Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 39,457 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 |
(* ========================================================================= *)
(* HOL88 compatibility: various things missing or different in HOL Light. *)
(* ========================================================================= *)
let (upto) = (--);;
let is_neg_imp tm =
is_neg tm || is_imp tm;;
let dest_neg_imp tm =
try dest_imp tm with Failure _ ->
try (dest_neg tm,mk_const("F",[]))
with Failure _ -> failwith "dest_neg_imp";;
(* ------------------------------------------------------------------------- *)
(* I removed this recently. Note that it's intuitionistically valid. *)
(* ------------------------------------------------------------------------- *)
let CONTRAPOS =
let a = `a:bool` and b = `b:bool` in
let pth = ITAUT `(a ==> b) ==> (~b ==> ~a)` in
fun th ->
try let P,Q = dest_imp(concl th) in
MP (INST [P,a; Q,b] pth) th
with Failure _ -> failwith "CONTRAPOS";;
(* ------------------------------------------------------------------------- *)
(* I also got rid of this; it's mainly used inside DISCH_TAC anyway. *)
(* ------------------------------------------------------------------------- *)
let NEG_DISCH =
let falsity = `F` in
fun t th ->
try if concl th = falsity then NOT_INTRO(DISCH t th) else DISCH t th
with Failure _ -> failwith "NEG_DISCH";;
(* ------------------------------------------------------------------------- *)
(* These were never used (by me). *)
(* ------------------------------------------------------------------------- *)
let SELECT_ELIM th1 (v,th2) =
try let P, SP = dest_comb(concl th1) in
let th3 = DISCH (mk_comb(P,v)) th2 in
MP (INST [SP,v] th3) th1
with Failure _ -> failwith "SELECT_ELIM";;
let SELECT_INTRO =
let P = `P:A->bool` and x = `x:A` in
let pth = SPECL [P; x] SELECT_AX in
fun th ->
try let f,arg = dest_comb(concl th) in
MP (PINST [type_of x,aty] [f,P; arg,x] pth) th
with Failure _ -> failwith "SELECT_INTRO";;
(* ------------------------------------------------------------------------- *)
(* Again, I never use this so I removed it from the core. *)
(* ------------------------------------------------------------------------- *)
let EXT =
let f = `f:A->B` and g = `g:A->B` in
let pth = prove
(`(!x. (f:A->B) x = g x) ==> (f = g)`,
MATCH_ACCEPT_TAC EQ_EXT) in
fun th ->
try let x,bod = dest_forall(concl th) in
let l,r = dest_eq bod in
let l',r' = rator l, rator r in
let th1 = PINST [type_of x,aty; type_of l,bty] [l',f; r',g] pth in
MP th1 th
with Failure _ -> failwith "EXT";;
(* ------------------------------------------------------------------------- *)
(* These get overwritten by the subgoal stuff. *)
(* ------------------------------------------------------------------------- *)
let PROVE = prove;;
let prove_thm((s:string),g,t) = prove(g,t);;
(* ------------------------------------------------------------------------- *)
(* The quantifier movement conversions. *)
(* ------------------------------------------------------------------------- *)
let (CONV_OF_RCONV: conv -> conv) =
let rec get_bv tm =
if is_abs tm then bndvar tm
else if is_comb tm then
try get_bv (rand tm) with Failure _ -> get_bv (rator tm)
else failwith "" in
fun conv tm ->
let v = get_bv tm in
let th1 = conv tm in
let th2 = ONCE_DEPTH_CONV (GEN_ALPHA_CONV v) (rhs(concl th1)) in
TRANS th1 th2;;
let (CONV_OF_THM: thm -> conv) =
CONV_OF_RCONV o REWR_CONV;;
let (X_FUN_EQ_CONV:term->conv) =
fun v -> (REWR_CONV FUN_EQ_THM) THENC GEN_ALPHA_CONV v;;
let (FUN_EQ_CONV:conv) =
fun tm ->
let vars = frees tm in
let op,[ty1;ty2] = dest_type(type_of (lhs tm)) in
if op = "fun"
then let varnm =
if (is_vartype ty1) then "x" else
hd(explode(fst(dest_type ty1))) in
let x = variant vars (mk_var(varnm,ty1)) in
X_FUN_EQ_CONV x tm
else failwith "FUN_EQ_CONV";;
let (SINGLE_DEPTH_CONV:conv->conv) =
let rec SINGLE_DEPTH_CONV conv tm =
try conv tm with Failure _ ->
(SUB_CONV (SINGLE_DEPTH_CONV conv) THENC (TRY_CONV conv)) tm in
SINGLE_DEPTH_CONV;;
let (SKOLEM_CONV:conv) =
SINGLE_DEPTH_CONV (REWR_CONV SKOLEM_THM);;
let (X_SKOLEM_CONV:term->conv) =
fun v -> SKOLEM_CONV THENC GEN_ALPHA_CONV v;;
let EXISTS_UNIQUE_CONV tm =
let v = bndvar(rand tm) in
let th1 = REWR_CONV EXISTS_UNIQUE_THM tm in
let tm1 = rhs(concl th1) in
let vars = frees tm1 in
let v = variant vars v in
let v' = variant (v::vars) v in
let th2 =
(LAND_CONV(GEN_ALPHA_CONV v) THENC
RAND_CONV(BINDER_CONV(GEN_ALPHA_CONV v') THENC
GEN_ALPHA_CONV v)) tm1 in
TRANS th1 th2;;
let NOT_FORALL_CONV = CONV_OF_THM NOT_FORALL_THM;;
let NOT_EXISTS_CONV = CONV_OF_THM NOT_EXISTS_THM;;
let RIGHT_IMP_EXISTS_CONV = CONV_OF_THM RIGHT_IMP_EXISTS_THM;;
let FORALL_IMP_CONV = CONV_OF_RCONV
(REWR_CONV TRIV_FORALL_IMP_THM ORELSEC
REWR_CONV RIGHT_FORALL_IMP_THM ORELSEC
REWR_CONV LEFT_FORALL_IMP_THM);;
let EXISTS_AND_CONV = CONV_OF_RCONV
(REWR_CONV TRIV_EXISTS_AND_THM ORELSEC
REWR_CONV LEFT_EXISTS_AND_THM ORELSEC
REWR_CONV RIGHT_EXISTS_AND_THM);;
let LEFT_IMP_EXISTS_CONV = CONV_OF_THM LEFT_IMP_EXISTS_THM;;
let LEFT_AND_EXISTS_CONV tm =
let v = bndvar(rand(rand(rator tm))) in
(REWR_CONV LEFT_AND_EXISTS_THM THENC TRY_CONV (GEN_ALPHA_CONV v)) tm;;
let RIGHT_AND_EXISTS_CONV =
CONV_OF_THM RIGHT_AND_EXISTS_THM;;
let AND_FORALL_CONV = CONV_OF_THM AND_FORALL_THM;;
(* ------------------------------------------------------------------------- *)
(* Paired beta conversion (now just a special case of GEN_BETA_CONV). *)
(* ------------------------------------------------------------------------- *)
let PAIRED_BETA_CONV =
let pth = (EQT_ELIM o REWRITE_CONV [EXISTS_THM; GABS_DEF])
`!P:A->bool. (?) P ==> P((GABS) P)`
and pth1 = GSYM PASSOC_DEF and pth2 = GSYM UNCURRY_DEF in
let dest_geq = dest_binary "GEQ" in
let GEQ_RULE = CONV_RULE(REWR_CONV(GSYM GEQ_DEF))
and UNGEQ_RULE = CONV_RULE(REWR_CONV GEQ_DEF) in
let rec UNCURRY_CONV fn vs =
try let l,r = dest_pair vs in
try let r1,r2 = dest_pair r in
let lr = mk_pair(l,r1) in
let th0 = UNCURRY_CONV fn (mk_pair(lr,r2)) in
let th1 = ISPECL [rator(rand(concl th0));l;r1;r2] pth1 in
TRANS th0 th1
with Failure _ ->
let th0 = UNCURRY_CONV fn l in
let fn' = rand(concl th0) in
let th1 = UNCURRY_CONV fn' r in
let th2 = ISPECL [rator fn';l;r] pth2 in
TRANS (TRANS (AP_THM th0 r) th1) th2
with Failure _ -> REFL(mk_comb(fn,vs)) in
fun tm ->
try BETA_CONV tm with Failure _ ->
let gabs,args = dest_comb tm in
let fn,bod = dest_binder "GABS" gabs in
let avs,eqv = strip_forall bod in
let l,r = dest_geq eqv in
let pred = list_mk_abs(avs,r) in
let th0 = rev_itlist
(fun v th -> CONV_RULE(RAND_CONV BETA_CONV) (AP_THM th v))
avs (REFL pred) in
let th1 = TRANS (SYM(UNCURRY_CONV pred (rand l))) th0 in
let th1a = GEQ_RULE th1 in
let etm = list_mk_icomb "?" [rand gabs] in
let th2 = EXISTS(etm,rator (lhand(concl th1a))) (GENL avs th1a) in
let th3 = SPECL (striplist dest_pair args) (BETA_RULE(MATCH_MP pth th2)) in
UNGEQ_RULE th3;;
(* ------------------------------------------------------------------------- *)
(* The slew of named tautologies. *)
(* ------------------------------------------------------------------------- *)
let AND1_THM = TAUT `!t1 t2. t1 /\ t2 ==> t1`;;
let AND2_THM = TAUT `!t1 t2. t1 /\ t2 ==> t2`;;
let AND_IMP_INTRO = TAUT `!t1 t2 t3. t1 ==> t2 ==> t3 <=> t1 /\ t2 ==> t3`;;
let AND_INTRO_THM = TAUT `!t1 t2. t1 ==> t2 ==> t1 /\ t2`;;
let BOOL_EQ_DISTINCT = TAUT `~(T <=> F) /\ ~(F <=> T)`;;
let EQ_EXPAND = TAUT `!t1 t2. (t1 <=> t2) <=> t1 /\ t2 \/ ~t1 /\ ~t2`;;
let EQ_IMP_THM = TAUT `!t1 t2. (t1 <=> t2) <=> (t1 ==> t2) /\ (t2 ==> t1)`;;
let FALSITY = TAUT `!t. F ==> t`;;
let F_IMP = TAUT `!t. ~t ==> t ==> F`;;
let IMP_DISJ_THM = TAUT `!t1 t2. t1 ==> t2 <=> ~t1 \/ t2`;;
let IMP_F = TAUT `!t. (t ==> F) ==> ~t`;;
let IMP_F_EQ_F = TAUT `!t. t ==> F <=> (t <=> F)`;;
let LEFT_AND_OVER_OR = TAUT
`!t1 t2 t3. t1 /\ (t2 \/ t3) <=> t1 /\ t2 \/ t1 /\ t3`;;
let LEFT_OR_OVER_AND = TAUT
`!t1 t2 t3. t1 \/ t2 /\ t3 <=> (t1 \/ t2) /\ (t1 \/ t3)`;;
let NOT_AND = TAUT `~(t /\ ~t)`;;
let NOT_F = TAUT `!t. ~t ==> (t <=> F)`;;
let OR_ELIM_THM = TAUT
`!t t1 t2. t1 \/ t2 ==> (t1 ==> t) ==> (t2 ==> t) ==> t`;;
let OR_IMP_THM = TAUT `!t1 t2. (t1 <=> t2 \/ t1) <=> t2 ==> t1`;;
let OR_INTRO_THM1 = TAUT `!t1 t2. t1 ==> t1 \/ t2`;;
let OR_INTRO_THM2 = TAUT `!t1 t2. t2 ==> t1 \/ t2`;;
let RIGHT_AND_OVER_OR = TAUT
`!t1 t2 t3. (t2 \/ t3) /\ t1 <=> t2 /\ t1 \/ t3 /\ t1`;;
let RIGHT_OR_OVER_AND = TAUT
`!t1 t2 t3. t2 /\ t3 \/ t1 <=> (t2 \/ t1) /\ (t3 \/ t1)`;;
(* ------------------------------------------------------------------------- *)
(* This is an overwrite -- is there any point in what I have? *)
(* ------------------------------------------------------------------------- *)
let is_type = can get_type_arity;;
(* ------------------------------------------------------------------------- *)
(* I suppose this is also useful. *)
(* ------------------------------------------------------------------------- *)
let is_constant = can get_const_type;;
(* ------------------------------------------------------------------------- *)
(* Misc. *)
(* ------------------------------------------------------------------------- *)
let null l = l = [];;
let combine(a,b) = zip a b;;
let split = unzip;;
(* ------------------------------------------------------------------------- *)
(* Syntax. *)
(* ------------------------------------------------------------------------- *)
let type_tyvars = type_vars_in_term o curry mk_var "x";;
let find_match u =
let rec find_mt t =
try term_match [] u t with Failure _ ->
try find_mt(rator t) with Failure _ ->
try find_mt(rand t) with Failure _ ->
try find_mt(snd(dest_abs t))
with Failure _ -> failwith "find_match" in
fun t -> let _,tmin,tyin = find_mt t in
tmin,tyin;;
let rec mk_primed_var(name,ty) =
if can get_const_type name then mk_primed_var(name^"'",ty)
else mk_var(name,ty);;
let subst_occs =
let rec subst_occs slist tm =
let applic,noway = partition (fun (i,(t,x)) -> aconv tm x) slist in
let sposs = map (fun (l,z) -> let l1,l2 = partition ((=) 1) l in
(l1,z),(l2,z)) applic in
let racts,rrest = unzip sposs in
let acts = filter (fun t -> not (fst t = [])) racts in
let trest = map (fun (n,t) -> (map (C (-) 1) n,t)) rrest in
let urest = filter (fun t -> not (fst t = [])) trest in
let tlist = urest @ noway in
if acts = [] then
if is_comb tm then
let l,r = dest_comb tm in
let l',s' = subst_occs tlist l in
let r',s'' = subst_occs s' r in
mk_comb(l',r'),s''
else if is_abs tm then
let bv,bod = dest_abs tm in
let gv = genvar(type_of bv) in
let nbod = vsubst[gv,bv] bod in
let tm',s' = subst_occs tlist nbod in
alpha bv (mk_abs(gv,tm')),s'
else
tm,tlist
else
let tm' = (fun (n,(t,x)) -> subst[t,x] tm) (hd acts) in
tm',tlist in
fun ilist slist tm -> fst(subst_occs (zip ilist slist) tm);;
(* ------------------------------------------------------------------------- *)
(* Note that the all-instantiating INST and INST_TYPE are not overwritten. *)
(* ------------------------------------------------------------------------- *)
let INST_TY_TERM(substl,insttyl) th =
let th' = INST substl (INST_TYPE insttyl th) in
if hyp th' = hyp th then th'
else failwith "INST_TY_TERM: Free term and/or type variables in hypotheses";;
(* ------------------------------------------------------------------------- *)
(* Conversions stuff. *)
(* ------------------------------------------------------------------------- *)
let RIGHT_CONV_RULE (conv:conv) th =
TRANS th (conv(rhs(concl th)));;
(* ------------------------------------------------------------------------- *)
(* Derived rules. *)
(* ------------------------------------------------------------------------- *)
let NOT_EQ_SYM =
let pth = GENL [`a:A`; `b:A`]
(CONTRAPOS(DISCH_ALL(SYM(ASSUME`a:A = b`))))
and aty = `:A` in
fun th -> try let l,r = dest_eq(dest_neg(concl th)) in
MP (SPECL [r; l] (INST_TYPE [type_of l,aty] pth)) th
with Failure _ -> failwith "NOT_EQ_SYM";;
let NOT_MP thi th =
try MP thi th with Failure _ ->
try let t = dest_neg (concl thi) in
MP(MP (SPEC t F_IMP) thi) th
with Failure _ -> failwith "NOT_MP";;
let FORALL_EQ x =
let mkall = AP_TERM (mk_const("!",[type_of x,mk_vartype "A"])) in
fun th -> try mkall (ABS x th)
with Failure _ -> failwith "FORALL_EQ";;
let EXISTS_EQ x =
let mkex = AP_TERM (mk_const("?",[type_of x,mk_vartype "A"])) in
fun th -> try mkex (ABS x th)
with Failure _ -> failwith "EXISTS_EQ";;
let SELECT_EQ x =
let mksel = AP_TERM (mk_const("@",[type_of x,mk_vartype "A"])) in
fun th -> try mksel (ABS x th)
with Failure _ -> failwith "SELECT_EQ";;
let RIGHT_BETA th =
try TRANS th (BETA_CONV(rhs(concl th)))
with Failure _ -> failwith "RIGHT_BETA";;
let rec LIST_BETA_CONV tm =
try let rat,rnd = dest_comb tm in
RIGHT_BETA(AP_THM(LIST_BETA_CONV rat)rnd)
with Failure _ -> REFL tm;;
let RIGHT_LIST_BETA th = TRANS th (LIST_BETA_CONV(snd(dest_eq(concl th))));;
let LIST_CONJ = end_itlist CONJ ;;
let rec CONJ_LIST n th =
try if n=1 then [th] else (CONJUNCT1 th)::(CONJ_LIST (n-1) (CONJUNCT2 th))
with Failure _ -> failwith "CONJ_LIST";;
let rec BODY_CONJUNCTS th =
if is_forall(concl th) then
BODY_CONJUNCTS (SPEC_ALL th) else
if is_conj (concl th) then
BODY_CONJUNCTS (CONJUNCT1 th) @ BODY_CONJUNCTS (CONJUNCT2 th)
else [th];;
let rec IMP_CANON th =
let w = concl th in
if is_conj w then IMP_CANON (CONJUNCT1 th) @ IMP_CANON (CONJUNCT2 th)
else if is_imp w then
let ante,conc = dest_neg_imp w in
if is_conj ante then
let a,b = dest_conj ante in
IMP_CANON
(DISCH a (DISCH b (NOT_MP th (CONJ (ASSUME a) (ASSUME b)))))
else if is_disj ante then
let a,b = dest_disj ante in
IMP_CANON (DISCH a (NOT_MP th (DISJ1 (ASSUME a) b))) @
IMP_CANON (DISCH b (NOT_MP th (DISJ2 a (ASSUME b))))
else if is_exists ante then
let x,body = dest_exists ante in
let x' = variant (thm_frees th) x in
let body' = subst [x',x] body in
IMP_CANON
(DISCH body' (NOT_MP th (EXISTS (ante, x') (ASSUME body'))))
else
map (DISCH ante) (IMP_CANON (UNDISCH th))
else if is_forall w then
IMP_CANON (SPEC_ALL th)
else [th];;
let LIST_MP = rev_itlist (fun x y -> MP y x);;
let DISJ_IMP =
let pth = TAUT`!t1 t2. t1 \/ t2 ==> ~t1 ==> t2` in
fun th ->
try let a,b = dest_disj(concl th) in MP (SPECL [a;b] pth) th
with Failure _ -> failwith "DISJ_IMP";;
let IMP_ELIM =
let pth = TAUT`!t1 t2. (t1 ==> t2) ==> ~t1 \/ t2` in
fun th ->
try let a,b = dest_imp(concl th) in MP (SPECL [a;b] pth) th
with Failure _ -> failwith "IMP_ELIM";;
let DISJ_CASES_UNION dth ath bth =
DISJ_CASES dth (DISJ1 ath (concl bth)) (DISJ2 (concl ath) bth);;
let MK_ABS qth =
try let ov = bndvar(rand(concl qth)) in
let bv,rth = SPEC_VAR qth in
let sth = ABS bv rth in
let cnv = ALPHA_CONV ov in
CONV_RULE(BINOP_CONV cnv) sth
with Failure _ -> failwith "MK_ABS";;
let HALF_MK_ABS th =
try let th1 = MK_ABS th in
CONV_RULE(LAND_CONV ETA_CONV) th1
with Failure _ -> failwith "HALF_MK_ABS";;
let MK_EXISTS qth =
try let ov = bndvar(rand(concl qth)) in
let bv,rth = SPEC_VAR qth in
let sth = EXISTS_EQ bv rth in
let cnv = GEN_ALPHA_CONV ov in
CONV_RULE(BINOP_CONV cnv) sth
with Failure _ -> failwith "MK_EXISTS";;
let LIST_MK_EXISTS l th = itlist (fun x th -> MK_EXISTS(GEN x th)) l th;;
let IMP_CONJ th1 th2 =
let A1,C1 = dest_imp (concl th1) and A2,C2 = dest_imp (concl th2) in
let a1,a2 = CONJ_PAIR (ASSUME (mk_conj(A1,A2))) in
DISCH (mk_conj(A1,A2)) (CONJ (MP th1 a1) (MP th2 a2));;
let EXISTS_IMP x =
if not (is_var x) then failwith "EXISTS_IMP: first argument not a variable"
else fun th ->
try let ante,cncl = dest_imp(concl th) in
let th1 = EXISTS (mk_exists(x,cncl),x) (UNDISCH th) in
let asm = mk_exists(x,ante) in
DISCH asm (CHOOSE (x,ASSUME asm) th1)
with Failure _ ->
failwith "EXISTS_IMP: variable free in assumptions";;
let CONJUNCTS_CONV (t1,t2) =
let rec build_conj thl t =
try let l,r = dest_conj t in
CONJ (build_conj thl l) (build_conj thl r)
with Failure _ -> find (fun th -> concl th = t) thl in
try IMP_ANTISYM_RULE
(DISCH t1 (build_conj (CONJUNCTS (ASSUME t1)) t2))
(DISCH t2 (build_conj (CONJUNCTS (ASSUME t2)) t1))
with Failure _ -> failwith "CONJUNCTS_CONV";;
let CONJ_SET_CONV l1 l2 =
try CONJUNCTS_CONV (list_mk_conj l1, list_mk_conj l2)
with Failure _ -> failwith "CONJ_SET_CONV";;
let FRONT_CONJ_CONV tml t =
let rec remove x l =
if hd l = x then tl l else (hd l)::(remove x (tl l)) in
try CONJ_SET_CONV tml (t::(remove t tml))
with Failure _ -> failwith "FRONT_CONJ_CONV";;
let CONJ_DISCH =
let pth = TAUT`!t t1 t2. (t ==> (t1 = t2)) ==> (t /\ t1 <=> t /\ t2)` in
fun t th ->
try let t1,t2 = dest_eq(concl th) in
MP (SPECL [t; t1; t2] pth) (DISCH t th)
with Failure _ -> failwith "CONJ_DISCH";;
let rec CONJ_DISCHL l th =
if l = [] then th else CONJ_DISCH (hd l) (CONJ_DISCHL (tl l) th);;
let rec GSPEC th =
let wl,w = dest_thm th in
if is_forall w then
GSPEC (SPEC (genvar (type_of (fst (dest_forall w)))) th)
else th;;
let ANTE_CONJ_CONV tm =
try let (a1,a2),c = (dest_conj F_F I) (dest_imp tm) in
let imp1 = MP (ASSUME tm) (CONJ (ASSUME a1) (ASSUME a2)) and
imp2 = LIST_MP [CONJUNCT1 (ASSUME (mk_conj(a1,a2)));
CONJUNCT2 (ASSUME (mk_conj(a1,a2)))]
(ASSUME (mk_imp(a1,mk_imp(a2,c)))) in
IMP_ANTISYM_RULE (DISCH_ALL (DISCH a1 (DISCH a2 imp1)))
(DISCH_ALL (DISCH (mk_conj(a1,a2)) imp2))
with Failure _ -> failwith "ANTE_CONJ_CONV";;
let bool_EQ_CONV =
let check = let boolty = `:bool` in check (fun tm -> type_of tm = boolty) in
let clist = map (GEN `b:bool`)
(CONJUNCTS(SPEC `b:bool` EQ_CLAUSES)) in
let tb = hd clist and bt = hd(tl clist) in
let T = `T` and F = `F` in
fun tm ->
try let l,r = (I F_F check) (dest_eq tm) in
if l = r then EQT_INTRO (REFL l) else
if l = T then SPEC r tb else
if r = T then SPEC l bt else fail()
with Failure _ -> failwith "bool_EQ_CONV";;
let COND_CONV =
let T = `T` and F = `F` and vt = genvar`:A` and vf = genvar `:A` in
let gen = GENL [vt;vf] in
let CT,CF = (gen F_F gen) (CONJ_PAIR (SPECL [vt;vf] COND_CLAUSES)) in
fun tm ->
let P,(u,v) = try dest_cond tm
with Failure _ -> failwith "COND_CONV: not a conditional" in
let ty = type_of u in
if (P=T) then SPEC v (SPEC u (INST_TYPE [ty,`:A`] CT)) else
if (P=F) then SPEC v (SPEC u (INST_TYPE [ty,`:A`] CF)) else
if (u=v) then SPEC u (SPEC P (INST_TYPE [ty,`:A`] COND_ID)) else
if (aconv u v) then
let cnd = AP_TERM (rator tm) (ALPHA v u) in
let thm = SPEC u (SPEC P (INST_TYPE [ty,`:A`] COND_ID)) in
TRANS cnd thm else
failwith "COND_CONV: can't simplify conditional";;
let SUBST_MATCH eqth th =
let tm_inst,ty_inst = find_match (lhs(concl eqth)) (concl th) in
SUBS [INST tm_inst (INST_TYPE ty_inst eqth)] th;;
let SUBST thl pat th =
let eqs,vs = unzip thl in
let gvs = map (genvar o type_of) vs in
let gpat = subst (zip gvs vs) pat in
let ls,rs = unzip (map (dest_eq o concl) eqs) in
let ths = map (ASSUME o mk_eq) (zip gvs rs) in
let th1 = ASSUME gpat in
let th2 = SUBS ths th1 in
let th3 = itlist DISCH (map concl ths) (DISCH gpat th2) in
let th4 = INST (zip ls gvs) th3 in
MP (rev_itlist (C MP) eqs th4) th;;
(* ------------------------------------------------------------------------- *)
(* A poor thing but my own. The original (bogus) code used mk_thm. *)
(* I haven't bothered with GSUBS and SUBS_OCCS. *)
(* ------------------------------------------------------------------------- *)
let SUBST_CONV thvars template tm =
let thms,vars = unzip thvars in
let gvs = map (genvar o type_of) vars in
let gtemplate = subst (zip gvs vars) template in
SUBST (zip thms gvs) (mk_eq(template,gtemplate)) (REFL tm);;
(* ------------------------------------------------------------------------- *)
(* Filtering rewrites. *)
(* ------------------------------------------------------------------------- *)
let FILTER_PURE_ASM_REWRITE_RULE f thl th =
PURE_REWRITE_RULE ((map ASSUME (filter f (hyp th))) @ thl) th
and FILTER_ASM_REWRITE_RULE f thl th =
REWRITE_RULE ((map ASSUME (filter f (hyp th))) @ thl) th
and FILTER_PURE_ONCE_ASM_REWRITE_RULE f thl th =
PURE_ONCE_REWRITE_RULE ((map ASSUME (filter f (hyp th))) @ thl) th
and FILTER_ONCE_ASM_REWRITE_RULE f thl th =
ONCE_REWRITE_RULE ((map ASSUME (filter f (hyp th))) @ thl) th;;
let (FILTER_PURE_ASM_REWRITE_TAC: (term->bool) -> thm list -> tactic) =
fun f thl (asl,w) ->
PURE_REWRITE_TAC (filter (f o concl) (map snd asl) @ thl) (asl,w)
and (FILTER_ASM_REWRITE_TAC: (term->bool) -> thm list -> tactic) =
fun f thl (asl,w) ->
REWRITE_TAC (filter (f o concl) (map snd asl) @ thl) (asl,w)
and (FILTER_PURE_ONCE_ASM_REWRITE_TAC: (term->bool) -> thm list -> tactic) =
fun f thl (asl,w) ->
PURE_ONCE_REWRITE_TAC (filter (f o concl) (map snd asl) @ thl) (asl,w)
and (FILTER_ONCE_ASM_REWRITE_TAC: (term->bool) -> thm list -> tactic) =
fun f thl (asl,w) ->
ONCE_REWRITE_TAC (filter (f o concl) (map snd asl) @ thl) (asl,w);;
(* ------------------------------------------------------------------------- *)
(* Tacticals. *)
(* ------------------------------------------------------------------------- *)
let DISJ_CASES_THENL =
end_itlist DISJ_CASES_THEN2;;
let (X_CASES_THENL: term list list -> thm_tactic list -> thm_tactic) =
fun varsl ttacl ->
end_itlist DISJ_CASES_THEN2
(map (fun (vars,ttac) -> EVERY_TCL (map X_CHOOSE_THEN vars) ttac)
(zip varsl ttacl));;
let (X_CASES_THEN: term list list -> thm_tactical) =
fun varsl ttac ->
end_itlist DISJ_CASES_THEN2
(map (fun vars -> EVERY_TCL (map X_CHOOSE_THEN vars) ttac) varsl);;
let (CASES_THENL: thm_tactic list -> thm_tactic) =
fun ttacl -> end_itlist DISJ_CASES_THEN2 (map (REPEAT_TCL CHOOSE_THEN) ttacl);;
(* ------------------------------------------------------------------------- *)
(* Tactics. *)
(* ------------------------------------------------------------------------- *)
let (DISCARD_TAC: thm_tactic) =
let truth = `T` in
fun th (asl,w) ->
if exists (aconv (concl th)) (truth::(map (concl o snd) asl))
then ALL_TAC (asl,w)
else failwith "DISCARD_TAC";;
let (GSUBST_TAC:((term * term)list->term->term)->thm list -> tactic) =
fun substfn ths (asl,w) ->
let ls,rs = split (map (dest_eq o concl) ths) in
let vars = map (genvar o type_of) ls in
let base = substfn (combine(vars,ls)) w in
let rfn i thl =
match thl with
[th] -> SUBST (combine(map SYM ths, vars)) base th
| _ -> failwith "" in
null_meta,
[asl,subst (combine(rs,vars)) base],
rfn;;
let SUBST_TAC = GSUBST_TAC subst;;
let SUBST_OCCS_TAC nlths =
let nll,ths = split nlths in GSUBST_TAC (subst_occs nll) ths;;
let (CHECK_ASSUME_TAC: thm_tactic) =
fun gth ->
FIRST [CONTR_TAC gth; ACCEPT_TAC gth;
DISCARD_TAC gth; ASSUME_TAC gth];;
let (FILTER_GEN_TAC: term -> tactic) =
fun tm (asl,w) ->
if is_forall w && not (tm = fst(dest_forall w)) then
GEN_TAC (asl,w)
else failwith "FILTER_GEN_TAC";;
let (FILTER_DISCH_THEN: thm_tactic -> term -> tactic) =
fun ttac tm (asl,w) ->
if is_neg_imp w && not (free_in tm (fst(dest_neg_imp w))) then
DISCH_THEN ttac (asl,w)
else failwith "FILTER_DISCH_THEN";;
let FILTER_STRIP_THEN ttac tm =
FIRST [FILTER_GEN_TAC tm; FILTER_DISCH_THEN ttac tm; CONJ_TAC];;
let FILTER_DISCH_TAC = FILTER_DISCH_THEN STRIP_ASSUME_TAC;;
let FILTER_STRIP_TAC = FILTER_STRIP_THEN STRIP_ASSUME_TAC;;
(* ------------------------------------------------------------------------- *)
(* Resolution stuff. *)
(* ------------------------------------------------------------------------- *)
let RES_CANON =
let not_elim th =
if is_neg (concl th) then true,(NOT_ELIM th) else (false,th) in
let rec canon fl th =
let w = concl th in
if (is_conj w) then
let (th1,th2) = CONJ_PAIR th in (canon fl th1) @ (canon fl th2) else
if ((is_imp w) && not(is_neg w)) then
let ante,conc = dest_neg_imp w in
if (is_conj ante) then
let a,b = dest_conj ante in
let cth = NOT_MP th (CONJ (ASSUME a) (ASSUME b)) in
let th1 = DISCH b cth and th2 = DISCH a cth in
(canon true (DISCH a th1)) @ (canon true (DISCH b th2)) else
if (is_disj ante) then
let a,b = dest_disj ante in
let ath = DISJ1 (ASSUME a) b and bth = DISJ2 a (ASSUME b) in
let th1 = DISCH a (NOT_MP th ath) and
th2 = DISCH b (NOT_MP th bth) in
(canon true th1) @ (canon true th2) else
if (is_exists ante) then
let v,body = dest_exists ante in
let newv = variant (thm_frees th) v in
let newa = subst [newv,v] body in
let th1 = NOT_MP th (EXISTS (ante, newv) (ASSUME newa)) in
canon true (DISCH newa th1) else
map (GEN_ALL o (DISCH ante)) (canon true (UNDISCH th)) else
if (is_eq w && (type_of (rand w) = `:bool`)) then
let (th1,th2) = EQ_IMP_RULE th in
(if fl then [GEN_ALL th] else []) @
(canon true th1) @ (canon true th2) else
if (is_forall w) then
let vs,body = strip_forall w in
let fvs = thm_frees th in
let vfn = fun l -> variant (l @ fvs) in
let nvs = itlist
(fun v nv -> let v' = vfn nv v in (v'::nv)) vs [] in
canon fl (SPECL nvs th) else
if fl then [GEN_ALL th] else [] in
fun th -> try let args = map (not_elim o SPEC_ALL)
(CONJUNCTS (SPEC_ALL th)) in
let imps = flat (map (map GEN_ALL o (uncurry canon)) args) in
check ((not) o (=) []) imps
with Failure _ ->
failwith
"RES_CANON: no implication is derivable from input thm.";;
let IMP_RES_THEN,RES_THEN =
let MATCH_MP impth =
let sth = SPEC_ALL impth in
let matchfn = (fun (a,b,c) -> b,c) o
term_match [] (fst(dest_neg_imp(concl sth))) in
fun th -> NOT_MP (INST_TY_TERM (matchfn (concl th)) sth) th in
let check st l = (if l = [] then failwith st else l) in
let IMP_RES_THEN ttac impth =
let ths = try RES_CANON impth
with Failure _ -> failwith "IMP_RES_THEN: no implication" in
ASSUM_LIST
(fun asl ->
let l = itlist (fun th -> (@) (mapfilter (MATCH_MP th) asl)) ths [] in
let res = check "IMP_RES_THEN: no resolvents " l in
let tacs = check "IMP_RES_THEN: no tactics" (mapfilter ttac res) in
EVERY tacs) in
let RES_THEN ttac (asl,g) =
let asm = map snd asl in
let ths = itlist (@) (mapfilter RES_CANON asm) [] in
let imps = check "RES_THEN: no implication" ths in
let l = itlist (fun th -> (@) (mapfilter (MATCH_MP th) asm)) imps [] in
let res = check "RES_THEN: no resolvents " l in
let tacs = check "RES_THEN: no tactics" (mapfilter ttac res) in
EVERY tacs (asl,g) in
IMP_RES_THEN,RES_THEN;;
let IMP_RES_TAC th g =
try IMP_RES_THEN (REPEAT_GTCL IMP_RES_THEN STRIP_ASSUME_TAC) th g
with Failure _ -> ALL_TAC g;;
let RES_TAC g =
try RES_THEN (REPEAT_GTCL IMP_RES_THEN STRIP_ASSUME_TAC) g
with Failure _ -> ALL_TAC g;;
(* ------------------------------------------------------------------------- *)
(* Stuff for handling type definitions. *)
(* ------------------------------------------------------------------------- *)
let prove_rep_fn_one_one th =
try let thm = CONJUNCT1 th in
let A,R = (I F_F rator) (dest_comb(lhs(snd(dest_forall(concl thm))))) in
let _,[aty;rty] = dest_type (type_of R) in
let a = mk_primed_var("a",aty) in let a' = variant [a] a in
let a_eq_a' = mk_eq(a,a') and
Ra_eq_Ra' = mk_eq(mk_comb(R,a),mk_comb (R,a')) in
let th1 = AP_TERM A (ASSUME Ra_eq_Ra') in
let ga1 = genvar aty and ga2 = genvar aty in
let th2 = SUBST [SPEC a thm,ga1;SPEC a' thm,ga2] (mk_eq(ga1,ga2)) th1 in
let th3 = DISCH a_eq_a' (AP_TERM R (ASSUME a_eq_a')) in
GEN a (GEN a' (IMP_ANTISYM_RULE (DISCH Ra_eq_Ra' th2) th3))
with Failure _ -> failwith "prove_rep_fn_one_one";;
let prove_rep_fn_onto th =
try let [th1;th2] = CONJUNCTS th in
let r,eq = (I F_F rhs)(dest_forall(concl th2)) in
let RE,ar = dest_comb(lhs eq) and
sr = (mk_eq o (fun (x,y) -> y,x) o dest_eq) eq in
let a = mk_primed_var ("a",type_of ar) in
let sra = mk_eq(r,mk_comb(RE,a)) in
let ex = mk_exists(a,sra) in
let imp1 = EXISTS (ex,ar) (SYM(ASSUME eq)) in
let v = genvar (type_of r) and
A = rator ar and
s' = AP_TERM RE (SPEC a th1) in
let th = SUBST[SYM(ASSUME sra),v](mk_eq(mk_comb(RE,mk_comb(A,v)),v))s' in
let imp2 = CHOOSE (a,ASSUME ex) th in
let swap = IMP_ANTISYM_RULE (DISCH eq imp1) (DISCH ex imp2) in
GEN r (TRANS (SPEC r th2) swap)
with Failure _ -> failwith "prove_rep_fn_onto";;
let prove_abs_fn_onto th =
try let [th1;th2] = CONJUNCTS th in
let a,(A,R) = (I F_F ((I F_F rator)o dest_comb o lhs))
(dest_forall(concl th1)) in
let thm1 = EQT_ELIM(TRANS (SPEC (mk_comb (R,a)) th2)
(EQT_INTRO (AP_TERM R (SPEC a th1)))) in
let thm2 = SYM(SPEC a th1) in
let r,P = (I F_F (rator o lhs)) (dest_forall(concl th2)) in
let ex = mk_exists(r,mk_conj(mk_eq(a,mk_comb(A,r)),mk_comb(P,r))) in
GEN a (EXISTS(ex,mk_comb(R,a)) (CONJ thm2 thm1))
with Failure _ -> failwith "prove_abs_fn_onto";;
let prove_abs_fn_one_one th =
try let [th1;th2] = CONJUNCTS th in
let r,P = (I F_F (rator o lhs)) (dest_forall(concl th2)) and
A,R = (I F_F rator) (dest_comb(lhs(snd(dest_forall(concl th1))))) in
let r' = variant [r] r in
let as1 = ASSUME(mk_comb(P,r)) and as2 = ASSUME(mk_comb(P,r')) in
let t1 = EQ_MP (SPEC r th2) as1 and t2 = EQ_MP (SPEC r' th2) as2 in
let eq = (mk_eq(mk_comb(A,r),mk_comb(A,r'))) in
let v1 = genvar(type_of r) and v2 = genvar(type_of r) in
let i1 = DISCH eq
(SUBST [t1,v1;t2,v2] (mk_eq(v1,v2)) (AP_TERM R (ASSUME eq))) and
i2 = DISCH (mk_eq(r,r')) (AP_TERM A (ASSUME (mk_eq(r,r')))) in
let thm = IMP_ANTISYM_RULE i1 i2 in
let disch = DISCH (mk_comb(P,r)) (DISCH (mk_comb(P,r')) thm) in
GEN r (GEN r' disch)
with Failure _ -> failwith "prove_abs_fn_one_one";;
(* ------------------------------------------------------------------------- *)
(* AC rewriting needs to be wrapped up as a special conversion. *)
(* ------------------------------------------------------------------------- *)
let AC_CONV(associative,commutative) tm =
try
let op = (rator o rator o lhs o snd o strip_forall o concl) commutative in
let ty = (hd o snd o dest_type o type_of) op in
let x = mk_var("x",ty) and y = mk_var("y",ty) and z = mk_var("z",ty) in
let xy = mk_comb(mk_comb(op,x),y) and yz = mk_comb(mk_comb(op,y),z)
and yx = mk_comb(mk_comb(op,y),x) in
let comm = PART_MATCH I commutative (mk_eq(xy,yx))
and ass = PART_MATCH I (SYM (SPEC_ALL associative))
(mk_eq(mk_comb(mk_comb(op,xy),z),mk_comb(mk_comb(op,x),yz))) in
let asc = TRANS (SUBS [comm] (SYM ass)) (INST[(x,y); (y,x)] ass) in
let init = TOP_DEPTH_CONV (REWR_CONV ass) tm in
let gl = rhs (concl init) in
let rec bubble head expr =
let ((xop,l),r) = (dest_comb F_F I) (dest_comb expr) in
if xop = op then
if l = head then REFL expr else
if r = head then INST [(l,x); (r,y)] comm
else let subb = bubble head r in
let eqv = AP_TERM (mk_comb(xop,l)) subb
and ((yop,l'),r') = (dest_comb F_F I)
(dest_comb (snd (dest_eq (concl subb)))) in
TRANS eqv (INST[(l,x); (l',y); (r',z)] asc)
else failwith "" in
let rec asce (l,r) =
if l = r then REFL l
else let ((zop,l'),r') = (dest_comb F_F I) (dest_comb l) in
if zop = op then
let beq = bubble l' r in
let rt = snd (dest_eq (concl beq)) in
TRANS (AP_TERM (mk_comb(op,l'))
(asce ((snd (dest_comb l)),(snd (dest_comb rt)))))
(SYM beq)
else failwith "" in
EQT_INTRO (EQ_MP (SYM init) (asce (dest_eq gl)))
with _ -> failwith "AC_CONV";;
let AC_RULE ths = EQT_ELIM o AC_CONV ths;;
(* ------------------------------------------------------------------------- *)
(* The order of picking conditionals is different! *)
(* ------------------------------------------------------------------------- *)
let (COND_CASES_TAC :tactic) =
let is_good_cond tm =
try not(is_const(fst(dest_cond tm)))
with Failure _ -> false in
fun (asl,w) ->
let cond = find_term (fun tm -> is_good_cond tm && free_in tm w) w in
let p,(t,u) = dest_cond cond in
let inst = INST_TYPE [type_of t, `:A`] COND_CLAUSES in
let (ct,cf) = CONJ_PAIR (SPEC u (SPEC t inst)) in
DISJ_CASES_THEN2
(fun th -> SUBST1_TAC (EQT_INTRO th) THEN
SUBST1_TAC ct THEN ASSUME_TAC th)
(fun th -> SUBST1_TAC (EQF_INTRO th) THEN
SUBST1_TAC cf THEN ASSUME_TAC th)
(SPEC p EXCLUDED_MIDDLE)
(asl,w) ;;
(* ------------------------------------------------------------------------- *)
(* MATCH_MP_TAC allows universals on the right of implication. *)
(* Here's a crude hack to allow it. *)
(* ------------------------------------------------------------------------- *)
let MATCH_MP_TAC th =
MATCH_MP_TAC th ORELSE
MATCH_MP_TAC(PURE_REWRITE_RULE[RIGHT_IMP_FORALL_THM] th);;
(* ------------------------------------------------------------------------- *)
(* Various theorems have different names. *)
(* ------------------------------------------------------------------------- *)
let ZERO_LESS_EQ = LE_0;;
let LESS_EQ_MONO = LE_SUC;;
let NOT_LESS = NOT_LT;;
let LESS_0 = LT_0;;
let LESS_EQ_REFL = LE_REFL;;
let LESS_EQUAL_ANTISYM = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_ANTISYM)));;
let NOT_LESS_0 = GEN_ALL(EQF_ELIM(SPEC_ALL(CONJUNCT1 LT)));;
let LESS_TRANS = LT_TRANS;;
let LESS_LEMMA1 = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL(CONJUNCT2 LT))));;
let LESS_SUC_REFL = prove(`!n. n < SUC n`,REWRITE_TAC[LT]);;
let FACT_LESS = FACT_LT;;
let LESS_EQ_SUC_REFL = prove(`!n. n <= SUC n`,REWRITE_TAC[LE; LE_REFL]);;
let LESS_EQ_ADD = LE_ADD;;
let GREATER_EQ = GE;;
let LESS_EQUAL_ADD = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_EXISTS)));;
let LESS_EQ_IMP_LESS_SUC = GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL LT_SUC_LE)));;
let LESS_IMP_LESS_OR_EQ = LT_IMP_LE;;
let LESS_MONO_ADD = GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL LT_ADD_RCANCEL)));;
let LESS_SUC = prove(`!m n. m < n ==> m < (SUC n)`,MESON_TAC[LT]);;
let LESS_CASES = LTE_CASES;;
let LESS_EQ = GSYM LE_SUC_LT;;
let LESS_OR_EQ = LE_LT;;
let LESS_ADD_1 = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL
(REWRITE_RULE[ADD1] LT_EXISTS))));;
let SUC_SUB1 = ARITH_RULE `!m. SUC m - 1 = m`;;
let LESS_MONO_EQ = LT_SUC;;
let LESS_ADD_SUC = ARITH_RULE `!m n. m < m + SUC n`;;
let LESS_REFL = LT_REFL;;
let INV_SUC_EQ = SUC_INJ;;
let LESS_EQ_CASES = LE_CASES;;
let LESS_EQ_TRANS = LE_TRANS;;
let LESS_THM = CONJUNCT2 LT;;
let GREATER = GT;;
let LESS_EQ_0 = CONJUNCT1 LE;;
let OR_LESS = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_SUC_LT)));;
let SUB_EQUAL_0 = SUB_REFL;;
let SUB_MONO_EQ = SUB_SUC;;
let NOT_SUC_LESS_EQ = ARITH_RULE `!n m. ~(SUC n <= m) <=> m <= n`;;
let SUC_NOT = GSYM NOT_SUC;;
let LESS_LESS_CASES = ARITH_RULE `!m n:num. (m = n) \/ m < n \/ n < m`;;
let NOT_LESS_EQUAL = NOT_LE;;
let LESS_EQ_EXISTS = LE_EXISTS;;
let LESS_MONO_ADD_EQ = LT_ADD_RCANCEL;;
let LESS_LESS_EQ_TRANS = LTE_TRANS;;
let SUB_SUB = ARITH_RULE
`!b c. c <= b ==> (!a:num. a - (b - c) = (a + c) - b)`;;
let LESS_CASES_IMP = ARITH_RULE
`!m n:num. ~(m < n) /\ ~(m = n) ==> n < m`;;
let SUB_LESS_EQ = ARITH_RULE `!n m:num. (n - m) <= n`;;
let SUB_EQ_EQ_0 = ARITH_RULE `!m n:num. (m - n = m) = (m = 0) \/ (n = 0)`;;
let SUB_LEFT_LESS_EQ = ARITH_RULE
`!m n p:num. m <= (n - p) <=> (m + p) <= n \/ m <= 0`;;
let SUB_LEFT_GREATER_EQ =
ARITH_RULE `!m n p:num. m >= (n - p) <=> (m + p) >= n`;;
let LESS_EQ_LESS_TRANS = LET_TRANS;;
let LESS_0_CASES = ARITH_RULE `!m. (0 = m) \/ 0 < m`;;
let LESS_OR = ARITH_RULE `!m n. m < n ==> (SUC m) <= n`;;
let SUB = ARITH_RULE
`(!m. 0 - m = 0) /\
(!m n. (SUC m) - n = (if m < n then 0 else SUC(m - n)))`;;
let LESS_MULT_MONO = prove
(`!m i n. ((SUC n) * m) < ((SUC n) * i) <=> m < i`,
REWRITE_TAC[LT_MULT_LCANCEL; NOT_SUC]);;
let LESS_MONO_MULT = prove
(`!m n p. m <= n ==> (m * p) <= (n * p)`,
SIMP_TAC[LE_MULT_RCANCEL]);;
let LESS_MULT2 = prove
(`!m n. 0 < m /\ 0 < n ==> 0 < (m * n)`,
REWRITE_TAC[LT_MULT]);;
let SUBSET_FINITE = prove
(`!s. FINITE s ==> (!t. t SUBSET s ==> FINITE t)`,
MESON_TAC[FINITE_SUBSET]);;
let LESS_EQ_SUC = prove
(`!n. m <= SUC n <=> (m = SUC n) \/ m <= n`,
REWRITE_TAC[LE]);;
(* ------------------------------------------------------------------------- *)
(* Restore traditional (low) parse status of "=". *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("=",(2,"right"));;
|