Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 39,457 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
(* ========================================================================= *)
(* HOL88 compatibility: various things missing or different in HOL Light.    *)
(* ========================================================================= *)

let (upto) = (--);;

let is_neg_imp tm =
  is_neg tm || is_imp tm;;

let dest_neg_imp tm =
  try dest_imp tm with Failure _ ->
  try (dest_neg tm,mk_const("F",[]))
  with Failure _ -> failwith "dest_neg_imp";;

(* ------------------------------------------------------------------------- *)
(* I removed this recently. Note that it's intuitionistically valid.         *)
(* ------------------------------------------------------------------------- *)

let CONTRAPOS =
  let a = `a:bool` and b = `b:bool` in
  let pth = ITAUT `(a ==> b) ==> (~b ==> ~a)` in
  fun th ->
    try let P,Q = dest_imp(concl th) in
        MP (INST [P,a; Q,b] pth) th
    with Failure _ -> failwith "CONTRAPOS";;

(* ------------------------------------------------------------------------- *)
(* I also got rid of this; it's mainly used inside DISCH_TAC anyway.         *)
(* ------------------------------------------------------------------------- *)

let NEG_DISCH =
  let falsity = `F` in
  fun t th ->
    try if concl th = falsity then NOT_INTRO(DISCH t th) else DISCH t th
    with Failure _ -> failwith "NEG_DISCH";;

(* ------------------------------------------------------------------------- *)
(* These were never used (by me).                                            *)
(* ------------------------------------------------------------------------- *)

let SELECT_ELIM th1 (v,th2) =
  try let P, SP = dest_comb(concl th1) in
      let th3 = DISCH (mk_comb(P,v)) th2 in
      MP (INST [SP,v] th3) th1
  with Failure _ -> failwith "SELECT_ELIM";;

let SELECT_INTRO =
  let P = `P:A->bool` and x = `x:A` in
  let pth = SPECL [P; x] SELECT_AX in
  fun th ->
    try let f,arg = dest_comb(concl th) in
        MP (PINST [type_of x,aty] [f,P; arg,x] pth) th
    with Failure _ -> failwith "SELECT_INTRO";;

(* ------------------------------------------------------------------------- *)
(* Again, I never use this so I removed it from the core.                    *)
(* ------------------------------------------------------------------------- *)

let EXT =
  let f = `f:A->B` and g = `g:A->B` in
  let pth = prove
   (`(!x. (f:A->B) x = g x) ==> (f = g)`,
    MATCH_ACCEPT_TAC EQ_EXT) in
  fun th ->
    try let x,bod = dest_forall(concl th) in
        let l,r = dest_eq bod in
        let l',r' = rator l, rator r in
        let th1 = PINST [type_of x,aty; type_of l,bty] [l',f; r',g] pth in
        MP th1 th
    with Failure _ -> failwith "EXT";;

(* ------------------------------------------------------------------------- *)
(* These get overwritten by the subgoal stuff.                               *)
(* ------------------------------------------------------------------------- *)

let PROVE = prove;;

let prove_thm((s:string),g,t) = prove(g,t);;

(* ------------------------------------------------------------------------- *)
(* The quantifier movement conversions.                                      *)
(* ------------------------------------------------------------------------- *)

let (CONV_OF_RCONV: conv -> conv) =
  let rec get_bv tm =
    if is_abs tm then bndvar tm
    else if is_comb tm then
         try get_bv (rand tm) with Failure _ -> get_bv (rator tm)
    else failwith "" in
  fun conv tm ->
  let v = get_bv tm in
  let th1 = conv tm in
  let th2 = ONCE_DEPTH_CONV (GEN_ALPHA_CONV v) (rhs(concl th1)) in
  TRANS th1 th2;;

let (CONV_OF_THM: thm -> conv) =
  CONV_OF_RCONV o REWR_CONV;;

let (X_FUN_EQ_CONV:term->conv) =
  fun v -> (REWR_CONV FUN_EQ_THM) THENC GEN_ALPHA_CONV v;;

let (FUN_EQ_CONV:conv) =
  fun tm ->
    let vars = frees tm in
    let op,[ty1;ty2] = dest_type(type_of (lhs tm)) in
    if op = "fun"
       then let varnm =
                if (is_vartype ty1) then "x" else
                   hd(explode(fst(dest_type ty1))) in
            let x = variant vars (mk_var(varnm,ty1)) in
            X_FUN_EQ_CONV x tm
       else failwith "FUN_EQ_CONV";;

let (SINGLE_DEPTH_CONV:conv->conv) =
  let rec SINGLE_DEPTH_CONV conv tm =
    try conv tm with Failure _ ->
    (SUB_CONV (SINGLE_DEPTH_CONV conv) THENC (TRY_CONV conv)) tm in
  SINGLE_DEPTH_CONV;;

let (SKOLEM_CONV:conv) =
  SINGLE_DEPTH_CONV (REWR_CONV SKOLEM_THM);;

let (X_SKOLEM_CONV:term->conv) =
  fun v -> SKOLEM_CONV THENC GEN_ALPHA_CONV v;;

let EXISTS_UNIQUE_CONV tm =
  let v = bndvar(rand tm) in
  let th1 = REWR_CONV EXISTS_UNIQUE_THM tm in
  let tm1 = rhs(concl th1) in
  let vars = frees tm1 in
  let v = variant vars v in
  let v' = variant (v::vars) v in
  let th2 =
   (LAND_CONV(GEN_ALPHA_CONV v) THENC
    RAND_CONV(BINDER_CONV(GEN_ALPHA_CONV v') THENC
              GEN_ALPHA_CONV v)) tm1 in
  TRANS th1 th2;;

let NOT_FORALL_CONV = CONV_OF_THM NOT_FORALL_THM;;

let NOT_EXISTS_CONV = CONV_OF_THM NOT_EXISTS_THM;;

let RIGHT_IMP_EXISTS_CONV = CONV_OF_THM RIGHT_IMP_EXISTS_THM;;

let FORALL_IMP_CONV = CONV_OF_RCONV
  (REWR_CONV TRIV_FORALL_IMP_THM ORELSEC
   REWR_CONV RIGHT_FORALL_IMP_THM ORELSEC
   REWR_CONV LEFT_FORALL_IMP_THM);;

let EXISTS_AND_CONV = CONV_OF_RCONV
  (REWR_CONV TRIV_EXISTS_AND_THM ORELSEC
   REWR_CONV LEFT_EXISTS_AND_THM ORELSEC
   REWR_CONV RIGHT_EXISTS_AND_THM);;

let LEFT_IMP_EXISTS_CONV = CONV_OF_THM LEFT_IMP_EXISTS_THM;;

let LEFT_AND_EXISTS_CONV tm =
  let v = bndvar(rand(rand(rator tm))) in
  (REWR_CONV LEFT_AND_EXISTS_THM THENC TRY_CONV (GEN_ALPHA_CONV v)) tm;;

let RIGHT_AND_EXISTS_CONV =
  CONV_OF_THM RIGHT_AND_EXISTS_THM;;

let AND_FORALL_CONV = CONV_OF_THM AND_FORALL_THM;;

(* ------------------------------------------------------------------------- *)
(* Paired beta conversion (now just a special case of GEN_BETA_CONV).        *)
(* ------------------------------------------------------------------------- *)

let PAIRED_BETA_CONV =
  let pth = (EQT_ELIM o REWRITE_CONV [EXISTS_THM; GABS_DEF])
   `!P:A->bool. (?) P ==> P((GABS) P)`
  and pth1 = GSYM PASSOC_DEF and pth2 = GSYM UNCURRY_DEF in
  let dest_geq = dest_binary "GEQ" in
  let GEQ_RULE = CONV_RULE(REWR_CONV(GSYM GEQ_DEF))
  and UNGEQ_RULE = CONV_RULE(REWR_CONV GEQ_DEF) in
  let rec UNCURRY_CONV fn vs =
    try let l,r = dest_pair vs in
        try let r1,r2 = dest_pair r in
            let lr = mk_pair(l,r1) in
            let th0 = UNCURRY_CONV fn (mk_pair(lr,r2)) in
            let th1 = ISPECL [rator(rand(concl th0));l;r1;r2] pth1 in
            TRANS th0 th1
        with Failure _ ->
            let th0 = UNCURRY_CONV fn l in
            let fn' = rand(concl th0) in
            let th1 = UNCURRY_CONV fn' r in
            let th2 = ISPECL [rator fn';l;r] pth2 in
            TRANS (TRANS (AP_THM th0 r) th1) th2
    with Failure _ -> REFL(mk_comb(fn,vs)) in
  fun tm ->
    try BETA_CONV tm with Failure _ ->
    let gabs,args = dest_comb tm in
    let fn,bod = dest_binder "GABS" gabs in
    let avs,eqv = strip_forall bod in
    let l,r = dest_geq eqv in
    let pred = list_mk_abs(avs,r) in
    let th0 = rev_itlist
      (fun v th -> CONV_RULE(RAND_CONV BETA_CONV) (AP_THM th v))
      avs (REFL pred) in
    let th1 = TRANS (SYM(UNCURRY_CONV pred (rand l))) th0 in
    let th1a = GEQ_RULE th1 in
    let etm = list_mk_icomb "?" [rand gabs] in
    let th2 = EXISTS(etm,rator (lhand(concl th1a))) (GENL avs th1a) in
    let th3 = SPECL (striplist dest_pair args) (BETA_RULE(MATCH_MP pth th2)) in
    UNGEQ_RULE th3;;

(* ------------------------------------------------------------------------- *)
(* The slew of named tautologies.                                            *)
(* ------------------------------------------------------------------------- *)

let AND1_THM = TAUT `!t1 t2. t1 /\ t2 ==> t1`;;

let AND2_THM = TAUT `!t1 t2. t1 /\ t2 ==> t2`;;

let AND_IMP_INTRO = TAUT `!t1 t2 t3. t1 ==> t2 ==> t3 <=> t1 /\ t2 ==> t3`;;

let AND_INTRO_THM = TAUT `!t1 t2. t1 ==> t2 ==> t1 /\ t2`;;

let BOOL_EQ_DISTINCT = TAUT `~(T <=> F) /\ ~(F <=> T)`;;

let EQ_EXPAND = TAUT `!t1 t2. (t1 <=> t2) <=> t1 /\ t2 \/ ~t1 /\ ~t2`;;

let EQ_IMP_THM = TAUT `!t1 t2. (t1 <=> t2) <=> (t1 ==> t2) /\ (t2 ==> t1)`;;

let FALSITY = TAUT `!t. F ==> t`;;

let F_IMP = TAUT `!t. ~t ==> t ==> F`;;

let IMP_DISJ_THM = TAUT `!t1 t2. t1 ==> t2 <=> ~t1 \/ t2`;;

let IMP_F = TAUT `!t. (t ==> F) ==> ~t`;;

let IMP_F_EQ_F = TAUT `!t. t ==> F <=> (t <=> F)`;;

let LEFT_AND_OVER_OR = TAUT
  `!t1 t2 t3. t1 /\ (t2 \/ t3) <=> t1 /\ t2 \/ t1 /\ t3`;;

let LEFT_OR_OVER_AND = TAUT
  `!t1 t2 t3. t1 \/ t2 /\ t3 <=> (t1 \/ t2) /\ (t1 \/ t3)`;;

let NOT_AND = TAUT `~(t /\ ~t)`;;

let NOT_F = TAUT `!t. ~t ==> (t <=> F)`;;

let OR_ELIM_THM = TAUT
  `!t t1 t2. t1 \/ t2 ==> (t1 ==> t) ==> (t2 ==> t) ==> t`;;

let OR_IMP_THM = TAUT `!t1 t2. (t1 <=> t2 \/ t1) <=> t2 ==> t1`;;

let OR_INTRO_THM1 = TAUT `!t1 t2. t1 ==> t1 \/ t2`;;

let OR_INTRO_THM2 = TAUT `!t1 t2. t2 ==> t1 \/ t2`;;

let RIGHT_AND_OVER_OR = TAUT
  `!t1 t2 t3. (t2 \/ t3) /\ t1 <=> t2 /\ t1 \/ t3 /\ t1`;;

let RIGHT_OR_OVER_AND = TAUT
  `!t1 t2 t3. t2 /\ t3 \/ t1 <=> (t2 \/ t1) /\ (t3 \/ t1)`;;

(* ------------------------------------------------------------------------- *)
(* This is an overwrite -- is there any point in what I have?                *)
(* ------------------------------------------------------------------------- *)

let is_type = can get_type_arity;;

(* ------------------------------------------------------------------------- *)
(* I suppose this is also useful.                                            *)
(* ------------------------------------------------------------------------- *)

let is_constant = can get_const_type;;

(* ------------------------------------------------------------------------- *)
(* Misc.                                                                     *)
(* ------------------------------------------------------------------------- *)

let null l = l = [];;

let combine(a,b) = zip a b;;

let split = unzip;;

(* ------------------------------------------------------------------------- *)
(* Syntax.                                                                   *)
(* ------------------------------------------------------------------------- *)

let type_tyvars = type_vars_in_term o curry mk_var "x";;

let find_match u =
  let rec find_mt t =
    try term_match [] u t with Failure _ ->
    try find_mt(rator t) with Failure _ ->
    try find_mt(rand  t) with Failure _ ->
    try find_mt(snd(dest_abs t))
    with Failure _ -> failwith "find_match" in
  fun t -> let _,tmin,tyin = find_mt t in
           tmin,tyin;;

let rec mk_primed_var(name,ty) =
  if can get_const_type name then mk_primed_var(name^"'",ty)
  else mk_var(name,ty);;

let subst_occs =
  let rec subst_occs slist tm =
    let applic,noway = partition (fun (i,(t,x)) -> aconv tm x) slist in
    let sposs = map (fun (l,z) -> let l1,l2 = partition ((=) 1) l in
                                  (l1,z),(l2,z)) applic in
    let racts,rrest = unzip sposs in
    let acts = filter (fun t -> not (fst t = [])) racts in
    let trest = map (fun (n,t) -> (map (C (-) 1) n,t)) rrest in
    let urest = filter (fun t -> not (fst t = [])) trest in
    let tlist = urest @ noway in
      if acts = [] then
      if is_comb tm then
        let l,r = dest_comb tm in
        let l',s' = subst_occs tlist l in
        let r',s'' = subst_occs s' r in
        mk_comb(l',r'),s''
      else if is_abs tm then
        let bv,bod = dest_abs tm in
        let gv = genvar(type_of bv) in
        let nbod = vsubst[gv,bv] bod in
        let tm',s' = subst_occs tlist nbod in
        alpha bv (mk_abs(gv,tm')),s'
      else
        tm,tlist
    else
      let tm' = (fun (n,(t,x)) -> subst[t,x] tm) (hd acts) in
      tm',tlist in
  fun ilist slist tm -> fst(subst_occs (zip ilist slist) tm);;

(* ------------------------------------------------------------------------- *)
(* Note that the all-instantiating INST and INST_TYPE are not overwritten.   *)
(* ------------------------------------------------------------------------- *)

let INST_TY_TERM(substl,insttyl) th =
  let th' = INST substl (INST_TYPE insttyl th) in
  if hyp th' = hyp th then th'
  else failwith "INST_TY_TERM: Free term and/or type variables in hypotheses";;

(* ------------------------------------------------------------------------- *)
(* Conversions stuff.                                                        *)
(* ------------------------------------------------------------------------- *)

let RIGHT_CONV_RULE (conv:conv) th =
  TRANS th (conv(rhs(concl th)));;

(* ------------------------------------------------------------------------- *)
(* Derived rules.                                                            *)
(* ------------------------------------------------------------------------- *)

let NOT_EQ_SYM =
  let pth = GENL [`a:A`; `b:A`]
    (CONTRAPOS(DISCH_ALL(SYM(ASSUME`a:A = b`))))
  and aty = `:A` in
  fun th -> try let l,r = dest_eq(dest_neg(concl th)) in
                MP (SPECL [r; l] (INST_TYPE [type_of l,aty] pth)) th
            with Failure _ -> failwith "NOT_EQ_SYM";;

let NOT_MP thi th =
  try MP thi th with Failure _ ->
  try let t = dest_neg (concl thi) in
      MP(MP (SPEC t F_IMP) thi) th
  with Failure _ -> failwith "NOT_MP";;

let FORALL_EQ x =
  let mkall = AP_TERM (mk_const("!",[type_of x,mk_vartype "A"])) in
  fun th -> try mkall (ABS x th)
            with Failure _ -> failwith "FORALL_EQ";;

let EXISTS_EQ x =
  let mkex = AP_TERM (mk_const("?",[type_of x,mk_vartype "A"])) in
  fun th -> try mkex (ABS x th)
            with Failure _ -> failwith "EXISTS_EQ";;

let SELECT_EQ x =
  let mksel = AP_TERM (mk_const("@",[type_of x,mk_vartype "A"])) in
  fun th -> try mksel (ABS x th)
            with Failure _ -> failwith "SELECT_EQ";;

let RIGHT_BETA th =
  try TRANS th (BETA_CONV(rhs(concl th)))
  with Failure _ -> failwith "RIGHT_BETA";;

let rec LIST_BETA_CONV tm =
  try let rat,rnd = dest_comb tm in
      RIGHT_BETA(AP_THM(LIST_BETA_CONV rat)rnd)
  with Failure _ -> REFL tm;;

let RIGHT_LIST_BETA th = TRANS th (LIST_BETA_CONV(snd(dest_eq(concl th))));;

let LIST_CONJ = end_itlist CONJ ;;

let rec CONJ_LIST n th =
  try if n=1 then [th] else (CONJUNCT1 th)::(CONJ_LIST (n-1) (CONJUNCT2 th))
  with Failure _ -> failwith "CONJ_LIST";;

let rec BODY_CONJUNCTS th =
  if is_forall(concl th) then
    BODY_CONJUNCTS (SPEC_ALL th) else
  if is_conj (concl th) then
      BODY_CONJUNCTS (CONJUNCT1 th) @ BODY_CONJUNCTS (CONJUNCT2 th)
  else [th];;

let rec IMP_CANON th =
    let w = concl th in
    if is_conj w then IMP_CANON (CONJUNCT1 th) @ IMP_CANON (CONJUNCT2 th)
    else if is_imp w then
        let ante,conc = dest_neg_imp w in
        if is_conj ante then
            let a,b = dest_conj ante in
            IMP_CANON
            (DISCH a (DISCH b (NOT_MP th (CONJ (ASSUME a) (ASSUME b)))))
        else if is_disj ante then
            let a,b = dest_disj ante in
            IMP_CANON (DISCH a (NOT_MP th (DISJ1 (ASSUME a) b))) @
            IMP_CANON (DISCH b (NOT_MP th (DISJ2 a (ASSUME b))))
        else if is_exists ante then
            let x,body = dest_exists ante in
            let x' = variant (thm_frees th) x in
            let body' = subst [x',x] body in
            IMP_CANON
            (DISCH body' (NOT_MP th (EXISTS (ante, x') (ASSUME body'))))
        else
        map (DISCH ante) (IMP_CANON (UNDISCH th))
    else if is_forall w then
        IMP_CANON (SPEC_ALL th)
    else [th];;

let LIST_MP  = rev_itlist (fun x y -> MP y x);;

let DISJ_IMP =
  let pth = TAUT`!t1 t2. t1 \/ t2 ==> ~t1 ==> t2` in
  fun th ->
    try let a,b = dest_disj(concl th) in MP (SPECL [a;b] pth) th
    with Failure _ -> failwith "DISJ_IMP";;

let IMP_ELIM =
  let pth = TAUT`!t1 t2. (t1 ==> t2) ==> ~t1 \/ t2` in
  fun th ->
    try let a,b = dest_imp(concl th) in MP (SPECL [a;b] pth) th
    with Failure _ -> failwith "IMP_ELIM";;

let DISJ_CASES_UNION dth ath bth =
    DISJ_CASES dth (DISJ1 ath (concl bth)) (DISJ2 (concl ath) bth);;

let MK_ABS qth =
  try let ov = bndvar(rand(concl qth)) in
      let bv,rth = SPEC_VAR qth in
      let sth = ABS bv rth in
      let cnv = ALPHA_CONV ov in
      CONV_RULE(BINOP_CONV cnv) sth
  with Failure _ -> failwith "MK_ABS";;

let HALF_MK_ABS th =
  try let th1 = MK_ABS th in
      CONV_RULE(LAND_CONV ETA_CONV) th1
  with Failure _ -> failwith "HALF_MK_ABS";;

let MK_EXISTS qth =
  try let ov = bndvar(rand(concl qth)) in
      let bv,rth = SPEC_VAR qth in
      let sth = EXISTS_EQ bv rth in
      let cnv = GEN_ALPHA_CONV ov in
      CONV_RULE(BINOP_CONV cnv) sth
  with Failure _ -> failwith "MK_EXISTS";;

let LIST_MK_EXISTS l th = itlist (fun x th -> MK_EXISTS(GEN x th)) l th;;

let IMP_CONJ th1 th2 =
  let A1,C1 = dest_imp (concl th1) and A2,C2 = dest_imp (concl th2) in
  let a1,a2 = CONJ_PAIR (ASSUME (mk_conj(A1,A2))) in
      DISCH (mk_conj(A1,A2)) (CONJ (MP th1 a1) (MP th2 a2));;

let EXISTS_IMP x =
  if not (is_var x) then failwith "EXISTS_IMP: first argument not a variable"
  else fun th ->
         try let ante,cncl = dest_imp(concl th) in
             let th1 = EXISTS (mk_exists(x,cncl),x) (UNDISCH th) in
             let asm = mk_exists(x,ante) in
             DISCH asm (CHOOSE (x,ASSUME asm) th1)
         with Failure _ ->
                failwith "EXISTS_IMP: variable free in assumptions";;

let CONJUNCTS_CONV (t1,t2) =
  let rec build_conj thl t =
    try let l,r = dest_conj t in
        CONJ (build_conj thl l) (build_conj thl r)
    with Failure _ -> find (fun th -> concl th = t) thl in
  try IMP_ANTISYM_RULE
     (DISCH t1 (build_conj (CONJUNCTS (ASSUME t1)) t2))
     (DISCH t2 (build_conj (CONJUNCTS (ASSUME t2)) t1))
  with Failure _ -> failwith "CONJUNCTS_CONV";;

let CONJ_SET_CONV l1 l2 =
  try CONJUNCTS_CONV (list_mk_conj l1, list_mk_conj l2)
  with Failure _ -> failwith "CONJ_SET_CONV";;

let FRONT_CONJ_CONV tml t =
 let rec remove x l =
    if hd l = x then tl l else (hd l)::(remove x (tl l)) in
 try CONJ_SET_CONV tml (t::(remove t tml))
 with Failure _ -> failwith "FRONT_CONJ_CONV";;

let CONJ_DISCH =
  let pth = TAUT`!t t1 t2. (t ==> (t1 = t2)) ==> (t /\ t1 <=> t /\ t2)` in
  fun t th ->
    try let t1,t2 = dest_eq(concl th) in
        MP (SPECL [t; t1; t2] pth) (DISCH t th)
    with Failure _ -> failwith "CONJ_DISCH";;

let rec CONJ_DISCHL l th =
  if l = [] then th else CONJ_DISCH (hd l) (CONJ_DISCHL (tl l) th);;

let rec GSPEC th =
  let wl,w = dest_thm th in
  if is_forall w then
      GSPEC (SPEC (genvar (type_of (fst (dest_forall w)))) th)
  else th;;

let ANTE_CONJ_CONV tm =
  try let (a1,a2),c = (dest_conj F_F I) (dest_imp tm) in
      let imp1 = MP (ASSUME tm) (CONJ (ASSUME a1) (ASSUME a2)) and
          imp2 = LIST_MP [CONJUNCT1 (ASSUME (mk_conj(a1,a2)));
                          CONJUNCT2 (ASSUME (mk_conj(a1,a2)))]
                         (ASSUME (mk_imp(a1,mk_imp(a2,c)))) in
      IMP_ANTISYM_RULE (DISCH_ALL (DISCH a1 (DISCH a2 imp1)))
                       (DISCH_ALL (DISCH (mk_conj(a1,a2)) imp2))
  with Failure _ -> failwith "ANTE_CONJ_CONV";;

let bool_EQ_CONV =
  let check = let boolty = `:bool` in check (fun tm -> type_of tm = boolty) in
  let clist = map (GEN `b:bool`)
                  (CONJUNCTS(SPEC `b:bool` EQ_CLAUSES)) in
  let tb = hd clist and bt = hd(tl clist) in
  let T = `T` and F = `F` in
  fun tm ->
    try let l,r = (I F_F check) (dest_eq tm) in
        if l = r then EQT_INTRO (REFL l) else
        if l = T then SPEC r tb else
        if r = T then SPEC l bt else fail()
    with Failure _ -> failwith "bool_EQ_CONV";;

let COND_CONV =
  let T = `T` and F = `F` and vt = genvar`:A` and vf = genvar `:A` in
  let gen = GENL [vt;vf] in
  let CT,CF = (gen F_F gen) (CONJ_PAIR (SPECL [vt;vf] COND_CLAUSES)) in
  fun tm ->
    let P,(u,v) = try dest_cond tm
                  with Failure _ -> failwith "COND_CONV: not a conditional" in
    let ty = type_of u in
    if (P=T) then SPEC v (SPEC u (INST_TYPE [ty,`:A`] CT)) else
    if (P=F) then SPEC v (SPEC u (INST_TYPE [ty,`:A`] CF)) else
    if (u=v) then SPEC u (SPEC P (INST_TYPE [ty,`:A`] COND_ID)) else
    if (aconv u v) then
       let cnd = AP_TERM (rator tm) (ALPHA v u) in
       let thm = SPEC u (SPEC P (INST_TYPE [ty,`:A`] COND_ID)) in
           TRANS cnd thm else
  failwith "COND_CONV: can't simplify conditional";;

let SUBST_MATCH eqth th =
 let tm_inst,ty_inst = find_match (lhs(concl eqth)) (concl th) in
 SUBS [INST tm_inst (INST_TYPE ty_inst eqth)] th;;

let SUBST thl pat th =
  let eqs,vs = unzip thl in
  let gvs = map (genvar o type_of) vs in
  let gpat = subst (zip gvs vs) pat in
  let ls,rs = unzip (map (dest_eq o concl) eqs) in
  let ths = map (ASSUME o mk_eq) (zip gvs rs) in
  let th1 = ASSUME gpat in
  let th2 = SUBS ths th1 in
  let th3 = itlist DISCH (map concl ths) (DISCH gpat th2) in
  let th4 = INST (zip ls gvs) th3 in
  MP (rev_itlist (C MP) eqs th4) th;;

(* ------------------------------------------------------------------------- *)
(* A poor thing but my own. The original (bogus) code used mk_thm.           *)
(* I haven't bothered with GSUBS and SUBS_OCCS.                              *)
(* ------------------------------------------------------------------------- *)

let SUBST_CONV thvars template tm =
  let thms,vars = unzip thvars in
  let gvs = map (genvar o type_of) vars in
  let gtemplate = subst (zip gvs vars) template in
  SUBST (zip thms gvs) (mk_eq(template,gtemplate)) (REFL tm);;

(* ------------------------------------------------------------------------- *)
(* Filtering rewrites.                                                       *)
(* ------------------------------------------------------------------------- *)

let FILTER_PURE_ASM_REWRITE_RULE f thl th =
    PURE_REWRITE_RULE ((map ASSUME (filter f (hyp th))) @ thl) th

and FILTER_ASM_REWRITE_RULE f thl th =
    REWRITE_RULE ((map ASSUME (filter f (hyp th))) @ thl) th

and FILTER_PURE_ONCE_ASM_REWRITE_RULE f thl th =
    PURE_ONCE_REWRITE_RULE ((map ASSUME (filter f (hyp th))) @ thl) th

and FILTER_ONCE_ASM_REWRITE_RULE f thl th =
    ONCE_REWRITE_RULE ((map ASSUME (filter f (hyp th))) @ thl) th;;

let (FILTER_PURE_ASM_REWRITE_TAC: (term->bool) -> thm list -> tactic) =
  fun f thl (asl,w) ->
    PURE_REWRITE_TAC (filter (f o concl) (map snd asl) @ thl) (asl,w)

and (FILTER_ASM_REWRITE_TAC: (term->bool) -> thm list -> tactic) =
  fun f thl (asl,w) ->
    REWRITE_TAC (filter (f o concl) (map snd asl) @ thl) (asl,w)

and (FILTER_PURE_ONCE_ASM_REWRITE_TAC: (term->bool) -> thm list -> tactic) =
  fun f thl (asl,w) ->
    PURE_ONCE_REWRITE_TAC (filter (f o concl) (map snd asl) @ thl) (asl,w)

and (FILTER_ONCE_ASM_REWRITE_TAC: (term->bool) -> thm list -> tactic) =
  fun f thl (asl,w) ->
    ONCE_REWRITE_TAC (filter (f o concl) (map snd asl) @ thl) (asl,w);;

(* ------------------------------------------------------------------------- *)
(* Tacticals.                                                                *)
(* ------------------------------------------------------------------------- *)

let DISJ_CASES_THENL =
  end_itlist DISJ_CASES_THEN2;;

let (X_CASES_THENL: term list list -> thm_tactic list -> thm_tactic) =
  fun varsl ttacl ->
    end_itlist DISJ_CASES_THEN2
       (map (fun (vars,ttac) -> EVERY_TCL (map X_CHOOSE_THEN vars) ttac)
        (zip varsl ttacl));;

let (X_CASES_THEN: term list list -> thm_tactical) =
  fun varsl ttac ->
    end_itlist DISJ_CASES_THEN2
       (map (fun vars -> EVERY_TCL (map X_CHOOSE_THEN vars) ttac) varsl);;

let (CASES_THENL: thm_tactic list -> thm_tactic) =
  fun ttacl -> end_itlist DISJ_CASES_THEN2 (map (REPEAT_TCL CHOOSE_THEN) ttacl);;

(* ------------------------------------------------------------------------- *)
(* Tactics.                                                                  *)
(* ------------------------------------------------------------------------- *)

let (DISCARD_TAC: thm_tactic) =
  let truth = `T` in
  fun th (asl,w) ->
    if exists (aconv (concl th)) (truth::(map (concl o snd) asl))
    then ALL_TAC (asl,w)
    else failwith "DISCARD_TAC";;

let (GSUBST_TAC:((term * term)list->term->term)->thm list -> tactic) =
  fun substfn ths (asl,w) ->
  let ls,rs = split (map (dest_eq o concl) ths) in
  let vars = map (genvar o type_of) ls in
  let base = substfn (combine(vars,ls)) w in
  let rfn i thl =
    match thl with
     [th] -> SUBST (combine(map SYM ths, vars)) base th
    | _ -> failwith "" in
  null_meta,
  [asl,subst (combine(rs,vars)) base],
  rfn;;

let SUBST_TAC = GSUBST_TAC subst;;

let SUBST_OCCS_TAC nlths =
  let nll,ths = split nlths in GSUBST_TAC (subst_occs nll) ths;;

let (CHECK_ASSUME_TAC: thm_tactic) =
  fun gth ->
    FIRST [CONTR_TAC gth;  ACCEPT_TAC gth;
           DISCARD_TAC gth; ASSUME_TAC gth];;

let (FILTER_GEN_TAC: term -> tactic) =
  fun tm (asl,w) ->
    if is_forall w && not (tm = fst(dest_forall w)) then
        GEN_TAC (asl,w)
    else failwith "FILTER_GEN_TAC";;

let (FILTER_DISCH_THEN: thm_tactic -> term -> tactic) =
  fun ttac tm (asl,w) ->
    if is_neg_imp w && not (free_in tm (fst(dest_neg_imp w))) then
      DISCH_THEN ttac (asl,w)
    else failwith "FILTER_DISCH_THEN";;

let FILTER_STRIP_THEN ttac tm =
  FIRST [FILTER_GEN_TAC tm; FILTER_DISCH_THEN ttac tm; CONJ_TAC];;

let FILTER_DISCH_TAC = FILTER_DISCH_THEN STRIP_ASSUME_TAC;;

let FILTER_STRIP_TAC = FILTER_STRIP_THEN STRIP_ASSUME_TAC;;

(* ------------------------------------------------------------------------- *)
(* Resolution stuff.                                                         *)
(* ------------------------------------------------------------------------- *)

let RES_CANON =
    let not_elim th =
      if is_neg (concl th) then true,(NOT_ELIM th) else (false,th) in
    let rec canon fl th =
       let w = concl th in
       if (is_conj w) then
          let (th1,th2) = CONJ_PAIR th in (canon fl th1) @ (canon fl th2) else
       if ((is_imp w) && not(is_neg w)) then
          let ante,conc = dest_neg_imp w in
          if (is_conj ante) then
             let a,b = dest_conj ante in
             let cth = NOT_MP th (CONJ (ASSUME a) (ASSUME b)) in
             let th1 = DISCH b cth and th2 = DISCH a cth in
                 (canon true (DISCH a th1)) @ (canon true (DISCH b th2)) else
          if (is_disj ante) then
             let a,b = dest_disj ante in
             let ath = DISJ1 (ASSUME a) b and bth = DISJ2 a (ASSUME b) in
             let th1 = DISCH a (NOT_MP th ath) and
                 th2 = DISCH b (NOT_MP th bth) in
                 (canon true th1) @ (canon true th2) else
          if (is_exists ante) then
             let v,body = dest_exists ante in
             let newv = variant (thm_frees th) v in
             let newa = subst [newv,v] body in
             let th1 = NOT_MP th (EXISTS (ante, newv) (ASSUME newa)) in
                 canon true (DISCH newa th1) else
             map (GEN_ALL o (DISCH ante)) (canon true (UNDISCH th)) else
       if (is_eq w && (type_of (rand w) = `:bool`)) then
          let (th1,th2) = EQ_IMP_RULE th in
          (if fl then [GEN_ALL th] else []) @
                       (canon true th1) @ (canon true th2) else
       if (is_forall w) then
           let vs,body = strip_forall w in
           let fvs = thm_frees th in
           let vfn = fun l -> variant (l @ fvs) in
           let nvs = itlist
                   (fun v nv -> let v' = vfn nv v in (v'::nv)) vs [] in
               canon fl (SPECL nvs th) else
       if fl then [GEN_ALL th] else [] in
    fun th -> try let args = map (not_elim o SPEC_ALL)
                                 (CONJUNCTS (SPEC_ALL th)) in
                  let imps = flat (map (map GEN_ALL o (uncurry canon)) args) in
                  check ((not) o (=) []) imps
              with Failure _ ->
                failwith
                  "RES_CANON: no implication is derivable from input thm.";;

let IMP_RES_THEN,RES_THEN =
  let MATCH_MP impth =
      let sth = SPEC_ALL impth in
      let matchfn = (fun (a,b,c) -> b,c) o
                    term_match [] (fst(dest_neg_imp(concl sth))) in
         fun th -> NOT_MP (INST_TY_TERM (matchfn (concl th)) sth) th in
  let check st l = (if l = [] then failwith st else l) in
  let IMP_RES_THEN ttac impth =
      let ths = try RES_CANON impth
                with Failure _ -> failwith "IMP_RES_THEN: no implication" in
      ASSUM_LIST
       (fun asl ->
        let l = itlist (fun th -> (@) (mapfilter (MATCH_MP th) asl)) ths [] in
        let res = check "IMP_RES_THEN: no resolvents " l in
        let tacs = check "IMP_RES_THEN: no tactics" (mapfilter ttac res) in
        EVERY tacs) in
  let RES_THEN ttac (asl,g) =
      let asm = map snd asl in
      let ths = itlist (@) (mapfilter RES_CANON asm) [] in
      let imps = check "RES_THEN: no implication" ths in
      let l = itlist (fun th -> (@) (mapfilter (MATCH_MP th) asm)) imps [] in
      let res = check "RES_THEN: no resolvents " l in
      let tacs = check "RES_THEN: no tactics" (mapfilter ttac res) in
          EVERY tacs (asl,g) in
  IMP_RES_THEN,RES_THEN;;

let IMP_RES_TAC th g =
  try IMP_RES_THEN (REPEAT_GTCL IMP_RES_THEN STRIP_ASSUME_TAC) th g
  with Failure _ -> ALL_TAC g;;

let RES_TAC g =
  try RES_THEN (REPEAT_GTCL IMP_RES_THEN STRIP_ASSUME_TAC) g
  with Failure _ -> ALL_TAC g;;

(* ------------------------------------------------------------------------- *)
(* Stuff for handling type definitions.                                      *)
(* ------------------------------------------------------------------------- *)

let prove_rep_fn_one_one th =
  try let thm = CONJUNCT1 th in
      let A,R = (I F_F rator) (dest_comb(lhs(snd(dest_forall(concl thm))))) in
      let _,[aty;rty] = dest_type (type_of R) in
      let a = mk_primed_var("a",aty) in let a' = variant [a] a in
      let a_eq_a' = mk_eq(a,a') and
          Ra_eq_Ra' = mk_eq(mk_comb(R,a),mk_comb (R,a')) in
      let th1 = AP_TERM A (ASSUME Ra_eq_Ra') in
      let ga1 = genvar aty and ga2 = genvar aty in
      let th2 = SUBST [SPEC a thm,ga1;SPEC a' thm,ga2] (mk_eq(ga1,ga2)) th1 in
      let th3 = DISCH a_eq_a' (AP_TERM R (ASSUME a_eq_a')) in
          GEN a (GEN a' (IMP_ANTISYM_RULE (DISCH Ra_eq_Ra' th2) th3))
  with Failure _ -> failwith "prove_rep_fn_one_one";;

let prove_rep_fn_onto th =
  try let [th1;th2] = CONJUNCTS th in
      let r,eq = (I F_F rhs)(dest_forall(concl th2)) in
      let RE,ar = dest_comb(lhs eq) and
          sr = (mk_eq o (fun (x,y) -> y,x) o dest_eq) eq in
      let a = mk_primed_var ("a",type_of ar) in
      let sra = mk_eq(r,mk_comb(RE,a)) in
      let ex = mk_exists(a,sra) in
      let imp1 = EXISTS (ex,ar) (SYM(ASSUME eq)) in
      let v = genvar (type_of r) and
          A = rator ar and
          s' = AP_TERM RE (SPEC a th1) in
      let th = SUBST[SYM(ASSUME sra),v](mk_eq(mk_comb(RE,mk_comb(A,v)),v))s' in
      let imp2 = CHOOSE (a,ASSUME ex) th in
      let swap = IMP_ANTISYM_RULE (DISCH eq imp1) (DISCH ex imp2) in
          GEN r (TRANS (SPEC r th2) swap)
  with Failure _ -> failwith "prove_rep_fn_onto";;

let prove_abs_fn_onto th =
  try let [th1;th2] = CONJUNCTS th in
      let a,(A,R) = (I F_F ((I F_F rator)o dest_comb o lhs))
        (dest_forall(concl th1)) in
      let thm1 = EQT_ELIM(TRANS (SPEC (mk_comb (R,a)) th2)
                                (EQT_INTRO (AP_TERM R (SPEC a th1)))) in
      let thm2 = SYM(SPEC a th1) in
      let r,P = (I F_F (rator o lhs)) (dest_forall(concl th2)) in
      let ex = mk_exists(r,mk_conj(mk_eq(a,mk_comb(A,r)),mk_comb(P,r))) in
          GEN a (EXISTS(ex,mk_comb(R,a)) (CONJ thm2 thm1))
  with Failure _ -> failwith "prove_abs_fn_onto";;

let prove_abs_fn_one_one th =
  try let [th1;th2] = CONJUNCTS th in
      let r,P = (I F_F (rator o lhs)) (dest_forall(concl th2)) and
          A,R = (I F_F rator) (dest_comb(lhs(snd(dest_forall(concl th1))))) in
      let r' = variant [r] r in
      let as1 = ASSUME(mk_comb(P,r)) and as2 = ASSUME(mk_comb(P,r')) in
      let t1 = EQ_MP (SPEC r th2) as1 and t2 = EQ_MP (SPEC r' th2) as2 in
      let eq = (mk_eq(mk_comb(A,r),mk_comb(A,r'))) in
      let v1 = genvar(type_of r) and v2 = genvar(type_of r) in
      let i1 = DISCH eq
               (SUBST [t1,v1;t2,v2] (mk_eq(v1,v2)) (AP_TERM R (ASSUME eq))) and
          i2 = DISCH (mk_eq(r,r')) (AP_TERM A (ASSUME (mk_eq(r,r')))) in
      let thm = IMP_ANTISYM_RULE i1 i2 in
      let disch =  DISCH (mk_comb(P,r)) (DISCH (mk_comb(P,r')) thm) in
          GEN r (GEN r' disch)
  with Failure _ -> failwith "prove_abs_fn_one_one";;

(* ------------------------------------------------------------------------- *)
(* AC rewriting needs to be wrapped up as a special conversion.              *)
(* ------------------------------------------------------------------------- *)

let AC_CONV(associative,commutative) tm =
  try
   let op = (rator o rator o lhs o snd o strip_forall o concl) commutative in
   let ty = (hd o snd o dest_type o type_of) op in
   let x = mk_var("x",ty) and y = mk_var("y",ty) and z = mk_var("z",ty) in
   let xy = mk_comb(mk_comb(op,x),y) and yz = mk_comb(mk_comb(op,y),z)
   and yx = mk_comb(mk_comb(op,y),x) in
   let comm = PART_MATCH I commutative (mk_eq(xy,yx))
   and ass = PART_MATCH I (SYM (SPEC_ALL associative))
              (mk_eq(mk_comb(mk_comb(op,xy),z),mk_comb(mk_comb(op,x),yz))) in
   let asc = TRANS (SUBS [comm] (SYM ass)) (INST[(x,y); (y,x)] ass) in
   let init = TOP_DEPTH_CONV (REWR_CONV ass) tm in
   let gl = rhs (concl init) in

   let rec bubble head expr =
     let ((xop,l),r) = (dest_comb F_F I) (dest_comb expr) in
     if xop = op then
       if l = head then REFL expr else
       if r = head then INST [(l,x); (r,y)] comm
       else let subb = bubble head r in
            let eqv =  AP_TERM (mk_comb(xop,l)) subb
            and ((yop,l'),r') = (dest_comb F_F I)
                     (dest_comb (snd (dest_eq (concl subb)))) in
            TRANS eqv (INST[(l,x); (l',y); (r',z)] asc)
     else failwith "" in

   let rec asce (l,r) =
     if l = r then REFL l
     else let ((zop,l'),r') = (dest_comb F_F I) (dest_comb l) in
          if zop = op then
            let beq = bubble l' r in
            let rt = snd (dest_eq (concl beq)) in
              TRANS (AP_TERM (mk_comb(op,l'))
                      (asce ((snd (dest_comb l)),(snd (dest_comb rt)))))
                    (SYM beq)
          else failwith "" in

   EQT_INTRO (EQ_MP (SYM init) (asce (dest_eq gl)))
  with _ -> failwith "AC_CONV";;

let AC_RULE ths = EQT_ELIM o AC_CONV ths;;

(* ------------------------------------------------------------------------- *)
(* The order of picking conditionals is different!                           *)
(* ------------------------------------------------------------------------- *)

let (COND_CASES_TAC :tactic) =
    let is_good_cond tm =
      try not(is_const(fst(dest_cond tm)))
      with Failure _ -> false in
    fun (asl,w) ->
      let cond = find_term (fun tm -> is_good_cond tm && free_in tm w) w in
      let p,(t,u) = dest_cond cond in
      let inst = INST_TYPE [type_of t, `:A`] COND_CLAUSES in
      let (ct,cf) = CONJ_PAIR (SPEC u (SPEC t inst)) in
      DISJ_CASES_THEN2
         (fun th -> SUBST1_TAC (EQT_INTRO th) THEN
               SUBST1_TAC ct THEN ASSUME_TAC th)
         (fun th -> SUBST1_TAC (EQF_INTRO th) THEN
               SUBST1_TAC cf THEN ASSUME_TAC th)
         (SPEC p EXCLUDED_MIDDLE)
         (asl,w) ;;

(* ------------------------------------------------------------------------- *)
(* MATCH_MP_TAC allows universals on the right of implication.               *)
(* Here's a crude hack to allow it.                                          *)
(* ------------------------------------------------------------------------- *)

let MATCH_MP_TAC th =
  MATCH_MP_TAC th ORELSE
  MATCH_MP_TAC(PURE_REWRITE_RULE[RIGHT_IMP_FORALL_THM] th);;

(* ------------------------------------------------------------------------- *)
(* Various theorems have different names.                                    *)
(* ------------------------------------------------------------------------- *)

let ZERO_LESS_EQ = LE_0;;

let LESS_EQ_MONO = LE_SUC;;

let NOT_LESS = NOT_LT;;

let LESS_0 = LT_0;;

let LESS_EQ_REFL = LE_REFL;;

let LESS_EQUAL_ANTISYM = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_ANTISYM)));;

let NOT_LESS_0 = GEN_ALL(EQF_ELIM(SPEC_ALL(CONJUNCT1 LT)));;

let LESS_TRANS = LT_TRANS;;

let LESS_LEMMA1 = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL(CONJUNCT2 LT))));;

let LESS_SUC_REFL = prove(`!n. n < SUC n`,REWRITE_TAC[LT]);;

let FACT_LESS = FACT_LT;;

let LESS_EQ_SUC_REFL = prove(`!n. n <= SUC n`,REWRITE_TAC[LE; LE_REFL]);;

let LESS_EQ_ADD = LE_ADD;;

let GREATER_EQ = GE;;

let LESS_EQUAL_ADD = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_EXISTS)));;

let LESS_EQ_IMP_LESS_SUC = GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL LT_SUC_LE)));;

let LESS_IMP_LESS_OR_EQ = LT_IMP_LE;;

let LESS_MONO_ADD = GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL LT_ADD_RCANCEL)));;

let LESS_SUC = prove(`!m n. m < n ==> m < (SUC n)`,MESON_TAC[LT]);;

let LESS_CASES = LTE_CASES;;

let LESS_EQ = GSYM LE_SUC_LT;;

let LESS_OR_EQ = LE_LT;;

let LESS_ADD_1 = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL
    (REWRITE_RULE[ADD1] LT_EXISTS))));;

let SUC_SUB1 = ARITH_RULE `!m. SUC m - 1 = m`;;

let LESS_MONO_EQ = LT_SUC;;

let LESS_ADD_SUC = ARITH_RULE `!m n. m < m + SUC n`;;

let LESS_REFL = LT_REFL;;

let INV_SUC_EQ = SUC_INJ;;

let LESS_EQ_CASES = LE_CASES;;

let LESS_EQ_TRANS = LE_TRANS;;

let LESS_THM = CONJUNCT2 LT;;

let GREATER = GT;;

let LESS_EQ_0 = CONJUNCT1 LE;;

let OR_LESS = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_SUC_LT)));;

let SUB_EQUAL_0 = SUB_REFL;;

let SUB_MONO_EQ = SUB_SUC;;

let NOT_SUC_LESS_EQ = ARITH_RULE `!n m. ~(SUC n <= m) <=> m <= n`;;

let SUC_NOT = GSYM NOT_SUC;;

let LESS_LESS_CASES = ARITH_RULE `!m n:num. (m = n) \/ m < n \/ n < m`;;

let NOT_LESS_EQUAL = NOT_LE;;

let LESS_EQ_EXISTS = LE_EXISTS;;

let LESS_MONO_ADD_EQ = LT_ADD_RCANCEL;;

let LESS_LESS_EQ_TRANS = LTE_TRANS;;

let SUB_SUB = ARITH_RULE
  `!b c. c <= b ==> (!a:num. a - (b - c) = (a + c) - b)`;;

let LESS_CASES_IMP = ARITH_RULE
 `!m n:num. ~(m < n) /\ ~(m = n) ==> n < m`;;

let SUB_LESS_EQ = ARITH_RULE `!n m:num. (n - m) <= n`;;

let SUB_EQ_EQ_0 = ARITH_RULE `!m n:num. (m - n = m) = (m = 0) \/ (n = 0)`;;

let SUB_LEFT_LESS_EQ = ARITH_RULE
 `!m n p:num. m <= (n - p) <=> (m + p) <= n \/ m <= 0`;;

let SUB_LEFT_GREATER_EQ =
   ARITH_RULE `!m n p:num. m >= (n - p) <=> (m + p) >= n`;;

let LESS_EQ_LESS_TRANS = LET_TRANS;;

let LESS_0_CASES = ARITH_RULE `!m. (0 = m) \/ 0 < m`;;

let LESS_OR = ARITH_RULE `!m n. m < n ==> (SUC m) <= n`;;

let SUB = ARITH_RULE
   `(!m. 0 - m = 0) /\
    (!m n. (SUC m) - n = (if m < n then 0 else SUC(m - n)))`;;

let LESS_MULT_MONO = prove
 (`!m i n. ((SUC n) * m) < ((SUC n) * i) <=> m < i`,
  REWRITE_TAC[LT_MULT_LCANCEL; NOT_SUC]);;

let LESS_MONO_MULT = prove
 (`!m n p. m <= n ==> (m * p) <= (n * p)`,
  SIMP_TAC[LE_MULT_RCANCEL]);;

let LESS_MULT2 = prove
 (`!m n. 0 < m /\ 0 < n ==> 0 < (m * n)`,
  REWRITE_TAC[LT_MULT]);;

let SUBSET_FINITE = prove
 (`!s. FINITE s ==> (!t. t SUBSET s ==> FINITE t)`,
  MESON_TAC[FINITE_SUBSET]);;

let LESS_EQ_SUC = prove
 (`!n. m <= SUC n <=> (m = SUC n) \/ m <= n`,
  REWRITE_TAC[LE]);;

(* ------------------------------------------------------------------------- *)
(* Restore traditional (low) parse status of "=".                            *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("=",(2,"right"));;