Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 21,581 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
(* ========================================================================= *)
(*                (c) Copyright, Bill Richter 2013                           *)
(*          Distributed under the same license as HOL Light                  *)
(*                                                                           *)
(*  Proof of the Bug Puzzle conjecture of the HOL Light tutorial:            *)
(*  Any two triples with the same oriented area can be connected in          *)
(*  5 moves or less (FiveMovesOrLess).  Also a proof that 4 moves is not     *)
(*  enough, with an explicit counterexample.  This result (NOTENOUGH_4)      *)
(*  is due to John Harrison, as is much of the basic vector code, and        *)
(*  the definition of move, which defines a closed subset                    *)
(*    {(A,B,C,A',B',C') | move (A,B,C) (A',B',C')}  subset  R^6 x R^6        *)
(*  and also a result FiveMovesOrLess_STRONG that handles the degenerate     *)
(*  case (the two triples not required to be non-collinear), which has a     *)
(*  very satisfying answer using this "closed" definition of move.           *)
(*                                                                           *)
(*  The mathematical proofs are essentially due to Tom Hales.  The           *)
(*  code is all in miz3, and was an attempt to explore Freek Wiedijk's       *)
(*  vision of mixing the procedural and declarative proof styles.            *)
(* ========================================================================= *)

needs "Multivariate/determinants.ml";;

#load "unix.cma";;
loadt "miz3/miz3.ml";;

new_type_abbrev("triple",`:real^2#real^2#real^2`);;

default_prover := ("ya prover",
    fun thl -> REWRITE_TAC thl THEN CONV_TAC (HOL_BY thl));;

horizon := 0;;
timeout := 500;;

let VEC2_TAC =
  SIMP_TAC[CART_EQ; LAMBDA_BETA; FORALL_2; SUM_2; DIMINDEX_2; VECTOR_2;
           vector_add; vec; dot; orthogonal; basis;
           vector_neg; vector_sub; vector_mul; ARITH] THEN
  CONV_TAC REAL_RING;;

let COLLINEAR_3_2Dzero = thm `;
  !y z:real^2. collinear{vec 0,y,z} <=>
                  z$1 * y$2 = y$1 * z$2
  by REWRITE_TAC[COLLINEAR_3_2D] THEN VEC2_TAC;
`;;

let Noncollinear_3ImpliesDistinct = thm `;
  !a b c:real^N. ~collinear {a,b,c}  ==>  ~(a = b) /\ ~(a = c) /\ ~(b = c)
  by COLLINEAR_BETWEEN_CASES, BETWEEN_REFL;
`;;

let collinearSymmetry = thm `;
  let A B C be real^N;
  thus collinear {A,B,C}  ==>  collinear {A,C,B} /\ collinear {B,A,C} /\
  collinear {B,C,A} /\ collinear {C,A,B} /\ collinear {C,B,A}

  proof
    {A,C,B} SUBSET {A,B,C}  /\  {B,A,C} SUBSET {A,B,C}  /\  {B,C,A} SUBSET {A,B,C}  /\
    {C,A,B} SUBSET {A,B,C}  /\  {C,B,A} SUBSET {A,B,C}     by SET_RULE;
  qed     by -, COLLINEAR_SUBSET;
`;;

let Noncollinear_2Span = thm `;
  let u v w be real^2;
  assume ~collinear  {vec 0,v,w}        [H1];
  thus ? s t. s % v + t % w = u

  proof
    !n r. ~(r < n)  /\  r <= MIN n n  ==>  r = n     [easy_arith] by ARITH_RULE;
    ~(w$1 * v$2 = v$1 * w$2)     [H1'] by H1, COLLINEAR_3_2Dzero;
    consider M such that
    M = transp(vector[v;w]):real^2^2     [Mexists];
    det M = v$1 * w$2 - w$1 * v$2     by -, DIMINDEX_2, SUM_2, TRANSP_COMPONENT, VECTOR_2, LAMBDA_BETA, ARITH, CART_EQ, FORALL_2, DET_2;
    ~(det M = &0)     by -, H1', REAL_ARITH;
    consider x s t such that
    M ** x = u /\ s = x$1 /\ t = x$2     by -, easy_arith, DET_EQ_0_RANK, RANK_BOUND, MATRIX_FULL_LINEAR_EQUATIONS;
     v$1 * s + w$1 * t = u$1  /\  v$2 * s + w$2 * t = u$2     by Mexists, -, SIMP_TAC[matrix_vector_mul; DIMINDEX_2; SUM_2; TRANSP_COMPONENT; VECTOR_2; LAMBDA_BETA; ARITH; CART_EQ; FORALL_2] THEN MESON_TAC[];
    s % v + t % w = u     by -, REAL_MUL_SYM, VECTOR_MUL_COMPONENT, VECTOR_ADD_COMPONENT, VEC2_TAC;
  qed     by -;
`;;

let oriented_area = new_definition
  `oriented_area (a:real^2,b:real^2,c:real^2) =
  ((b$1 - a$1) * (c$2 - a$2) - (c$1 - a$1) * (b$2 - a$2)) / &2`;;

let oriented_areaSymmetry = thm `;
  !A B C A' B' C':real^2.
  oriented_area (A,B,C) = oriented_area(A',B',C')  ==>
  oriented_area (B,C,A) = oriented_area (B',C',A')  /\
  oriented_area (C,A,B) = oriented_area (C',A',B')  /\
  oriented_area (A,C,B) = oriented_area (A',C',B')  /\
  oriented_area (B,A,C) = oriented_area (B',A',C')  /\
  oriented_area (C,B,A) = oriented_area (C',B',A')
  by     REWRITE_TAC[oriented_area] THEN VEC2_TAC;
`;;

let move = new_definition
  `!A B C A' B' C':real^2. move (A,B,C) (A',B',C') <=>
  (B = B' /\ C = C' /\ collinear {vec 0,C - B,A' - A} \/
  A = A' /\ C = C' /\ collinear {vec 0,C - A,B' - B} \/
  A = A' /\ B = B' /\ collinear {vec 0,B - A,C' - C})`;;

let moveInvariant = thm `;
  let p p' be triple;
  assume move p p'                                              [H1];
  thus oriented_area p = oriented_area p'

  proof
    consider X Y Z X' Y' Z' such that
    p = X,Y,Z /\ p' = X',Y',Z'     [pDef] by PAIR_SURJECTIVE;
    move (X,Y,Z) (X',Y',Z')     by -, H1;
    oriented_area (X,Y,Z) = oriented_area (X',Y',Z')     by -, SIMP_TAC[move; oriented_area; COLLINEAR_3; COLLINEAR_3_2Dzero] THEN VEC2_TAC;
  qed     by -, pDef;
`;;

let reachable = new_definition
  `!p p'.
  reachable p p' <=> ?n. ?s.
  s 0 = p /\ s n = p' /\
  (!m. 0 <= m /\ m < n ==> move (s m) (s (SUC m)))`;;

let reachableN = new_definition
  `!p p'. !n.
  reachableN p p' n <=> ?s.
  s 0 = p /\ s n = p' /\
  (!m. 0 <= m /\ m < n ==> move (s m) (s (SUC m)))`;;

let ReachLemma = thm `;
  !p p'. reachable p p'  <=>  ?n.  reachableN p p' n
  by reachable, reachableN;
`;;

let reachableN_CLAUSES = thm `;
  ! p p'. (reachableN p p' 0  <=>  p = p') /\
  ! n. reachableN p p' (SUC n)  <=>  ? q. reachableN p q n  /\ move q p'

  proof
    let p p' be triple;
    consider s0 such that
    s0 = \m:num. p';
    reachableN p p' 0  <=>  p = p'     [0CLAUSE] by -, reachableN, LT, LE_0;
    ! n. reachableN p p' (SUC n)  ==>  ? q. reachableN p q n  /\ move q p'     [Imp1]
    proof
      let n be num;
      assume reachableN p p' (SUC n)     [H1];
      consider s such that
      s 0 = p /\ s (SUC n) = p' /\ !m. m < SUC n ==> move (s m) (s (SUC m))     [sDef] by H1, LE_0, reachableN;
      consider q such that q = s n;
    qed     by sDef, -, LE_0, reachableN, LT;
    ! n. (? q. reachableN p q n  /\ move q p')  ==>  reachableN p p' (SUC n)
    proof
      let n be num;
      assume ? q. reachableN p q n  /\ move q p';
      consider q such that
      reachableN p q n  /\ move q p'     [qExists] by -;
      consider s such that
      s 0 = p /\ s n = q /\ !m. m < n ==> move (s m) (s (SUC m))     [sDef] by -, reachableN, LT, LE_0;
      consider t such that
      t = \m. if m < SUC n then s m else p';
      t 0 = p /\ t (SUC n) = p' /\ !m. m < SUC n ==> move (t m) (t (SUC m))     [tProp] by qExists, sDef, -, LT_0, LT_REFL, LT, LT_SUC;
    qed     by -, reachableN, LT, LE_0;
  qed     by 0CLAUSE, Imp1, -;
`;;

let reachableInvariant = thm `;
  !p p':triple. reachable p p'  ==>
  oriented_area p = oriented_area p'

  proof
    !n. !p p'. reachableN p p' n  ==>  oriented_area p = oriented_area p'     by INDUCT_TAC THEN ASM_MESON_TAC[reachableN_CLAUSES; moveInvariant];
  qed     by -, ReachLemma;
`;;

let move2Cond = new_definition
  `move2Cond (A,B,C) (A',B',C')  <=>
  ~collinear {B,A,A'} /\ ~collinear {A',B,B'}   \/
  ~collinear {A,B,B'} /\ ~collinear {B',A,A'}`;;

let reachableN_Two = thm `;
  !P0 P2:triple. reachableN P0 P2 2 <=>
  ?P1. move P0 P1 /\ move P1 P2
  by ONE, TWO, reachableN_CLAUSES;
`;;

let reachableN_Three = thm `;
   !P0 P3:triple. reachableN P0 P3 3  <=>
   ?P1 P2. move P0 P1 /\ move P1 P2 /\ move P2 P3

   proof
     3 = SUC 2     by ARITH_RULE;
   qed     by -, reachableN_Two, reachableN_CLAUSES;
`;;

let reachableN_Four = thm `;
  !P0 P4:triple. reachableN P0 P4 4  <=>
  ?P1 P2 P3. move P0 P1 /\ move P1 P2 /\ move P2 P3 /\ move P3 P4

   proof
     4 = SUC 3     by ARITH_RULE;
  qed     by -, reachableN_Three, reachableN_CLAUSES;
`;;

let moveSymmetry = thm `;
  let A B C A' B' C' be real^2;
  assume move (A,B,C) (A',B',C')                                [H1];
  thus move (B,C,A) (B',C',A') /\ move (C,A,B) (C',A',B') /\
  move (A,C,B) (A',C',B') /\ move (B,A,C) (B',A',C') /\ move (C,B,A) (C',B',A')

  proof
    !A B C A':real^2. collinear {vec 0, C - B, A' - A}  ==>
    collinear {vec 0, B - C, A' - A}     by REWRITE_TAC[COLLINEAR_3_2Dzero] THEN VEC2_TAC;
  qed     by H1, -, move;
`;;

let reachableNSymmetry = thm `;
  ! A B C A' B' C' n. reachableN (A,B,C) (A',B',C') n  ==>
  reachableN (B,C,A) (B',C',A') n  /\  reachableN (C,A,B) (C',A',B') n /\
  reachableN (A,C,B) (A',C',B') n  /\  reachableN (B,A,C) (B',A',C') n /\
  reachableN (C,B,A) (C',B',A') n

  proof
    let A B C be real^2;
    consider Q such that Q = \n A' B' C'.
    reachableN (B,C,A) (B',C',A') n  /\  reachableN (C,A,B) (C',A',B') n /\
    reachableN (A,C,B) (A',C',B') n  /\  reachableN (B,A,C) (B',A',C') n /\
    reachableN (C,B,A) (C',B',A') n     [Qdef];
    consider P such that
    P = \n. ! A' B' C'. reachableN (A,B,C) (A',B',C') n  ==> Q n A' B' C'    [Pdef];
    P 0     [Base] by -, Qdef, reachableN_CLAUSES, PAIR_EQ;
    !n. P n ==> P (SUC n)
    proof
      let n be num;
      assume P n [Pn];
      ! A' B' C'. reachableN (A,B,C) (A',B',C') (SUC n)  ==> Q (SUC n) A' B' C'
      proof
        let A' B' C' be real^2;
        assume reachableN (A,B,C) (A',B',C') (SUC n);
        consider X Y Z such that
        reachableN (A,B,C) (X,Y,Z) n /\ move (X,Y,Z) (A',B',C')     [XYZdef] by -, reachableN_CLAUSES, PAIR_SURJECTIVE;
      qed     by -, Qdef, Pdef, Pn, XYZdef, moveSymmetry, reachableN_CLAUSES;
    qed     by -, Pdef;
    !n. P n     by Base, -, INDUCT_TAC;
  qed     by -, Pdef, Qdef;
`;;

let ORIENTED_AREA_COLLINEAR_CONG = thm `;
  let A B C A' B' C' be real^2;
  assume oriented_area (A,B,C) = oriented_area (A',B',C')               [H1];
  thus collinear {A,B,C} <=> collinear {A',B',C'}
  by     H1, REWRITE_TAC[COLLINEAR_3_2D; oriented_area] THEN CONV_TAC REAL_RING;
`;;

let Basic2move_THM = thm `;
  let A B C A' be real^2;
  assume ~collinear {A,B,C}                                     [H1];
  assume ~collinear {B,A,A'}                                    [H2];
  thus ? X. move (A,B,C) (A,B,X)  /\  move (A,B,X) (A',B,X)

  proof
    !r. r % (A - B) = (--r) % (B - A)  /\  r % (A - B) = r % (A - B) + &0 % (C - B)     [add0vector_mul] by VEC2_TAC;
    ~ ? r. A' - A = r % (A - B)     [H2'] by H2, COLLINEAR_3, COLLINEAR_LEMMA, -;
    consider r t such that
    A' - A = r % (A - B) + t % (C - B)     [rExists] by H1, COLLINEAR_3, Noncollinear_2Span;
    ~(t = &0)     [tNonzero] by -, add0vector_mul, H2';
    consider s X such that
    s = r / t  /\  X = C + s % (A - B)     [Xexists] by rExists;
    A' - A = (t * s) % (A - B) + t % (C - B)     by rExists, -, tNonzero, REAL_DIV_LMUL;
    A' - A = t % (X - B)     [tProp] by -, Xexists, VEC2_TAC;
    X - C = (-- s) % (B - A)     by -, Xexists, VEC2_TAC;
    collinear {vec 0,B - A,X - C}  /\  collinear {vec 0,X - B,A' - A}     by -, tProp, COLLINEAR_LEMMA;
  qed     by -, move;
`;;

let FourStepMoveAB = thm `;
  let A B C A' B' C' be real^2;
  assume ~collinear {A,B,C}                                             [H1];
  assume ~collinear {B,A,A'} /\ ~collinear {A',B,B'}                     [H2];
  thus ? X Y. move (A,B,C) (A,B,X)  /\  move (A,B,X) (A',B,X)  /\
  move (A',B,X) (A',B,Y)  /\  move (A',B,Y) (A',B',Y)

  proof
    consider X such that
    move (A,B,C) (A,B,X)  /\  move (A,B,X) (A',B,X)     [ABX] by H1, H2, -, Basic2move_THM;
    ~collinear {A,B,X} /\ ~collinear {A',B,X}     by H1, -, moveInvariant, ORIENTED_AREA_COLLINEAR_CONG;
    ~collinear {B,A',X}     by -, collinearSymmetry;
    consider Y such that
    move (B,A',X) (B,A',Y)  /\  move (B,A',Y) (B',A',Y)     by -, H2, Basic2move_THM;
    move (A',B,X) (A',B,Y)  /\  move (A',B,Y) (A',B',Y)     by -, moveSymmetry;
  qed     by -, ABX;
`;;

let FourStepMoveABBAreach = thm `;
  let A B C A' B' C' be real^2;
  assume ~collinear {A,B,C}                                     [H1];
  assume move2Cond (A,B,C) (A',B',C')                           [H2];
  thus ? Y. reachableN (A,B,C) (A',B',Y) 4

  proof
    cases     by H2, move2Cond;
    suppose ~collinear {B,A,A'} /\ ~collinear {A',B,B'};
  qed     by H1, -, FourStepMoveAB, reachableN_Four;
    suppose ~collinear {A,B,B'} /\ ~collinear {B',A,A'}     [Case2];
    ~collinear {B,A,C}     by H1, collinearSymmetry;
    consider X Y such that
    move (B,A,C) (B,A,X)  /\  move (B,A,X) (B',A,X)  /\
    move (B',A,X) (B',A,Y)  /\  move (B',A,Y) (B',A',Y)     by -,  Case2, FourStepMoveAB;
  qed     by -, moveSymmetry, reachableN_Four;
  end;
`;;

let NotMove2Impliescollinear = thm `;
  let A B C A' B' C' be real^2;
  assume ~collinear {A,B,C} /\ ~collinear {A',B',C'}             [H1];
  assume ~(A = A') /\ ~(B = B')                                  [H2];
  assume ~move2Cond (A,B,C) (A',B',C')                          [H3];
  thus collinear {A,B,A',B'}

  proof
    ~(A = B) /\ ~(A' = B')     [Distinct] by H1, Noncollinear_3ImpliesDistinct;
    {A,B,A',B'} SUBSET {A,A',B,B'}  /\  {A,B,A',B'} SUBSET {B,B',A',A}  /\
    {A,B,A',B'} SUBSET {A',B',B,A}     [set4symmetry] by SET_RULE;
    cases     by H3, move2Cond;
    suppose collinear {B,A,A'} /\ collinear {A,B,B'};
      collinear {A,B,A'} /\ collinear {A,B,B'}     by -, collinearSymmetry;
    qed     by Distinct, -, COLLINEAR_4_3;
    suppose collinear {B,A,A'} /\ collinear {B',A,A'};
      collinear {A,A',B} /\ collinear {A,A',B'}     by  -, collinearSymmetry;
      collinear {A,A',B,B'}     by H2, -, COLLINEAR_4_3;
    qed     by -, set4symmetry, COLLINEAR_SUBSET;
    suppose collinear {A',B,B'} /\ collinear {A,B,B'};
      collinear {B,B',A'} /\ collinear {B,B',A}     by  -, collinearSymmetry;
      collinear {B,B',A',A}     by H2, -, COLLINEAR_4_3;
    qed     by -, set4symmetry, COLLINEAR_SUBSET;
    suppose collinear {A',B,B'} /\ collinear {B',A,A'};
      collinear {A',B',B} /\ collinear {A',B',A}     by  -, collinearSymmetry;
      collinear {A',B',B,A}     by Distinct, -, COLLINEAR_4_3;
    qed     by -, set4symmetry, COLLINEAR_SUBSET;
  end;
`;;

let DistinctImplies2moveable = thm `;
  let A B C A' B' C' be real^2;
  assume ~collinear {A,B,C} /\ ~collinear {A',B',C'}                     [H1];
  assume ~(A = A') /\ ~(B = B') /\ ~(C = C')                              [H2];
  thus  move2Cond (A,B,C) (A',B',C') \/ move2Cond (B,C,A) (B',C',A')

  proof
    {A, B, B'} SUBSET {A, B, A', B'} /\ {B,B',C} SUBSET {B,C,B',C'}     [3subset4] by SET_RULE;
    ~collinear {B,C,A} /\ ~collinear {B',C',A'}     [H1'] by H1, collinearSymmetry;
    assume ~(move2Cond (A,B,C) (A',B',C') \/ move2Cond (B,C,A) (B',C',A'));
    ~move2Cond (A,B,C) (A',B',C')  /\  ~move2Cond (B,C,A) (B',C',A')     by -;
    collinear {A, B, A', B'} /\ collinear {B,C,B',C'}     by H1, H1', -, H2, NotMove2Impliescollinear;
    collinear {A, B, B'} /\ collinear {B,B',C}     by -, 3subset4, COLLINEAR_SUBSET;
    collinear {A, B, C}     by -, H2, COLLINEAR_3_TRANS;
  qed     by  -, H1;
`;;

let SameCdiffAB = thm `;
  let A B C A' B' C' be real^2;
  assume ~collinear {A,B,C} /\ ~collinear {A',B',C'}                     [H1];
  assume C = C' /\ ~(A = A') /\ ~(B = B')                                 [H2];
  thus ? Y. reachableN (A,B,C) (Y,B',C') 2  \/ reachableN (A,B,C) (A',B',Y) 4

  proof
    {B,B',A} SUBSET {A,B,A',B'}  /\  {A,B,C} SUBSET {B,B',A,C}     [easy_set] by SET_RULE;
    cases;
    suppose ~collinear {C,B,B'};
      consider X such that
      move (B,C,A) (B,C,X) /\ move (B,C,X) (B',C',X)     by H1, collinearSymmetry, -, H2, Basic2move_THM;
    qed     by -, reachableN_Two, reachableNSymmetry;
    suppose move2Cond (A,B,C) (A',B',C');
    qed     by H1, -, FourStepMoveABBAreach;
    suppose collinear {C,B,B'}  /\  ~move2Cond (A,B,C) (A',B',C');
      collinear {B,B',A} /\ collinear {B,B',C}     by H1, H2, -, NotMove2Impliescollinear, easy_set, COLLINEAR_SUBSET, collinearSymmetry;
    qed     by -, H2, COLLINEAR_4_3, easy_set, COLLINEAR_SUBSET, H1;
  end;
`;;

let FourMovesToCorrectTwo = thm `;
  let A B C A' B' C' be real^2;
  assume ~collinear {A,B,C} /\ ~collinear {A',B',C'}                     [H1];
  thus  ? n. n < 5 /\ ? Y. reachableN (A,B,C) (A',B',Y) n  \/
  reachableN (A,B,C) (A',Y,C') n  \/ reachableN (A,B,C) (Y,B',C') n

  proof
    ~collinear {B,C,A} /\ ~collinear {B',C',A'} /\ ~collinear {C,A,B} /\ ~collinear {C',A',B'}     [H1'] by H1, collinearSymmetry;
    0 < 5  /\  2 < 5  /\  3 < 5  /\  4 < 5     [easy_arith] by ARITH_RULE;
    cases;
    suppose A = A' /\ B = B' /\ C = C'  \/  A = A' /\ B = B' /\ ~(C = C')  \/
    A = A' /\ ~(B = B') /\ C = C'  \/  ~(A = A') /\ B = B' /\ C = C';
      reachableN (A,B,C) (A',B',C') 0  \/  reachableN (A,B,C) (A',B',C) 0  \/
      reachableN (A,B,C) (A',B,C') 0  \/  reachableN (A,B,C) (A,B',C') 0     by -, reachableN_CLAUSES;
    qed     by -, easy_arith;
    suppose A = A' /\ ~(B = B') /\ ~(C = C')  \/
    ~(A = A') /\ B = B' /\ ~(C = C')  \/  ~(A = A') /\ ~(B = B') /\ C = C';
    qed     by H1, H1', -, SameCdiffAB, reachableNSymmetry, easy_arith;
    suppose ~(A = A') /\ ~(B = B') /\ ~(C = C');
      move2Cond (A,B,C) (A',B',C') \/ move2Cond (B,C,A) (B',C',A')     by H1, -, DistinctImplies2moveable;
    qed     by H1, H1', -, FourStepMoveABBAreach, reachableNSymmetry, reachableN_Four, easy_arith;
  end;
`;;

let CorrectFinalPoint = thm `;
  let A B C A' C' be real^2;
  assume oriented_area (A,B,C) = oriented_area (A,B,C')         [H1];
  thus  move (A,B,C) (A,B,C')

  proof
    ((B$1 - A$1) * (C$2 - A$2) - (C$1 - A$1) * (B$2 - A$2)) / &2 =
    ((B$1 - A$1) * (C'$2 - A$2) - (C'$1 - A$1) * (B$2 - A$2)) / &2     by H1, oriented_area;
    (C$1 - C'$1) * (B$2 - A$2) = (B$1 - A$1) * (C$2 - C'$2)     by -, REAL_ARITH;
    (C' - C)$1 * (B - A)$2 = (B - A)$1 * (C' - C)$2     by -, VEC2_TAC;
    collinear {vec 0, B - A, C' - C}     by -, COLLINEAR_3_2Dzero;
  qed     by -, move;
`;;

let FiveMovesOrLess = thm `;
  let A B C A' B' C' be real^2;
  assume ~collinear {A,B,C}                                     [H1];
  assume oriented_area (A,B,C) = oriented_area (A',B',C')       [H2];
  thus  ? n. n <= 5 /\ reachableN (A,B,C) (A',B',C') n

  proof
     ~collinear {A',B',C'}     [H1'] by H1, H2, ORIENTED_AREA_COLLINEAR_CONG;
    ~(A = B) /\ ~(A = C) /\ ~(B = C) /\ ~(A' = B') /\ ~(A' = C') /\ ~(B' = C')     [Distinct] by H1, -,  Noncollinear_3ImpliesDistinct;
    consider n Y such that
    n < 5 /\ (reachableN (A,B,C) (A',B',Y) n \/
    reachableN (A,B,C) (A',Y,C') n \/ reachableN (A,B,C) (Y,B',C') n)     [2Correct] by H1, H1', FourMovesToCorrectTwo;
    cases     by 2Correct;
    suppose reachableN (A,B,C) (A',B',Y) n     [Case];
      oriented_area (A',B',Y) = oriented_area (A',B',C')     by H2, -, ReachLemma, reachableInvariant;
      move (A',B',Y) (A',B',C')     by -, Distinct, CorrectFinalPoint;
    qed by Case, -, reachableN_CLAUSES, 2Correct, LE_SUC_LT;
    suppose reachableN (A,B,C) (A',Y,C') n     [Case];
      oriented_area (A',C',Y) = oriented_area (A',C',B')     by H2, -, ReachLemma, reachableInvariant, oriented_areaSymmetry;
      move (A',Y,C') (A',B',C')     by -, Distinct, CorrectFinalPoint, moveSymmetry;
    qed by Case, -, reachableN_CLAUSES, 2Correct, LE_SUC_LT;
    suppose reachableN (A,B,C) (Y,B',C') n     [Case];
      oriented_area (B',C',Y) = oriented_area (B',C',A')     by H2, -, ReachLemma, reachableInvariant, oriented_areaSymmetry;
      move (Y,B',C') (A',B',C')     by -, Distinct, CorrectFinalPoint, moveSymmetry;
    qed     by Case, -, reachableN_CLAUSES, 2Correct, LE_SUC_LT;
  end;
`;;

let NOTENOUGH_4 = thm `;
  ?p0 p4. oriented_area p0 = oriented_area p4 /\ ~reachableN p0 p4 4

  proof
    consider p0 p4 such that
    p0 = vector [&0;&0]:real^2,vector [&0;&1]:real^2,vector [&1;&0]:real^2 /\
    p4 = vector [&1;&1]:real^2,vector [&1;&2]:real^2,vector [&2;&1]:real^2     [p04Def];
    oriented_area p0 = oriented_area p4     [equal_areas] by -, ASM_REWRITE_TAC[oriented_area] THEN VEC2_TAC;
    ~reachableN p0 p4 4     by p04Def, ASM_REWRITE_TAC[reachableN_Four; NOT_EXISTS_THM; FORALL_PAIR_THM; move; COLLINEAR_3_2Dzero; FORALL_VECTOR_2] THEN VEC2_TAC;
  qed     by equal_areas, -;
`;;

let reachableN_Five = thm `;
  !P0 P5:triple. reachableN P0 P5 5  <=>
  ?P1 P2 P3 P4. move P0 P1 /\ move P1 P2 /\ move P2 P3 /\ move P3 P4 /\ move P4 P5

  proof
    5 = SUC 4     by ARITH_RULE;
  qed by -, reachableN_CLAUSES, reachableN_Four;
`;;

let EasyCollinearMoves = thm `;
  (!A A' B:real^2. move (A:real^2,B,B) (A',B,B))  /\
  !A B B' C:real^2. collinear {A:real^2,B,C} /\ collinear {A,B',C}
  ==>  move (A,B,C) (A,B',C)
  by     REWRITE_TAC[move; COLLINEAR_3_2D] THEN VEC2_TAC;
`;;

let FiveMovesOrLess_STRONG = thm `;
  let A B C A' B' C' be real^2;
  assume oriented_area (A,B,C) = oriented_area (A',B',C')       [H1];
  thus ?n. n <= 5 /\ reachableN (A,B,C) (A',B',C') n

  proof
    {A,C,C} = {A,C}  /\  {B',C,C} = {B',C}  /\  {B',B',C} = {B',C}  /\  {B',B',C'} = {B',C'}     [easy_sets] by SET_RULE;
    cases;
    suppose ~collinear {A,B,C};
    qed     by -, H1, FiveMovesOrLess;
    suppose collinear {A,B,C}     [ABCcol];
      collinear {A',B',C'}     [A'B'C'col] by -, H1, ORIENTED_AREA_COLLINEAR_CONG;
      consider P1 P2 P3 P4 such that
      P1 = A,C,C  /\  P2 = B',C,C  /\  P3 = B',B',C  /\  P4 = B',B',C';
      move (A,B,C) P1  /\  move P1 P2  /\  move P2 P3  /\  move P3 P4  /\  move P4 (A',B',C')     by -, ABCcol, A'B'C'col, easy_sets, COLLINEAR_2, collinearSymmetry, moveSymmetry, EasyCollinearMoves;
    qed     by -, reachableN_Five, LE_REFL;
  end;
`;;