JACOBI_IMP_WEAK_EULER_PSEUDOPRIME;
            WEAK_EULER_IMP_FERMAT_PSEUDOPRIME]);;

let PRIME_IMP_EULER_JACOBI_PSEUDOPRIME = prove
 (`!p a. prime p /\ ~(p = 2) /\ ~(p divides a)
         ==> euler_jacobi_pseudoprime a p`,
  SIMP_TAC[euler_jacobi_pseudoprime; JACOBI_EULER] THEN
  ASM_MESON_TAC[PRIME_COPRIME_EQ; COPRIME_SYM; PRIME_ODD]);;

let PRIME_EQ_EULER_JACOBI_PSEUDOPRIME = prove
 (`!p. prime p <=>
       p = 2 \/ 2 <= p /\
       (!a. 0 < a /\ a < p ==> euler_jacobi_pseudoprime a p)`,
  GEN_TAC THEN ASM_CASES_TAC `p = 2` THEN ASM_REWRITE_TAC[PRIME_2] THEN
  EQ_TAC THENL
   [SIMP_TAC[PRIME_GE_2] THEN REPEAT STRIP_TAC THEN
    MATCH_MP_TAC PRIME_IMP_EULER_JACOBI_PSEUDOPRIME THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN ASM_ARITH_TAC;
    MESON_TAC[EULER_JACOBI_IMP_FERMAT_PSEUDOPRIME;
              PRIME_EQ_FERMAT_PSEUDOPRIME]]);;

let ABSOLUTE_EULER_JACOBI_PSEUDOPRIME = prove
 (`!n. (!a. coprime(a,n) ==> euler_jacobi_pseudoprime a n) <=>
       n = 1 \/ ODD n /\ prime n`,
  GEN_TAC THEN ASM_CASES_TAC `n = 1` THENL
   [ASM_REWRITE_TAC[euler_jacobi_pseudoprime; JACOBI_1] THEN
    REWRITE_TAC[INT_CONG_MOD_1; COPRIME_1; ARITH];
    ALL_TAC] THEN
  ASM_CASES_TAC `prime n` THEN ASM_REWRITE_TAC[] THENL
   [EQ_TAC THENL
     [MESON_TAC[EULER_JACOBI_PSEUDOPRIME_IMP_ODD; COPRIME_1];
      DISCH_TAC THEN REPEAT STRIP_TAC] THEN
    MATCH_MP_TAC PRIME_IMP_EULER_JACOBI_PSEUDOPRIME THEN
    ASM_MESON_TAC[NUM_REDUCE_CONV `ODD 2`; PRIME_COPRIME_EQ; COPRIME_SYM];
    REWRITE_TAC[NOT_FORALL_THM; NOT_IMP]] THEN
  ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[euler_jacobi_pseudoprime; ARITH] THEN
    MESON_TAC[COPRIME_1];
    ALL_TAC] THEN
  ASM_CASES_TAC `carmichael_number n` THENL
   [ALL_TAC;
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [carmichael_number]) THEN
    ASM_REWRITE_TAC[ARITH_RULE `2 <= n <=> ~(n = 0) /\ ~(n = 1)`] THEN
    MESON_TAC[EULER_JACOBI_IMP_FERMAT_PSEUDOPRIME]] THEN
  MP_TAC(SPEC `n:num` PRIME_FACTOR) THEN
  ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `p:num` THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [divides]) THEN
  DISCH_THEN(X_CHOOSE_THEN `q:num` (MP_TAC o SYM)) THEN
  ASM_CASES_TAC `q = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
  ASM_CASES_TAC `q = 1` THENL [ASM_MESON_TAC[MULT_CLAUSES]; DISCH_TAC] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP CARMICHAEL_NUMBER_IMP_SQUAREFREE) THEN
  REWRITE_TAC[SQUAREFREE_COPRIME] THEN
  DISCH_THEN(MP_TAC o SPECL [`p:num`; `q:num`]) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  MP_TAC(snd(EQ_IMP_RULE(SPEC `p:num` QUADRATIC_NONRESIDUE_EXISTS))) THEN
  ANTS_TAC THENL
   [ASM_MESON_TAC[ODD_PRIME; PRIME_ODD; CARMICHAEL_NUMBER_IMP_ODD;
                  ODD_MULT; NUM_ODD_CONV `ODD 2`];
    DISCH_THEN(X_CHOOSE_THEN `a:num` STRIP_ASSUME_TAC)] THEN
  MP_TAC(ISPECL [`p:num`; `q:num`; `a:num`; `1`]
        CHINESE_REMAINDER_USUAL) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:num` THEN
  STRIP_TAC THEN EXPAND_TAC "n" THEN REWRITE_TAC[COPRIME_RMUL] THEN
  ASM_SIMP_TAC[NUMBER_RULE `(t == 1) (mod q) ==> coprime(t,q)`] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[CONG_COPRIME; COPRIME_SYM]; ALL_TAC] THEN
  REWRITE_TAC[euler_jacobi_pseudoprime] THEN
  DISCH_THEN(MP_TAC o last o CONJUNCTS) THEN
  EXPAND_TAC "n" THEN REWRITE_TAC[JACOBI_RMUL] THEN
  SUBGOAL_THEN `jacobi(t,q) = &1` SUBST1_TAC THENL
   [ASM_MESON_TAC[JACOBI_CONG; JACOBI_1]; ALL_TAC] THEN
  REWRITE_TAC[GSYM INT_OF_NUM_MUL; INT_MUL_RID] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
   `(x:int == y) (mod (p * q)) ==> (x == y) (mod q)`)) THEN
  ASM_SIMP_TAC[JACOBI_PRIME] THEN MP_TAC(NUMBER_RULE
   `coprime(p:num,a) /\ (t == a) (mod p) /\ p divides t ==> p = 1`) THEN
  COND_CASES_TAC THENL [ASM_MESON_TAC[PRIME_1]; DISCH_THEN(K ALL_TAC)] THEN
  COND_CASES_TAC THENL [ASM_MESON_TAC[CONG_TRANS; CONG_SYM]; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
   `(--a == y) (mod q) ==> (y == a) (mod q) ==> q divides (a - --a)`)) THEN
  CONV_TAC INT_REDUCE_CONV THEN
  REWRITE_TAC[GSYM num_congruent; GSYM num_divides; INT_OF_NUM_POW] THEN
  ASM_SIMP_TAC[CONG_EXP_1] THEN
  DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN
  REWRITE_TAC[ARITH_RULE `1 <= q /\ q <= 2 <=> q = 1 \/ q = 2`; ARITH_EQ] THEN
  ASM_MESON_TAC[CARMICHAEL_NUMBER_IMP_ODD; NOT_ODD;
                  ODD_MULT; NUM_ODD_CONV `ODD 2`]);;

let EULER_JACOBI_PSEUDOPRIME_BOUND_PHI_ALT = prove
 (`!n. ~(n = 1) /\ ~prime n
        ==> 2 * CARD {a | a < n /\ euler_jacobi_pseudoprime a n} <= phi n`,
  GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[LT; EMPTY_GSPEC; CARD_CLAUSES; MULT_CLAUSES; LE_0] THEN
  STRIP_TAC THEN
  MP_TAC(SPEC `n:num` ABSOLUTE_EULER_JACOBI_PSEUDOPRIME) THEN
  ASM_REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN
  DISCH_THEN(X_CHOOSE_THEN `b:num` STRIP_ASSUME_TAC) THEN
  MATCH_MP_TAC CARD_SUBSET_HALF_LEMMA THEN
  EXISTS_TAC `\a. (a * b) MOD n` THEN
  EXISTS_TAC `{a:num | coprime(a,n) /\ a < n}` THEN
  SIMP_TAC[PHI_ALT; LE_REFL; SUBSET; FORALL_IN_IMAGE] THEN
  REWRITE_TAC[IN_ELIM_THM; IN_DIFF] THEN REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:num | i < n}` THEN
    REWRITE_TAC[FINITE_NUMSEG_LT] THEN SET_TAC[];
    ASM_MESON_TAC[EULER_JACOBI_PSEUDOPRIME_IMP_COPRIME; LT];
    ALL_TAC;
    REWRITE_TAC[GSYM CONG] THEN REPEAT STRIP_TAC THEN
    MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `n:num` THEN
    ASM_MESON_TAC[CONG_MULT_RCANCEL]] THEN
  X_GEN_TAC `a:num` THEN STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP EULER_JACOBI_PSEUDOPRIME_IMP_COPRIME) THEN
  ASM_REWRITE_TAC[euler_jacobi_pseudoprime; COPRIME_LMOD; COPRIME_LMUL] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[MOD_LT_EQ] THEN
  DISCH_THEN(MP_TAC o CONJUNCT2) THEN
  REWRITE_TAC[JACOBI_MOD; GSYM INT_OF_NUM_REM; JACOBI_LMUL] THEN
  REWRITE_TAC[GSYM INT_REM_EQ; INT_POW_REM] THEN
  REWRITE_TAC[INT_REM_EQ; GSYM INT_OF_NUM_MUL; INT_POW_MUL] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
   `(x * y:int == a * b) (mod n)
    ==> (x == a) (mod n) /\ coprime(a,n) ==> (y == b) (mod n)`)) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[euler_jacobi_pseudoprime]) THEN
  ASM_REWRITE_TAC[INT_COPRIME_LPOW; GSYM num_coprime] THEN
  ASM_MESON_TAC[]);;

let EULER_JACOBI_PSEUDOPRIME_BOUND_PHI = prove
 (`!n. ~(n = 1) /\ ~prime n
        ==> CARD {a | a < n /\ euler_jacobi_pseudoprime a n} <= phi n DIV 2`,
  REWRITE_TAC[ARITH_RULE `a <= b DIV 2 <=> 2 * a <= b`] THEN
  REWRITE_TAC[EULER_JACOBI_PSEUDOPRIME_BOUND_PHI_ALT]);;

let EULER_JACOBI_PSEUDOPRIME_BOUND_LT = prove
 (`!n. ~(n = 0) /\ ~(n = 1) /\ ~prime n
        ==> CARD {a | a < n /\ euler_jacobi_pseudoprime a n} < n DIV 2`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `n:num` EULER_JACOBI_PSEUDOPRIME_BOUND_PHI_ALT) THEN
  ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(ARITH_RULE `p < n - 1  ==> 2 * a <= p ==> a < n DIV 2`) THEN
  MATCH_MP_TAC PHI_LIMIT_COMPOSITE THEN ASM_REWRITE_TAC[]);;

let MILLER_RABIN_IMP_EULER_JACOBI_PSEUDOPRIME = prove
 (`!a q. miller_rabin_pseudoprime a q /\ ~(q = 2)
         ==> euler_jacobi_pseudoprime a q`,
  let lemma0 = prove
   (`!x m n (k:A->bool).
          n divides m EXP 2 /\ FINITE k
          ==> (nproduct k (\i. m * x i + 1) == m * nsum k x + 1) (mod n)`,
    REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
    REPEAT GEN_TAC THEN STRIP_TAC THEN
    MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
    SIMP_TAC[NPRODUCT_CLAUSES; NSUM_CLAUSES; ADD_CLAUSES; MULT_CLAUSES] THEN
    REWRITE_TAC[CONG_REFL] THEN MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN
    DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (K ALL_TAC)) THEN
    POP_ASSUM MP_TAC THEN CONV_TAC NUMBER_RULE) in
  let lemma1 = prove
   (`!x k m n (s:A->bool).
          n divides m EXP 2 /\ FINITE s
          ==> (nproduct s (\i. (m * x i + 1) EXP k i) ==
               m * nsum s (\i. k i * x i) + 1) (mod n)`,
    REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_TRANS THEN
    EXISTS_TAC `nproduct s (\i:A. m * k i * x i + 1)` THEN
    ASM_SIMP_TAC[lemma0] THEN MATCH_MP_TAC CONG_NPRODUCT THEN
    ASM_REWRITE_TAC[] THEN X_GEN_TAC `i:A` THEN DISCH_TAC THEN
    ONCE_REWRITE_TAC[MESON[CARD_NUMSEG_1] `a EXP k = a EXP CARD(1..k)`] THEN
    SIMP_TAC[GSYM NPRODUCT_CONST; FINITE_NUMSEG] THEN
    W(MP_TAC o PART_MATCH (lhand o rator o rand) lemma0 o
      lhand o rator o snd) THEN
    ASM_SIMP_TAC[FINITE_NUMSEG; NSUM_CONST; CARD_NUMSEG_1]) in
  MAP_EVERY X_GEN_TAC [`a:num`; `n:num`] THEN
  ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `coprime(a:num,n)` THENL
   [ALL_TAC; ASM_MESON_TAC[MILLER_RABIN_PSEUDOPRIME_IMP_COPRIME]] THEN
  REWRITE_TAC[miller_rabin_pseudoprime; euler_jacobi_pseudoprime] THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ODD] THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[INT_CONG_MOD_1; ARITH] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_POW] THEN
  ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; LE_1] THEN
  REWRITE_TAC[INTEGER_RULE
   `(x:int == n - z) (mod n) <=> (x == --z) (mod n)`] THEN
  MP_TAC(SPECL [`n - 1`; `2`] INDEX_DECOMPOSITION) THEN
  ASM_REWRITE_TAC[ARITH_EQ; ARITH_RULE `n - 1 = 0 <=> n = 0 \/ n = 1`] THEN
  ABBREV_TAC `e = index 2 (n - 1)` THEN
  REWRITE_TAC[DIVIDES_2; NOT_EVEN; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `m:num` THEN STRIP_TAC THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN
  SUBST1_TAC(SYM(ASSUME `2 EXP e * m = n - 1`)) THEN
  SIMP_TAC[DIV_MULT; EXP_EQ_0; ARITH_EQ] THEN
  SUBGOAL_THEN `~(e = 0)` ASSUME_TAC THENL
   [EXPAND_TAC "e" THEN REWRITE_TAC[INDEX_EQ_0] THEN
    ASM_REWRITE_TAC[NOT_EVEN; DIVIDES_2; ODD_SUB] THEN ASM_ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `(2 EXP e * m) DIV 2 = 2 EXP (e - 1) * m` SUBST1_TAC THENL
   [MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
    REWRITE_TAC[ARITH_RULE `(ee * m) * 2 + 0 = (2 * ee) * m`] THEN
    REWRITE_TAC[ARITH] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN AP_TERM_TAC THEN ASM_ARITH_TAC;
    ALL_TAC] THEN
  DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL
   [ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM INT_POW_POW] THEN
    MATCH_MP_TAC(INTEGER_RULE
     `(a:int == &1) (mod n) /\ j = &1 ==> (j == a) (mod n)`) THEN
    ASM_SIMP_TAC[INT_CONG_POW_1] THEN
    FIRST_ASSUM(fun th ->
      GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV)
        [SYM(MATCH_MP PRIME_FACTORIZATION th)]) THEN
    ASM_SIMP_TAC[JACOBI_NPRODUCT_RIGHT; FINITE_SPECIAL_DIVISORS] THEN
    MATCH_MP_TAC IPRODUCT_EQ_1 THEN X_GEN_TAC `p:num` THEN
    REWRITE_TAC[IN_ELIM_THM; JACOBI_REXP] THEN STRIP_TAC THEN
    MATCH_MP_TAC(MESON[INT_POW_ONE] `x:int = &1 ==> x pow n = &1`) THEN
    MATCH_MP_TAC JACOBI_EQ_1 THEN ASM_SIMP_TAC[EULER_CRITERION] THEN
    MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
     [ASM_MESON_TAC[NUMBER_RULE
       `coprime(a:num,n) /\ p divides n ==> coprime(a,p)`];
      DISCH_TAC THEN DISJ2_TAC] THEN
    REWRITE_TAC[ORDER_DIVIDES] THEN MATCH_MP_TAC DIVIDES_DIVIDES_DIV_IMP THEN
    MATCH_MP_TAC DIVIDES_MUL THEN
    ASM_REWRITE_TAC[COPRIME_2; DIVIDES_2; EVEN_SUB; ARITH] THEN
    CONJ_TAC THENL [ASM_MESON_TAC[NOT_EVEN; divides; EVEN_MULT]; ALL_TAC] THEN
    ASM_SIMP_TAC[GSYM PHI_PRIME] THEN CONJ_TAC THENL
     [ASM_MESON_TAC[ORDER_DIVIDES_PHI; COPRIME_SYM]; ALL_TAC] THEN
    MATCH_MP_TAC(MESON[divides; ODD_MULT]
     `!n. ODD n /\ m divides n ==> ODD m`) THEN
    EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[GSYM ORDER_DIVIDES] THEN
    REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_POW] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (INTEGER_RULE
     `(x:int == y) (mod n) ==> p divides n ==> (x == y) (mod p)`)) THEN
    ASM_REWRITE_TAC[GSYM num_divides];
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `r:num` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN
   `!p. prime p /\ p divides n
        ==> ?d. jacobi(a,p) = --(&1) pow d /\ 2 EXP (r + 1) * d + 1 = p`
  MP_TAC THENL
   [X_GEN_TAC `p:num` THEN STRIP_TAC THEN
    FIRST_ASSUM(MP_TAC o SPEC `p:num` o MATCH_MP (NUMBER_RULE
     `coprime(a:num,n) ==> !p. p divides n ==> coprime(p,a)`)) THEN
    ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
    SUBGOAL_THEN `ODD p /\ ~(p = 2)` STRIP_ASSUME_TAC THENL
     [ASM_MESON_TAC[PRIME_ODD; ODD_PRIME; divides; ODD_MULT;
                    NUM_REDUCE_CONV `ODD 2`];
      ALL_TAC] THEN
    MP_TAC(SPECL [`order p a`; `2`] INDEX_DECOMPOSITION) THEN
    DISCH_THEN(X_CHOOSE_THEN `i:num` MP_TAC) THEN
    ABBREV_TAC `j = index 2 (order p a)` THEN
    ASM_REWRITE_TAC[ORDER_EQ_0; ARITH_EQ; DIVIDES_2; NOT_EVEN] THEN
    STRIP_TAC THEN
    SUBGOAL_THEN `j = r + 1` SUBST_ALL_TAC THENL
     [SUBGOAL_THEN
       `2 EXP j * i divides 2 EXP (r + 1) * m /\
        ~(2 EXP j * i divides 2 EXP r * m)`
      MP_TAC THENL
       [ASM_REWRITE_TAC[GSYM ORDER_DIVIDES] THEN
        REWRITE_TAC[EXP_ADD; EXP_1] THEN
        REWRITE_TAC[ARITH_RULE `(a * 2) * b = a * b + a * b`] THEN
        REWRITE_TAC[EXP_ADD; GSYM EXP_2] THEN
        REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_POW] THEN
        FIRST_X_ASSUM(MP_TAC o SPEC `&p:int` o MATCH_MP (INTEGER_RULE
         `(x:int == y) (mod n) ==> !p. p divides n ==> (x == y) (mod p)`)) THEN
        ASM_SIMP_TAC[GSYM num_divides; INTEGER_RULE
         `(a:int == -- &1) (mod n) ==> (a pow 2 == &1) (mod n)`] THEN
        REWRITE_TAC[TAUT `p ==> ~q <=> ~(p /\ q)`] THEN
        DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
         `(x:int == -- &1) (mod p) /\ (x == &1) (mod p)
          ==> p divides &2`)) THEN
        ASM_SIMP_TAC[GSYM num_divides; DIVIDES_PRIME_PRIME; PRIME_2];
        REWRITE_TAC[IMP_CONJ] THEN DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
          `e1 * m divides e2 * n
           ==> coprime(e1:num,n) /\ coprime(e2,m)
                ==> e1 divides e2 /\ m divides n`)) THEN
        ASM_REWRITE_TAC[COPRIME_LEXP; COPRIME_2] THEN
        ASM_SIMP_TAC[DIVIDES_EXP_LE; LE_REFL] THEN
        REWRITE_TAC[ARITH_RULE `j <= r + 1 <=> j = r + 1 \/ j <= r`] THEN
        ASM_CASES_TAC `j = r + 1` THEN ASM_REWRITE_TAC[] THEN
        STRIP_TAC THEN FIRST_X_ASSUM(fun th ->
          GEN_REWRITE_TAC LAND_CONV [GSYM th]) THEN
        MATCH_MP_TAC DIVIDES_MUL2 THEN ASM_SIMP_TAC[DIVIDES_EXP_LE; LE_REFL]];
      MP_TAC(SPECL [`a:num`; `p:num`] ORDER_DIVIDES_PHI) THEN
      ASM_SIMP_TAC[PHI_PRIME; divides; LEFT_IMP_EXISTS_THM] THEN
      X_GEN_TAC `q:num` THEN DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
       `p - 1 = d ==> ~(p = 0) ==> d + 1 = p`)) THEN
      ANTS_TAC THENL [ASM_MESON_TAC[PRIME_0]; DISCH_TAC] THEN
      EXISTS_TAC `i * q:num` THEN ASM_REWRITE_TAC[MULT_ASSOC] THEN
      MATCH_MP_TAC INT_CONG_IMP_EQ THEN EXISTS_TAC `&p:int` THEN CONJ_TAC THENL
       [MATCH_MP_TAC(INT_ARITH
         `&3 <= p /\ abs(x) <= &1 /\ abs(y) <= &1 ==> abs(x - y:int) < p`) THEN
        REWRITE_TAC[JACOBI_BOUND; INT_ABS_POW; INT_ABS_NEG] THEN
        REWRITE_TAC[INT_ABS_NUM; INT_POW_ONE; INT_LE_REFL] THEN
        ASM_MESON_TAC[INT_OF_NUM_LE; ODD_PRIME; divides; ODD_MULT];
        ALL_TAC] THEN
      MATCH_MP_TAC INT_CONG_TRANS THEN
      EXISTS_TAC `(&a:int) pow ((p - 1) DIV 2)` THEN
      ASM_SIMP_TAC[JACOBI_EULER] THEN
      SUBGOAL_THEN `(-- &1:int) pow (i * q) = -- &1 pow q`
      SUBST1_TAC THENL
       [ASM_REWRITE_TAC[INT_POW_NEG; INT_POW_ONE; GSYM NOT_ODD] THEN
        ASM_REWRITE_TAC[ODD_MULT];
        ALL_TAC] THEN
      SUBGOAL_THEN `(p - 1) DIV 2 = order p a DIV 2 * q` SUBST1_TAC THENL
       [FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
         `a + 1 = p ==> p - 1 = a`)) THEN
        SUBST1_TAC(SYM(ASSUME `2 EXP (r + 1) * i = order p a`)) THEN
        REWRITE_TAC[GSYM ADD1; EXP; GSYM MULT_ASSOC] THEN
        SIMP_TAC[DIV_MULT; ARITH_EQ] THEN REWRITE_TAC[MULT_AC];
        REWRITE_TAC[GSYM INT_POW_POW]] THEN
      MATCH_MP_TAC INT_CONG_POW THEN REWRITE_TAC[INTEGER_RULE
       `(a:int == -- &1) (mod p) <=> p divides (a + &1)`] THEN
      MP_TAC(SPECL [`p:num`; `1`; `a EXP (order p a DIV 2)`]
       CONG_SQUARE_1_PRIME_POWER) THEN
      ASM_REWRITE_TAC[EXP_1; INT_OF_NUM_ADD; INT_OF_NUM_POW] THEN
      REWRITE_TAC[CONG_MINUS1; EXP_EXP; GSYM num_divides] THEN
      REWRITE_TAC[ORDER_DIVIDES] THEN MATCH_MP_TAC(TAUT
       `~r /\ ~q /\ p ==> (p <=> q \/ r \/ s) ==> s`) THEN
      CONJ_TAC THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
      SUBST1_TAC(SYM(ASSUME `2 EXP (r + 1) * i = order p a`)) THEN
      REWRITE_TAC[GSYM ADD1; EXP; GSYM MULT_ASSOC] THEN
      SIMP_TAC[DIV_MULT; ARITH_EQ] THEN CONJ_TAC THENL
       [ALL_TAC; REWRITE_TAC[MULT_AC; DIVIDES_REFL]] THEN
      DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
      REWRITE_TAC[ARITH_RULE `2 * n <= n <=> n = 0`] THEN
      REWRITE_TAC[EXP_EQ_0; MULT_EQ_0; ARITH_EQ] THEN ASM_MESON_TAC[ODD]];
    REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN
  X_GEN_TAC `d:num->num` THEN
  REWRITE_TAC[TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`] THEN
  REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN
  SUBGOAL_THEN
   `(nsum {p | prime p /\ p divides n} (\p. index p n * d p) ==
     2 EXP (e - r - 1) * m) (mod 2)`
  ASSUME_TAC THENL
   [MATCH_MP_TAC(NUMBER_RULE
     `!a. (a * x == a * y) (mod (a * n)) /\ ~(a = 0)
          ==> (x == y) (mod n)`) THEN
    EXISTS_TAC `2 EXP (r + 1)` THEN
    REWRITE_TAC[EXP_EQ_0; ARITH_EQ; MULT_ASSOC; GSYM EXP_ADD] THEN
    ASM_SIMP_TAC[ARITH_RULE `r < e ==> (r + 1) + e - r - 1 = e`] THEN
    MATCH_MP_TAC(NUMBER_RULE
     `(x + 1 == y + 1) (mod n) ==> (y == x) (mod n)`) THEN
    ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> n - 1 + 1 = n`] THEN
    REWRITE_TAC[ONCE_REWRITE_RULE[MULT_SYM] (GSYM(CONJUNCT2 EXP))] THEN
    REWRITE_TAC[ARITH_RULE `SUC(r + 1) = r + 2`] THEN
    MP_TAC(ISPECL
     [`d:num->num`; `\p. index p n`; `2 EXP (r + 1)`; `2 EXP (r + 2)`;
      `{p | prime p /\ p divides n}`] lemma1) THEN
    SIMP_TAC[EXP_EXP; DIVIDES_EXP_LE; LE_REFL] THEN
    REWRITE_TAC[ARITH_RULE `r + 2 <= (r + 1) * 2`] THEN
    ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; PRIME_FACTORIZATION];
    ALL_TAC] THEN
  FIRST_ASSUM(fun th ->
    GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV o RAND_CONV o RAND_CONV)
      [SYM(MATCH_MP PRIME_FACTORIZATION th)]) THEN
  ASM_SIMP_TAC[JACOBI_NPRODUCT_RIGHT; FINITE_SPECIAL_DIVISORS] THEN
  ASM_SIMP_TAC[JACOBI_REXP] THEN
  REWRITE_TAC[ONCE_REWRITE_RULE[MULT_SYM] INT_POW_POW] THEN
  ASM_SIMP_TAC[GSYM INT_POW_NSUM; FINITE_SPECIAL_DIVISORS] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP CONG_DIVIDES) THEN REWRITE_TAC[DIVIDES_2] THEN
  DISCH_THEN(SUBST1_TAC o MATCH_MP (METIS[INT_POW_NEG; INT_POW_ONE]
  `(EVEN m <=> EVEN n) ==> (--(&1:int) pow m = --(&1) pow n)`)) THEN
  FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
   `r < e ==> e - 1 = r + (e - r - 1)`)) THEN
  REWRITE_TAC[EXP_ADD; ARITH_RULE `(a * b) * m:num = b * a * m`] THEN
  ONCE_REWRITE_TAC[MULT_SYM] THEN ONCE_REWRITE_TAC[GSYM INT_POW_POW] THEN
  MATCH_MP_TAC INT_CONG_POW THEN ONCE_REWRITE_TAC[INT_CONG_SYM] THEN
  ASM_REWRITE_TAC[INT_POW_NEG; INT_POW_ONE; GSYM NOT_ODD]);;

let MILLER_RABIN_EQ_EULER_JACOBI_PSEUDOPRIME = prove
 (`!a n. ~(n = 2) /\ (?p k. prime p /\ ODD p /\ p EXP k = n) \/
         (n == 3) (mod 4)
         ==> (miller_rabin_pseudoprime a n <=> euler_jacobi_pseudoprime a n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[CONG] THEN CONV_TAC NUM_REDUCE_CONV; DISCH_TAC] THEN
  MP_TAC(SPECL [`a:num`; `n:num`] MILLER_RABIN_EQ_WEAK_EULER_PSEUDOPRIME) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT
   `(q ==> r) /\ (p ==> q)
    ==> (p <=> r) ==> (p <=> q)`) THEN
  REWRITE_TAC[EULER_JACOBI_IMP_WEAK_EULER_PSEUDOPRIME] THEN
  ASM_SIMP_TAC[ MILLER_RABIN_IMP_EULER_JACOBI_PSEUDOPRIME]);;